Skip to main content

Site navigation

  • University of Technology Sydney home
  • Home

    Home
  • For students

  • For industry

  • Research

Explore

  • Courses
  • Events
  • News
  • Stories
  • People

For you

  • Libraryarrow_right_alt
  • Staffarrow_right_alt
  • Alumniarrow_right_alt
  • Current studentsarrow_right_alt
  • Study at UTS

    • arrow_right_alt Find a course
    • arrow_right_alt Course areas
    • arrow_right_alt Undergraduate students
    • arrow_right_alt Postgraduate students
    • arrow_right_alt Research Masters and PhD
    • arrow_right_alt Online study and short courses
  • Student information

    • arrow_right_alt Current students
    • arrow_right_alt New UTS students
    • arrow_right_alt Graduates (Alumni)
    • arrow_right_alt High school students
    • arrow_right_alt Indigenous students
    • arrow_right_alt International students
  • Admissions

    • arrow_right_alt How to apply
    • arrow_right_alt Entry pathways
    • arrow_right_alt Eligibility
arrow_right_altVisit our hub for students

For you

  • Libraryarrow_right_alt
  • Staffarrow_right_alt
  • Alumniarrow_right_alt
  • Current studentsarrow_right_alt

POPULAR LINKS

  • Apply for a coursearrow_right_alt
  • Current studentsarrow_right_alt
  • Scholarshipsarrow_right_alt
  • Featured industries

    • arrow_right_alt Agriculture and food
    • arrow_right_alt Defence and space
    • arrow_right_alt Energy and transport
    • arrow_right_alt Government and policy
    • arrow_right_alt Health and medical
    • arrow_right_alt Corporate training
  • Explore

    • arrow_right_alt Tech Central
    • arrow_right_alt Case studies
    • arrow_right_alt Research
arrow_right_altVisit our hub for industry

For you

  • Libraryarrow_right_alt
  • Staffarrow_right_alt
  • Alumniarrow_right_alt
  • Current studentsarrow_right_alt

POPULAR LINKS

  • Find a UTS expertarrow_right_alt
  • Partner with usarrow_right_alt
  • Explore

    • arrow_right_alt Explore our research
    • arrow_right_alt Research centres and institutes
    • arrow_right_alt Graduate research
    • arrow_right_alt Research partnerships
arrow_right_altVisit our hub for research

For you

  • Libraryarrow_right_alt
  • Staffarrow_right_alt
  • Alumniarrow_right_alt
  • Current studentsarrow_right_alt

POPULAR LINKS

  • Find a UTS expertarrow_right_alt
  • Research centres and institutesarrow_right_alt
  • University of Technology Sydney home
Explore the University of Technology Sydney
Category Filters:
University of Technology Sydney home University of Technology Sydney home
  1. home
  2. arrow_forward_ios ... Newsroom
  3. arrow_forward_ios ... 2018
  4. arrow_forward_ios 11
  5. arrow_forward_ios Steroid synthesis discovery could rewrite the textbooks

Steroid synthesis discovery could rewrite the textbooks

27 November 2018
  • Steroids are essential molecules for life in all complex organisms such as animals and plants; 
  • Steroid biosynthesis is an ancient function, emerging around 2.3 billion years ago, when oxygen levels started to increase in the Earth’s atmosphere
  • The discovery of a new central enzyme in the steroid  biosynthesis pathway in some modern organisms might not only lead to an evolutionary “re-think” but also open new ways to control toxic algae in aquaculture.

The increasing availability of genome editing tools such as CRISPR/Cas9 is giving scientists unprecedented access to many of the inner metabolic processes that have evolved over billions of years to shape the tree of life. A new study exploring steroid biosynthesis pathways in a group of microalgae called diatoms, urges a rethink on key evolutionary aspects of eukaryotic life, the scientists say.

Knowing the underlying natural metabolism of diatoms is necessary to design synthetic biology and metabolic engineering strategies for the growing biotechnology sector. In addition, the findings, published in Nature Microbiology, have potential practical applications for the aquaculture industry providing insight into ways to inhibit toxic algal infections. 

Spring diatom bloom

Image: Credit Penelope Ajani, Spring diatom bloom (centric and pennate forms) from Sydney Harbour, Australia

The study is an international collaboration co-led by the University of Technology Sydney Climate Change Cluster (UTSC3) and VIB-Ghent University scientists together with the University of Queensland. 

Dr Michele Fabris, co-author and CSIRO Synthetic Biology Future Science Platform Fellow at UTSC3 says that the team’s interest was sparked by earlier research suggesting a novel, alternative enzyme for steroid biosynthesis might be “hiding” in some microalgae species.

“Sterols are essential components of all eukaryotic cells. Without sterols plants, animals, and fungi couldn’t live. We all rely on the same ancient metabolic machinery in our cells that emerged more than two billion years ago. Or so we thought,” he says.

Prof Alain Goossens, a leading specialist in plant metabolism at VIB-UGent Center for Plant Systems Biology says that according to the biochemistry textbooks the enzyme responsible for the first and most important step in sterol biosynthesis, squalene epoxidase, SQE, was believed to have been carried on by all modern organisms from their common ancestor. 

Lead author, VIB-UGent researcher Dr Jacob Pollier says that to the contrary they found “many organisms use an alternative, completely different enzyme, an alternative SQE (AltSQE)”.

 “Nature has come up with a different way of carrying out a function that is key to life. We don’t know why yet, but it has profound implications on our understanding of the evolution of life as we know it,” he says.

A rethink on accepted view about steroid biosynthesis may also open potential routes to control harmful toxic algae and parasitic infections that impact the aquaculture industry, causing seafood poisoning in humans and economic damage, respectively. Although not the focus of this study, the discovery of this novel enzyme could find applications in this space. 

“Because the sterol pathway is a necessary function for these organisms, the enzyme carrying out the key step may offer a novel, potential ‘kill’ switch, if properly targeted,” Dr Fabris says.

The researchers also found one more surprise. The same AltSQE gene was discovered in a class of marine viruses associated with infections and large-scale die offs in algal blooms, which could seed cloud formation.

“Algae blooms are thought to influence cloud formation and thus, ultimately, the Earth’s climate system. These marine viruses are known to hijack algal steroid metabolism, so AltSQE could play an important role in marine cloud formation and climate regulation” Dr Pollier says.

 
Publication details http://dx.doi.org/10.1038/s41564-018-0305-5

Funding Research Foundation-Flanders, University of Antwerp Research Fund,  CSIRO and the University of Technology Sydney.
 

Share
Share this on Facebook Share this on Twitter Share this on LinkedIn
Back to News in Climate Change Cluster

Acknowledgement of Country

UTS acknowledges the Gadigal People of the Eora Nation and the Boorooberongal People of the Dharug Nation upon whose ancestral lands our campuses now stand. We would also like to pay respect to the Elders both past and present, acknowledging them as the traditional custodians of knowledge for these lands. 

University of Technology Sydney

City Campus

15 Broadway, Ultimo, NSW 2007

Get in touch with UTS

Follow us

  • Instagram
  • LinkedIn
  • YouTube
  • Facebook

A member of

  • Australian Technology Network
Use arrow keys to navigate within each column of links. Press Tab to move between columns.

Study

  • Find a course
  • Undergraduate
  • Postgraduate
  • How to apply
  • Scholarships and prizes
  • International students
  • Campus maps
  • Accommodation

Engage

  • Find an expert
  • Industry
  • News
  • Events
  • Experience UTS
  • Research
  • Stories
  • Alumni

About

  • Who we are
  • Faculties
  • Learning and teaching
  • Sustainability
  • Initiatives
  • Equity, diversity and inclusion
  • Campus and locations
  • Awards and rankings
  • UTS governance

Staff and students

  • Current students
  • Help and support
  • Library
  • Policies
  • StaffConnect
  • Working at UTS
  • UTS Handbook
  • Contact us
  • Copyright © 2025
  • ABN: 77 257 686 961
  • CRICOS provider number: 00099F
  • TEQSA provider number: PRV12060
  • TEQSA category: Australian University
  • Privacy
  • Copyright
  • Disclaimer
  • Accessibility