Wide Bandgap Nanophotonics
The nanophotonics lab is focused on nanoscale engineering and characterization of nanophotonic entities to control and guide light at the nanoscale. We are exploring several research directions to understand light – matter interactions and to fabricate energy efficient devices.
|
Single Emitters |
|
Optical Cavities Optical cavities are important building block of any nanophotonics network. Fabrication of photonic crystal cavities and microdisk resonators is challenging. However, our lab will aim to produce the highest quality devices our of wideband gap semiconductors such as GaN, Diamond and SiC. Devices In the realm of the 21st century we always improve the performance of our devices. We require faster communications, powerful lasers and brighter light sources – all with reduced power consumption. Our lab is focused on engineering a new class of devices with enhanced functionalities such as low threshold lasers and ultra bright LEDs. |
|
Investigation of Light Matter Interaction Integrating single photon emitters with optical cavities provides an interesting platform for light-matter interaction and lies in the heart of quantum information processing. Our lab is focused on exploring this fascinating physics to demonstrate coupling of single emitters to optical cavities and understand the peculiar behavior of coupled photons. |