Skip to main content

Site navigation

  • University of Technology Sydney home
  • Home

    Home
  • For students

  • For industry

  • Research

Explore

  • Courses
  • Events
  • News
  • Stories
  • People

For you

  • Libraryarrow_right_alt
  • Staffarrow_right_alt
  • Alumniarrow_right_alt
  • Current studentsarrow_right_alt
  • Study at UTS

    • arrow_right_alt Find a course
    • arrow_right_alt Course areas
    • arrow_right_alt Undergraduate students
    • arrow_right_alt Postgraduate students
    • arrow_right_alt Research Masters and PhD
    • arrow_right_alt Online study and short courses
  • Student information

    • arrow_right_alt Current students
    • arrow_right_alt New UTS students
    • arrow_right_alt Graduates (Alumni)
    • arrow_right_alt High school students
    • arrow_right_alt Indigenous students
    • arrow_right_alt International students
  • Admissions

    • arrow_right_alt How to apply
    • arrow_right_alt Entry pathways
    • arrow_right_alt Eligibility
arrow_right_altVisit our hub for students

For you

  • Libraryarrow_right_alt
  • Staffarrow_right_alt
  • Alumniarrow_right_alt
  • Current studentsarrow_right_alt

POPULAR LINKS

  • Apply for a coursearrow_right_alt
  • Current studentsarrow_right_alt
  • Scholarshipsarrow_right_alt
  • Featured industries

    • arrow_right_alt Agriculture and food
    • arrow_right_alt Defence and space
    • arrow_right_alt Energy and transport
    • arrow_right_alt Government and policy
    • arrow_right_alt Health and medical
    • arrow_right_alt Corporate training
  • Explore

    • arrow_right_alt Tech Central
    • arrow_right_alt Case studies
    • arrow_right_alt Research
arrow_right_altVisit our hub for industry

For you

  • Libraryarrow_right_alt
  • Staffarrow_right_alt
  • Alumniarrow_right_alt
  • Current studentsarrow_right_alt

POPULAR LINKS

  • Find a UTS expertarrow_right_alt
  • Partner with usarrow_right_alt
  • Explore

    • arrow_right_alt Explore our research
    • arrow_right_alt Research centres and institutes
    • arrow_right_alt Graduate research
    • arrow_right_alt Research partnerships
arrow_right_altVisit our hub for research

For you

  • Libraryarrow_right_alt
  • Staffarrow_right_alt
  • Alumniarrow_right_alt
  • Current studentsarrow_right_alt

POPULAR LINKS

  • Find a UTS expertarrow_right_alt
  • Research centres and institutesarrow_right_alt
  • University of Technology Sydney home
Explore the University of Technology Sydney
Category Filters:
University of Technology Sydney home University of Technology Sydney home
  1. home
  2. arrow_forward_ios ... Newsroom
  3. arrow_forward_ios ... 2019
  4. arrow_forward_ios 02
  5. arrow_forward_ios Salinity of seawater ruining coral chemistry

Salinity of seawater ruining coral chemistry

28 February 2019
Summer flooding in Australia delivers significant freshwater runoff into the Coral Sea, raising concern for the Great Barrier Reef. Photo: USGS/NASA Landsat

Summer flooding in Australia delivers significant freshwater runoff into the Coral Sea, raising concern for the Great Barrier Reef. Photo: USGS/NASA Landsat

New research suggests massive plumes of fresh water from the recent North Queensland floods could put Great Barrier Reef corals under extreme stress, as marine heatwaves have done. Drastic changes in ocean salinity from, for example, severe freshwater flooding, provoke a similar response in corals as extreme heating, resulting in “freshwater bleaching” and if unabated, coral death.

Researchers from the ARC Centre of Excellence for Coral Reef Studies at James Cook University  (Coral CoE) and University of Technology Sydney (UTS) report that extreme and sudden changes in salinity, or the ocean salt concentration, cause a biochemical response in corals that is similar to marine heatwaves, but in some ways, more damaging to their cells ability to function.

“Corals are sensitive organisms, known to only tolerate slight changes in their environment. Thriving in clear, sunlit waters – the majority of reef-building corals are found in tropical and subtropical waters with a salinity between 32 to 42 parts per thousand,” said senior author Prof David Miller of Coral CoE.

“During the recent flooding, there are reports that nearshore reefs were exposed to roughly half the normal ocean salinity.”

Our research shows that this kind of environmental change causes a shock response in corals that prevents normal cell function.

Professor David Miller
Professor and Chief Investigator, ARC Centre of Excellence, Coral Reef Studies

The researchers used the sequenced genome - a biological blueprint - of the common reef-building coral, Acropora millepora to detect changes in the coral’s biology.

Extreme and sudden changes in salinity cause a biochemical response in corals (Acropora millepora) that is similar to marine heatwaves.

Extreme and sudden changes in salinity cause a biochemical response in corals (Acropora millepora) that is similar to marine heatwaves. Photo: ARC Centre of Excellence for Coral Reef Studies/Greg Torda

“Using the sophisticated labs at the National Sea Simulator, we put both young and adult corals under a salinity stress test to see how they respond to differing salinity concentrations,” said co-author Dr Jean-Baptiste Raina of UTS.

“We found that there was a common response between both coral life-stages – with the younger corals being more sensitive to low salinity conditions, but faring slightly better with exposure over time.”

“In general, we found that the coral’s cells launch a similar chemical response to reduced salinity as they do for heat stress,” Prof Miller explained.

“However, unlike the heat stress response, corals exposed to reduced salinity experience a complete collapse of their internal cellular protein balance, suggesting that their cells are in deep trouble.”

Although the central Great Barrier Reef may have been spared mass thermal bleaching due to higher-than-normal ocean temperatures this summer, there are many coastal reefs left battling dramatic changes in water conditions from the massive plumes of floodwater.

With the frequency and severity of heavy rainfall and runoff events predicted to increase by 2050, management interventions to increase the resilience of reefs are needed now more than ever.

The paper “Transcriptomic analysis reveals protein homeostasis breakdown in the coral Acropora millepora during hypo-saline stress” is published in the journal BMC Genomics.

Share
Share this on Facebook Share this on Twitter Share this on LinkedIn
Back to Social justice and sustainability

Acknowledgement of Country

UTS acknowledges the Gadigal People of the Eora Nation and the Boorooberongal People of the Dharug Nation upon whose ancestral lands our campuses now stand. We would also like to pay respect to the Elders both past and present, acknowledging them as the traditional custodians of knowledge for these lands. 

University of Technology Sydney

City Campus

15 Broadway, Ultimo, NSW 2007

Get in touch with UTS

Follow us

  • Instagram
  • LinkedIn
  • YouTube
  • Facebook

A member of

  • Australian Technology Network
Use arrow keys to navigate within each column of links. Press Tab to move between columns.

Study

  • Find a course
  • Undergraduate
  • Postgraduate
  • How to apply
  • Scholarships and prizes
  • International students
  • Campus maps
  • Accommodation

Engage

  • Find an expert
  • Industry
  • News
  • Events
  • Experience UTS
  • Research
  • Stories
  • Alumni

About

  • Who we are
  • Faculties
  • Learning and teaching
  • Sustainability
  • Initiatives
  • Equity, diversity and inclusion
  • Campus and locations
  • Awards and rankings
  • UTS governance

Staff and students

  • Current students
  • Help and support
  • Library
  • Policies
  • StaffConnect
  • Working at UTS
  • UTS Handbook
  • Contact us
  • Copyright © 2025
  • ABN: 77 257 686 961
  • CRICOS provider number: 00099F
  • TEQSA provider number: PRV12060
  • TEQSA category: Australian University
  • Privacy
  • Copyright
  • Disclaimer
  • Accessibility