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Abstract

Based on the multi-currency LIBOR Market Model (LMM) this paper constructs a hy-
brid commodity interest rate market model with a time-dependent stochastic local volatility
function allowing the model to simultaneously fit the implied volatility surfaces of commodity
and interest rate options. Since liquid market prices are only available for options on com-
modity futures, rather than forwards, a convexity correction formula for the model is derived
to account for the difference between forward and futures prices. A procedure for efficiently
calibrating the model to interest rate and commodity volatility smiles is constructed. Finally,
the model is fitted to an exogenously given correlation structure between forward interest
rates and commodity prices (cross–correlation). When calibrating to options on forwards
(rather than futures), the fitting of cross–correlation preserves the (separate) calibration
in the two markets (interest rate and commodity options), while in the case of futures a
(rapidly converging) iterative fitting procedure is presented. The fitting of cross–correlation
is reduced to finding an optimal rotation of volatility vectors, which is shown to be an ap-
propriately modified version of the “orthonormal Procrustes” problem in linear algebra. The
calibration approach is demonstrated in an application to market data for oil futures.
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1 Introduction

The modelling of market risks for the pricing of derivative financial instruments has come a long
way since the seminal paper of Black & Scholes (1973). In particular, it is widely recognised
that such models need to be calibrated to all available liquid market prices, including options
of various strikes and maturities, for all relevant sources of risk. For commodity derivatives, the
approach presented in this paper represents a step closer to this ideal.
In addition to commodity prices and their stochastic dynamics, the valuation and risk man-
agement of positions in commodity derivatives also depend on market interest rates and the
stochastic dynamics thereof. The market instruments, to which a model should be calibrated,
include the swaption “cube” (swaptions of (1) various maturities, (2) various strikes, on (3)
swaps of various lengths) and commodity options of various maturities and strikes. For com-
modities, futures are more liquid than forwards — consequently (as well as to make the model
more realistic) the correlation between commodity prices and interest rates becomes a relevant
model input already at the level of calibration.
The model presented in this paper, with its associated calibration method, is fitted to market
prices for swaptions in a swaption cube, options on commodity futures for various maturities
and strikes, and of course the underlying futures and interest rate term structures. Furthermore,
it is fitted to exogenously estimated correlations between interest rates and commodity prices.
The construction is based on a LIBOR Market Model (LMM)1 for the interest rate market and
the commodity market, with the two markets linked in a manner analogous to the construction
of the multicurrency LMM,2 where the convenience yield takes the role of the interest rate in
the commodity market (thus convenience yields are assumed to be stochastic). To allow a fit to
market–implied volatility smiles (and skews) of commodity and interest rate options, the model
is equipped with a time–dependent stochastic local volatility function (SLV), following Piterbarg
(2005)3.
Efficient calibration is achieved in a two steps, by first calibrating the model to interest rate
and commodity markets separately, building on a synthesis of the calibration approaches for the
LMM in Pedersen (1998) and the SLV-LMM in Piterbarg (2005). In order to be able to calibrate
efficiently to commodity futures, we construct (and test) two approximations for calculating the
difference between futures and forwards in the proposed model. The separate calibration in the
two markets in the first step is then followed by an orthonormal transformation of the commodity
volatility vectors to rotate the commodity volatilities relative to the interest rate volatilities in
such a manner as to achieve the desired correlations between the two markets. The calibration
of this orthonormal transformation to the desired cross-correlations is cast in terms of a modified
orthonormal Procrustes problem, permitting an effective solution algorithm to be applied. We
illustrate the use of the model on real market data.
For the example, we chose U.S. Dollars (USD) as the "domestic" currency and Brent Crude Oil
as the commodity (the "foreign currency"). The "exchange rate" is given by the Brent Crude
Oil futures prices denoted in USD. These prices, when converted to forward prices using an
appropriate convexity correction, can be interpreted as forward exchange rates between the
USD economy and an economy where value is measured in terms of units of Brent Crude Oil

1See the seminal papers by Miltersen, Sandmann & Sondermann (1997), Brace, Gatarek, & Musiela (1997)
and Jamshidian (1997).

2See Schlögl (2002b).
3Grzelak & Oosterlee (2011) presented an extensions of Schlögl (2002b) with stochastic volatility.
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(where convenience yields are interpreted as the foreign interest rates). In the example, the
model is calibrated to the USD swaptions volatility cube, and the volatility smile of European-
style options on Brent Crude Oil futures.
Hybrid modelling combining commodity and interest rate risk was initiated by Schwartz (1982),
who modelled interest rate risk via stochastic dynamics of the continuously compounded short
rate, without reference to a full model calibrated to an initial term structure. Subsequently,
a number of authors proposed models for stochastic convenience yields, some of whom also
incorporated stochastic dynamics of the term structure of interest rates.4 In these models, con-
tinuously compounded convenience yields (and possibly interest rates) typically are normally
distributed, since they are assumed to be driven by a Heath, Jarrow & Morton (1992) term
structure model with generalised (possibly multi-factor) Ornstein/Uhlenbeck dynamics. In such
a model, effective calibration to available commodity and interest rate options is difficult when
only at–the–money options are considered, and not possible for the full range of available strikes.
At–the–money calibration is a strength of lognormal LIBOR Market Models, and Pilz & Schlögl
(2013) construct a hybrid model which exploits this, also making use of an orthonormal rota-
tion of volatility vectors to fit the cross–correlations between the commodity and interest rate
markets. By lifting the lognormality assumption, the present paper goes beyond their work to
allow calibration to the full swaption cube and commodity volatility surface, and it refines the
correlation fitting procedure through rotation by casting it as a modification of the orthonormal
Procrustes problem,5 which can be solved by a fast numerical algorithm.6

As noted above, the individual model components are based on the stochastic local volatility
formulation of the LMM by Piterbarg (2005). This represents one major strand of the literature
extending the LMM beyond at–the–money calibration. The other major strand is based on the
SABR model of Hagan et al. (2002), laid out in detail in Rebonato, McKay & White (2009).
In the present context the choice of the SLV–LMM over the SABR–LMM as the basis of the
hybrid interest rate/commodity model is driven by three considerations:

1. Specification of the stochastic volatility dynamics along the lines of Piterbarg (2005) avoids
the mathematical problems associated with SABR,7 i.e. the log-normality of the volatility
process and the undesirable behaviour of the stochastic differential equation (SDE) of the
underlying for certain values of the “constant elasticity of variance” (CEV) parameter β.
The former implies divergence to infinity of volatility almost surely in finite time. The
latter involves non-uniqueness of the solution to the SDE (for 0 < β < 1

2) and/or the
process of the underlying financial variable being absorbed at zero (for 0 < β < 1).

2. The SLV–LMM is directly amenable to calibration by an appropriately modified Pedersen
(1998) algorithm, in which we directly, exogenously control the correlation structure of
the underlying financial variables (as opposed to the correlation structure of the driving
Brownian motions). In particular in the absence of liquid market instruments contain-
ing useable information on “implied” correlations,8 correlation is subject to considerable

4See, for example, Gibson & Schwartz (1990), Cortazar & Schwartz (1994), Schwartz (1997), Miltersen &
Schwartz (1998), and Miltersen (2003).

5See Golub & Van Loan (1996).
6This algorithm is given as Algorithm 8.1 in Gower & Dijksterhuis (2004).
7See Section 3.10 of Rebonato, McKay & White (2009).
8Although swaption prices depend in theory on correlations between forward rates, in practice this dependence

is too weak for these correlations to be extracted in a meaningful way; see e.g. Choy, Dun & Schlögl (2004).
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“parameter uncertainty,” and having directly interpretable correlation inputs assists in
controlling for this source of “model risk.”

3. In the present paper, the SLV–LMM for each market (interest rates and the commodity)
is driven by a vector of independent Brownian motions. Thus correlations are introduced
by the way volatility is distributed over these Brownian motions (“factors”) by the vector–
valued volatility functions. This permits a two–stage procedure of fitting cross–correlations
between markets after fitting the models for the individual markets (though there is some
coupling when calibrating to futures), using orthonormal transformations.

The paper is organised as follows. The basic notation, the results of the single– and multi-
currency LMM and their interpretation in the context of commodities are presented in Section
2. In Section 3 the calibration of the commodity part of the Commodity LMM to plain vanilla
options is discussed. In Section 4 the relationship between futures and forwards in the model is
presented, which permits calibration of the model to futures as well as forwards. The calibration
of the interest rate part of the hybrid Commodity LMM will not be discussed in detail in this
paper, because this problem has already been addressed by many authors, e.g., Piterbarg (2005),
and most methods should be compatible with our model. However, in Section 5 we discuss how
both separately calibrated parts of the model – the interest rate and the commodity part –
can be merged in order to have one underlying d-dimensional Brownian motion for the joint
model and still match the market prices used for calibration of the particular parts. Section 6
illustrates the application of the model to real market data.

2 The Commodity LIBOR Market Model

2.1 The LIBOR Market Model

For the construction of the LMM for the domestic interest rate market we assume a given
probability space (Ω,F ,P), where the underlying filtration {Ft, t ∈ [0, TN ]} coincides with the
P-augmentation of the natural filtration of a d-dimensional standard Brownian motion W , and
EP

t [ · ] := EP[ · |Ft] denote the conditional expectation on the information at time t. Let TN be a
fixed time horizon, P (t, T ), T ∈ [t, TN ] the bond price, i.e. the amount that has to be invested
at time t to receive one unit of the domestic currency at time T , hence P (T, T ) = 1 for every
T ∈ [0, TN ]. Assuming the discrete-tenor structure, 0 = T0 < T1 < . . . < TN , with intervals
τn = Tn+1−Tn, the forward LIBOR rate L(t, Tn) with fixing period Tn as seen at time t is given
by

L (t, Tn) = τ−1
n

(
P (t, Tn)

P (t, Tn+1)
− 1

)
, q(t) ≤ n ≤ N − 1,

where q (t) is the index function of the LIBOR rate with the shortest maturity not fixed at time
t, defined as Tq(t)−1 ≤ t < Tq(t). The price of the discounted bond maturing at time Tn > t is
then given by

P (t, Tn) = P
(
t, Tq(t)

) n−1∏
i=q(t)

1
1 + τiL (t, Ti)

.

The dynamics of the forward LIBOR rate L(t, Tn) as seen at time t ∈ [0, T ], under the PTn+1-
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forward measure9 is given by

dL(t, Tn) = σL(t, Tn)⊤dW Tn+1(t), (1)

where σL(t, Tn) is a d-dimensional process, discussed later in this section. From Girsanov’s
theorem, the dynamics of L(t, Tn) are

dL(t, Tn) = σL(t, Tn)⊤
(
γL (t, Tn) dt + dW Tn(t)

)
,

where W Tn is a d-dimensional vector–valued Brownian motion10 under the PTn-forward measure
and γL is determined by the volatility of the forward bond price process, i.e.

d

(
P (t, Tn)

P (t, Tn+1)

)
= P (t, Tn)

P (t, Tn+1)
γL(t, Tn)dW Tn+1(t) with

γL (t, Tn) = τnσL(t, Tn)
1 + τnL(t, Tn)

, (2)

relates dW Tn+1 to dW Tn by,

dW Tn(t) = dW Tn+1(t)− γL (t, Tn) dt. (3)

Further results and the connection of this model to the framework of Heath, Jarrow & Morton
(1992) can be found in Andersen & Piterbarg (2010).

2.1.1 The Stochastic Local Volatility LMM

For most markets, implied volatilities calculated from traded option prices are strike dependent,
i.e. exhibit a volatility smile and skew (slope of the at-the-money volatility) . To capture the
skew, we assume that the time-dependent volatility functions are of separable deterministic form

σL (t, Tn) = φL (L (t, Tn)) λL (t, Tn) , (4)

where λL (t, Tn) is a bounded deterministic d-dimensional function and φL : R+ → R+ is a time
homogenous local volatility function. This is a fairly general setup, and one model allowing for
skewed implied volatility is the displaced-diffusion model, where φL is given by (Andersen &
Piterbarg 2010, Remark 7.2.13),

φL (L (t, Tn)) = bL (t, Tn) L (t, Tn) + (1− bL (t, Tn)) L (0, Tn) .

When (1− bL (t, Tn)) /bL (t, Tn) < (L (0, Tn) τn)−1, the existence of path wise unique solutions
follow (Andersen & Piterbarg 2010, Lemma 14.2.5).
To capture the volatility smile, we follow Andersen & Brotherton-Ratcliffe (2005) and scale the
Brownian motions with a mean-reverting stochastic volatility process given by,

dzL (t) = θ (zL,0 − zL (t)) dt + η
√

zL (t)dZL (t) , (5)

9This forward measure is the equivalent martingale measure associated with taking the zero coupon bond
P (t, Tn+1) as the numeraire, and under this measure (the existence of which is assured under the model assump-
tions below) forward LIBOR L(t, Tn) is necessarily a martingale, i.e. driftless — see e.g. Musiela & Rutkowski
(1997).

10Thus W Tn is a d-dimensional vector, each component W Tn
i , 1 ≤ i ≤ d, is a Brownian motion under the

PTn -forward measure, and the quadratic covariation between the components is zero: dW Tn
i dW Tn

j = 0 ∀i ̸= j.
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where θ and η are positive constants, zL (0) = zL,0 = 1 and ZL is a Brownian motion under
the spot measure QB.11 The quadratic covariation of ZL and each component of W is assumed
to be zero. Assuming the LIBOR dynamics in (1) with the separable volatility function in (4)
and stochastic volatility (5), the stochastic local volatility LIBOR market model (SLV–LMM)
specifies the dynamics of the forward LIBOR rates for n = 1, . . . , N by

dL (t, Tn) =
√

zL (t)φL (L (t, Tn)) λ⊤
L (t, Tn) dW Tn+1 (t) . (6)

When calibrated to interest rate option market data, the model matches at-the-money volatilities
through λL, the skews (slope of the Black/Scholes implied volatilities) through bL and curvatures
of the volatility smiles through the volatility of variance η. The speed of mean reversion κ

determines how fast the spot volatility converges to the forward volatility, or more specifically,
how fast zL (t) is pulled back to its long–term mean level zL,0.
The relationship between spot measure QB and forward measures is given by (Andersen &
Piterbarg 2010, Section 14.2)

dW Tn+1 (t) =
√

zL (t)µn (t) dt + dW B (t) , (7)

µn (t) =
n∑

j=q(t)

τjφL (L (t, Tj))
1 + τjL (t, Tj)

λL (t, Tj) . (8)

Moreover, we assume that the Brownian motion ZL (t) of the variance process zL (t) is indepen-
dent of the d-dimensional Brownian motion W and that all forward LIBORs and factors are
driven by the same scaling

√
zL (t).

2.2 The Commodity Market

The approach incorporating a commodity market corresponds largely to the approach as de-
scribed for the log-normal case in Section 2.2 of Pilz & Schlögl (2013), which in turn is based on
the multi-currency extension of LIBOR market models introduced in Schlögl (2002b). There-
fore, we focus on the aspects related to the stochastic local volatility extensions of the model.
The setup for the commodity parallels the one for interest rates in the previous section, and the
corresponding volatility functions are denoted by σF and γF . As explained in Pilz & Schlögl
(2013), the commodity market can be seen as a “foreign interest market” with the commodity
(e.g. crude oil) as currency. “Foreign bond prices” C(t, T ) can be interpreted as “convenience
yield discount factors” for the commodity, defined as the amount of the commodity today which
is equivalent to the discounted (using domestic interest rates) value of receiving one unit of
the commodity (e.g. one barrel of crude oil) at time T , taking into account any storage costs
and convenience yields.12 The same logic as for the domestic interest rate market can be used
to derive “forward rates” for the commodity market, but since such “convenience yield instru-
ments” are not traded for commodities, we construct the model by specifying domestic interest
rate dynamics on the one hand, and the dynamics of forward commodity prices on the other
hand. Then, as noted in Schlögl (2002b), this implicitly determines the “foreign interest rate
dynamics,” i.e. the convenience yield dynamics in the present interpretation.

As in Schlögl (2002b), the existence of a spot price process S(t) for the commodity is assumed,
denoted in the local currency (e.g. USD per barrel crude oil). Then, its forward value is given

11See for instance Section 4.2.3 of Andersen & Piterbarg (2010).
12Thus, the C(t, T ) represent the effect of the convenience yield net of storage cost.
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by

F (t, Tn) = C(t, Tn)S(t)
P (t, Tn)

, (9)

for all n = 0, . . . , N . We assume the same tenor structure τn = Tn+1 − Tn for interest and
commodity markets. If this assumption needs to be lifted in order to reflect market reality, an
interpolation on either of the forwards can be applied. Since LIBORs have typically 3-month
or 6-month tenors, and exchange traded futures13 often have expiries with 1-month or 3-month
time difference, the interpolation has to be made for forward interest rates in most cases. See
for instance Schlögl (2002a) on forward interest rate interpolation.
The forwards in (9) are necessarily martingales under the PTn-forward measure, i.e.

dF (t, Tn) = σ⊤
F (t, Tn) dW Tn (t) , (10)

for all n = 0, . . . , N . To account for a stochastic local volatility dynamics for the commodity
prices, the dynamics for the commodity forward prices are set to

dF (t, Tn) =
√

zF (t)φF (F (t, Tn)) λF (t, Tn) dW Tn (t) , (11)

where

dzF (t) = θF (zF0 − zF (t)) dt + ηF

√
zF (t)dZF (t) , (12)

φF (F (t, Tn)) = bF (t, Tn) F (t, Tn) + (1− bF (t, Tn)) F (0, Tn) , (13)

and θF , ηF positive constants, zF (0) = zF0 = 1 and bF (t, T ) a deterministic function mapping
from R+ → R+. The Brownian motions W Tn+1 , for n = 0, . . . , N − 1, are the same as in (1),
ZF (t) is a Brownian motions under the spot measure QB, and there is no correlation between
the underlying drivers and volatility drivers in the sense that for all n = 0, . . . , N − 1

dW
Tn+1
i dZL(t) = dW

Tn+1
i dZF (t) = dZF (t)dZL(t) = 0 ∀1 ≤ i ≤ d.

Note that the structure of the dynamics for the commodity forwards F (t, Tn) is the same as
for the interest forward rates L(t, Tn), except that they are martingales under different forward
measures.
As demonstrated in Schlögl (2002b), this fully specifies the hybrid model: Denote by γF (t, Tn)
the volatility of the quotient C(t, Tn)/C(t, Tn+1) of convenience yield discount factors, then
γF (t, Tn) is determined by the no-arbitrage relation of the multi-currency LMM (Schlögl 2002b,
Equation (11)),

σF (t, Tn) = γF (t, Tn)− γL(t, Tn) + σF (t, Tn+1). (14)

In addition to the no-arbitrage condition (14), cross-correlations specify linkages between the
interest rates and commodity forwards markets. Their form and calibration will be discussed in
detail in Section 5.

13The futures versus forward relation will be discussed in Section 4.
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3 Calibration with Time Dependent Parameters

This section discusses aspects of the calibration of the hybrid model, which consists in our
approach of two parts. The first part calibrates the (LIBOR) interest rate forward market and
the commodity market separately to their market instruments. The second part merges the
two separate calibrations with due regard to cross-correlations and the no-arbitrage condition.
Readers who have their own preferred individual calibration routines for the stochastic local
volatility LMM of Section 2.1.1, as well as for the stochastic local volatility commodity model
of Section 2.2, may skip this and the following section and continue directly with Section 5.
As mentioned in the introduction, we focus on the calibration of the commodity leg, since a
calibration of the LIBOR market model in the context of stochastic local volatility has already
been addressed by many other authors, for instance Piterbarg (2005).

Since the Commodity LMM is based on commodity forwards, we have to calibrate to forward
implied volatilities or plain vanilla option prices written on forwards. However, commodities
futures rather than forwards are most liquidly traded (consider, for example, the Brent Crude
Oil futures in the market data example in Section 6) and thus forward prices have to be deduced
from futures prices. As we are working in a hybrid model that is integrating commodity and
interest rate risk, it is not adequate to equate forward prices with futures prices, as is still
common among practitioners. Section 4 describes how to take into account the distinction
between futures and forwards when applying the calibration methods proposed in the present
section.

The calibration of the model to commodity forward instruments follows the ideas of Piterbarg
(2005) and is split into two parts. First, a pre-calibration is performed to determine a globally
constant speed of mean reversion θF and volatility of variance ηF such that the volatility smile
given from market option quotes is matched as closely as possible. Second, the volatility term
structure λF and the volatility skew structure bF are fitted to option prices.

3.1 Step 1 – Calibrating the level of mean reversion and volatility of variance

To obtain an efficient calibration algorithm we follow Piterbarg (2005) and project the full
dynamics of the commodity forwards F ( · , Tn) in Equation (11) with time-dependent parameters
onto a model with constant parameters using the parameter averaging technique. Formally, the
SDE with time-dependent parameters is replaced by an SDE with constant parameters for each
maturity, where both have the same marginal distribution. These parameters are called effective
parameters, and let λF,n denote the effective volatility and bF,n denote the effective skew, for all
maturity times Tn. The dynamics of F (t, Tn) is then given by

dF (t, Tn) =
√

zF (t)
(
bF,nF (t, Tn) + (1− bF,n)F (0, Tn))

)
λF,n dW Tn(t). (15)

We assume to have forward processes F ( · , T1), . . . , F ( · , TN ) with expiries T1, . . . , TN and we
further think of T0 as "now". Times-to-maturity for an arbitrary calendar time t ≥ 0 are given by
xn = Tn − t for n = 0, 1, . . . , N . For the commodity calibration, market prices for call options14

14For notational simplicity, we assume that the option expires at the same time the futures does. In most cases
the option expires a few days before the futures expiry. In some cases, like for EUA carbon emission futures, the
option can even expire several months before the underlying futures.
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on F ( · , Tn), with payoff (F (Tn, Tn)−Ki)+, and for several strikes Ki, i = 1, . . . , kn, are assumed
to be available and are denoted by Cmkt

n,i .
Vanilla options on (15) can be calculated efficiently by the Fourier method described in Andersen
& Piterbarg (2010) ( Chapter 9). We denote the resulting model call prices by Cmod

n,i .
The calibration problem of the first step is then to find parameters θF , ηF and b̄F,n, λ̄F,n for
n = 1, . . . , N , such that ∑

n = 1, . . . , N,

i = 1, . . . , kn

(
Cmod

n,i − Cmkt
n,i

)2 −→ min .

For the global parameters θF for mean reversion level of the variance process, and ηF for volatility
of variance, this optimisation yields their final values in the calibration. The term structure and
skew parameters, b̄F,n and λ̄F,n respectively, will be adapted in the next step to fit the market
as closely as possible.

3.2 Step 2 – Calibrating the Volatility Term- and Skew-Structure

The calibration of the volatility term structure follows the approach given in Pilz & Schlögl
(2013), but we include the calibration of the skew structure into this procedure.

The term structure of volatility levels is assumed to be piecewise constant for a specified grid of
calendar times ti = (0, t1, . . . , tnc) and times to maturity xj = (x0, x1, . . . , xnf

), which defines a
(nc×nf ) matrix of volatilities V = (vi,j)1≤i≤nc,1≤j≤nf

. The relation of the d-dimensional model
volatility vectors λ(t, Tn) (for all n) and matrix V is given by

∥ λ(t, Tn) ∥ =
∑

0 ≤ i ≤ nc − 1
0 ≤ j ≤ nf − 1

1{ti≤t<ti+1, xj≤Tn−t<xj+1} vi,j . (16)

The number of forward times nf in the volatility matrix do not need to coincide with the number
of traded forwards N , and especially in regions of large forward times a rougher spacing can
be chosen for xj , since volatilities tend to flatten out with increasing forward time. To be able
to price options on all of the forwards, the maturity of the longest available forward has to be
smaller or equal to the latest calendar time and the longest time to maturity, TN ≤ min{tnc , xnf

}.
We refer to Pilz & Schlögl (2013) for a more detailed discussion on the setup with piecewise con-
stant volatilities, and how to compute total variances efficiently for given calendar and forward
times.
In the next section we will use the correlations to obtain a map from the volatility levels
∥λF (t, Tn)∥ to the components of the volatility vectors λF (t, Tn) that are multiplied by the
d-dimensional Brownian motion in (11).

In a manner analogous to the volatility levels, we define a (nc × nf )-dimensional matrix B =
(bi,j)1≤i≤nc,1≤j≤nf

for the matrix of piecewise constant skews. To keep notation simple, we use
the same grid as for the volatility term structure. The entry bi,j represents the skew correspond-
ing to forward F (t, Tn) with ti−1 ≤ t < ti and xj−1 ≤ Tn − t < xj .

The optimisation of Step 2 is defined with respect to a set of calibration criteria. The first
calibration criterion measures the quality of fit and is as in Step 1 defined by the sum of squared
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differences between market and model prices,

q =
∑

n = 1, . . . , N,

i = 1, . . . , kn

(
Cmod

n,i − Cmkt
n,i

)2
. (17)

Since the number of parameters is potentially quite large (and larger than the number of market
prices in (17)), we follow Pedersen (1998) and specify for the volatility two smoothness criteria
sλ given by,

sλ = ηλ,1

nf∑
j=1

nc−1∑
i=1

(vi+1,j − vi,j)2 + ηλ,2

nc∑
i=1

nf −1∑
j=1

(vi,j+1 − vi,j)2. (18)

The first term measures departures from time–homogeneity; it demands that volatilities with
different calendar times but the same time to maturity do not deviate from each other too much.
The second term, the forward time smoothness, forces the volatility term structure to be smooth
in time to maturity for each fixed calendar time. The larger the weight ηλ,1, the more volatility
and skew become (calendar) time homogeneous. The larger the weights ηλ,2, the flatter the
volatility and skew becomes in forward time direction.
We specify an analogous smoothness function for the skew term structure sb with corresponding
weights ηb,1 and ηb,2

sb = ηb,1

nf∑
j=1

nc−1∑
i=1

(bi+1,j − bi,j)2 + ηb,2

nc∑
i=1

nf −1∑
j=1

(bi,j+1 − bi,j)2. (19)

The smile contribution to the implied volatility coming from the parameters fixed in the first
calibration step of Section 3.1 is unaffected by the smoothness criteria here.

Remark 3.1 Although the number of parameters is potentially quite large, the optimisation, for
instance using a Levenberg–Marquardt approach for minimising the objective value q + sλ + sb,
usually gives stable calibration results, since the smoothness criteria force the parameters to a
non-parametric but structured form.

Remark 3.2 The reason why we have not used the effective parameters b̄F,n and λ̄F,n from the
global calibration of 3.1 as target values in our second calibration 3.2, as for example proposed in
Piterbarg (2005), is that we here assumed the more complex case of calibrating to options on fu-
tures. This requires to compute the convexity correction in each optimisation step, which changes
the relation between options prices and the effective volatility and skew parameters. Therefore,
the advantage of using pre-computed effective parameters for calibration is not applicable in our
general case.

Remark 3.3 As pointed out by Andersen & Piterbarg (2010), the degree of freedom is poten-
tially quite large here, and obtaining the volatility and skew term-structure simultaneously is
computational inefficient. One could assume that the skew bF and volatility λF to be two al-
most orthogonal problems (changing the volatility has an minor impact on the skew and vice
versa) and solve for them separately. Step 2 can therefore be divided into two steps. First,
solve for the skew term structure by fixing the volatility parameters, e.g., to the ones obtained
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in the first step, λ̄F,n, together with η and θ. And since the time-dependent skew can be solved
for explicitly as in Piterbarg (2005), one can target the implied skews from Step 1 instead of
option prices and reduce the computational time significantly by avoiding Fourier pricing within
each iteration. Then, given the skew term-structure and the parameters η and θ, the volatility
term structure is calibrated. However, as mentioned in Remark 3.2, due to the futures-forward
convexity correction we cannot target the implied volatilities directly here.

3.3 Construction of the decomposed volatilities λF (t, Tn) from ∥λF (t, Tn)∥

We conclude this section by briefly describing a method for constructing a map from V =
∥λF (t, Tn)∥ in Equation (16) to λF (t, Tn) via volatility factor decomposition or PCA. The
concept of volatility factor decomposition and factor reduction can either be included in the
calibration process, or applied to the final volatility matrix after calibration. As it will be
demonstrated in the following Sections 4 and 5, the volatility factor decomposition has to be
included in the calibration process when calibrating to futures and options on futures. The
method has to be applied separately for every calendar time, which is therefore fixed to arbitrary
ti in the following. Let vi denote the ith row (corresponding to calendar time ti) of V , written as
column vector. Together with the exogenously given correlation matrix15 C, which is assumed
to be constant over calendar time, the covariance matrix is calculated by

Σ = (viv
⊤
i )⊙ C, (20)

where ⊙ means component–wise multiplication (Hadamard product). Σ is symmetric and
positive definite, hence can be decomposed into Σ = RD1/2(RD1/2)⊤. The columns of R =
(rj,k)1≤j,k≤nf

consist of orthonormal eigenvectors and the diagonal matrix D = (ξj,k)1≤j,k≤nf
of

the eigenvalues of Σ. This representation allows us to reduce the number of stochastic factors,
because usually the first d eigenvalues (when ordered decreasingly in D and the columns of R

accordingly) account for the bulk of the overall variance, with d substantially smaller than nf .
Hence, R and D can be reduced to matrices R ∈ Rnf ×d and D ∈ Rd×d by retaining only the
first d columns in R and the upper d×d sub-matrix in D, respectively. Instead of vi we now use
the a matrix U = (uj,k)1≤j≤nf ,1≤k≤d (the calendar time index i has been skipped for notational
convenience) with entries uj,k = rj,k

√
ξk, which relate to vi by

v2
i,j =

d∑
k=1

u2
j,k =

d∑
k=1

r2
j,kξk (j = 1, . . . , nf ). (21)

We can then extract the stepwise constant volatility function for the forwards as λijk = rj,k

√
ξk.

Remark 3.4 The correlation matrix C in (20) is the forward returns correlation matrix, not
futures returns. However, the correlation matrices for forward and futures returns coincide for
the suggested convexity adjustments in Section 4.

4 Futures/Forward Relation and Convexity Correction

The calibration method in Section 3 is applicable only when forwards and options on forwards
are available. This section presents a model–consistent approximate conversion of futures prices

15Determining the commodity forward correlations.
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to forward prices for all relevant data for calibration, in order to apply the methods of the
previous section.
We introduce the notation G(t, T ) for a futures price at time t with maturity T , and, as before,
F (t, T ) will be the corresponding forward price. From no-arbitrage theory we know F (T, T ) =
G(T, T ) and that prices of plain vanilla options on forwards and futures must coincide, whenever
the maturities of option, forward and futures are the same. This allows us to use the call prices
of options on futures for calibration of forwards, and we only have to assure that the (virtual)
forwards have the same maturities as the futures. Due to equation (10) the forward F ( · , Tn) is
an exponential martingale under the Tn-forward measure.
Denoting by EB the expectation under the spot risk–neutral measure QB, futures follow the
general relation

G (t, T ) = EB
t [S (T )] , (22)

see Cox, Ingersoll & Ross (1981), where S(t) is the spot price, which satisfies by no-arbitrage
constraints S(t) = F (t, t) = G(t, t) for all t. Integrating (11) and using (7)-(8) gives,

F (Tn, Tn) = F (t, Tn) +
∫ Tn

t

√
zF (s)φF (F (s, Tn))λ⊤

F (s, Tn)dW Tn(s)

= F (t, Tn) +
∫ Tn

t

√
zF (s)

√
zL(s)φF (F (s, Tn))λ⊤

F (s, Tn)µn−1(s)ds

+
∫ Tn

t

√
zF (s)φF (F (s, Tn))λ⊤

F (s, Tn)dWB(s).

Putting these relations together and taking the QB-expectation for the futures, as in (22), results
in

G(t, Tn) = EB
t [F (Tn, Tn)]

= F (t, Tn) + EB
t

[∫ Tn

t

√
zF (s)

√
zL(s)φF (F (s, Tn))λ⊤

F (s, Tn)µn−1(s)ds
]

+ EB
t

[∫ Tn

t

√
zF (s)φF (F (s, Tn))λ⊤

F (s, Tn)dWB(s)
]

= F (t, Tn) + EB
t

[∫ Tn

t

√
zF (s)

√
zL(s)φF (F (s, Tn))λ⊤

F (s, Tn)µn−1(s)ds
]

(23)

= F (t, Tn) + D (t, Tn) , (24)

the third equality follows since the last expectation is that of an Itô integral, further let D(t, Tn)
denote the convexity correction.
From here we consider two alternative ways to proceed.

4.1 Approximation 1 - Freeze all risk factors

The first crude approximation would be to freeze all random variables by setting Li = L(t, Ti),
F j = F (t, Tj) and z̄L = zL(t) = 1, z̄F = zF (t) = 1 such that the convexity correction D(t, Tn)
can be approximated by,

D(t, Tn) ≈
∫ Tn

t
φF (F n)

n−1∑
j=q(s)

τjφL(Lj)
1 + τjLj

λ⊤
F (s, Tn)λL(s, Tj)ds. (25)

Pilz & Schlögl (2013) demonstrate how the integrals in (25) can be computed when the volatility
functions are piecewise constant.
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Figure 1: Left: Futures prices from Monte Carlo simulation, Approximation 1 and Approx-
imation 2. Right: Relative error in basis points (bps). With λL = 0.20, λF = 0.30,
bL = 0.9, bF = 0.8, θL = θF = 1, ηL = 0.5, ηF = 0.4, Corr (dL (t, Tj) , dL (t, Tk)) =
Corr (dF (t, Tj) , dF (t, Tk)) = 0.9.

4.2 Approximation 2 - Freeze LIBORs and Commodity forwards

For the second approximation we choose to freeze the LIBORs and commodity forwards but
keep the volatility stochastic. Set Li = L(t, Ti) and F j = F (t, Tj) and use conditioning for
the stochastic volatility processes. If the expectation and the integration can be interchanged it
follows from the independence of the stochastic volatility processes that the convexity correction
D(t, Tn) can be approximated by,

D(t, Tn) ≈
∫ Tn

t
φF (F n)

n−1∑
j=q(s)

τjφL(Lj)
1 + τjLj

λ⊤
F (s, Tn)λL(s, Tj)EB

t

[√
zF (s)

]
EB

t

[√
zL(s)

]
ds. (26)

The first moments of the squared volatility process can be represented as (Andersen & Piterbarg
2010, Volume 3, Appendix A),

EB
t

[√
z (T )

]
=

√
2e−θ(T −t)

n (t, T )
e− n(t,T )

2

∞∑
j=0

(n (t, T ) /2)j

j!
Γ (d/2 + j + 1/2)

Γ (d/2 + j)
, (27)

where Γ(x) is the Gamma function, and the parameters n and d are given by

n(t, T ) = 4θe−θ(T −t)

η2(1− e−θ(T −t))
, d = 4θz0

η2 . (28)

We illustrate the accuracy of the two approximations in Figure 1. Clearly the stochastic volatil-
ity factors have too much impact on the futures–forward convexity to be neglected. As demon-
strated, Approximation 2 performs exceptionally well and produces an error less than 2 basis
points, which is more than acceptable within a calibration routine.

5 Merging Interest Rate and Commodity Calibrations

The calibrations for the interest rate market and the commodity market have so far been con-
sidered separately, with exception of the convexity correction in Section 4. This section focus
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on linking the calibrations of two asset classes in order to get a joint Commodity and LMM cal-
ibration. The relation between these two asset classes is determined by their cross-correlation
matrix, which is assumed to be constant over time. Before addressing the problem of merging
the calibrations in Section 5.2, we briefly discuss how to generate the cross-correlation matrix
from historical data in Section 5.1.

5.1 The Exogenous Cross-Correlations

The cross–correlations between commodity forwards and interest rate forwards are much less
pronounced than the correlations between the futures and forwards, respectively, within the
asset classes. This makes the estimation for cross-correlations from historical data less stable
than for the correlations within the asset classes. For example, the structure of the cross-
correlation matrix between Brent Crude Oil futures and USD interest rate forwards in Figure
6 of Section 6 can hardly be explained by obvious rationales. Therefore, one might decide to
specify exogenously a very simple cross-correlation structure in practice. The simplest case
would be to assign a single value to all cross-correlation in the matrix Rexogen

LF . If this seems too
crude, a linear relationship can be fitted by regressing the empirical cross-correlations for the
forward interest rates and commodity futures on a 2-dimensional plane.

5.2 The Cross-Calibration

The quadratic (cross-)covariation process for commodity forwards with maturity Tm and forward
interest rates with settlement Tn is given by the dynamics

dL(t, Tn)dF (t, Tm) =
(√

zL(t)φL(L(t, Tn))λL(t, Tn)
)⊤(√

zF (t)φF (F (t, Tm))λF (t, Tm)
)
dt,

where we have used the fact that

dW Tn+1(t) = dW Tm(t) +
√

zL(t)
(
µn(t)− µm−1(t)

)
dt,

and dt dW Tm = 0. Similar to the pure interest forward rate correlations (Andersen & Piterbarg
2010, Section 14.3), the cross-correlations of the increments are given by

Corr
(
dL(t, Tn), dF (t, Tm)

)
= λL(t, Tn) λ⊤

F (t, Tm)
∥ λL(t, Tn) ∥ ∥ λF (t, Tm) ∥

, (29)

since only the factorized λF and λL are (column-)vectors, and all other values in the equation
above are scalars. Abbreviate

ΛL = (λ⊤
L (t, Tn))1≤n≤N = (λL;n,k(t))1≤n≤N,1≤k≤d, (30)

ΛF = (λ⊤
F (t, Tm))1≤m≤M = (λF ;m,k(t))1≤m≤M,1≤k≤d, (31)

ULF =
(
∥ λL(t, Tn) ∥ ∥ λF (t, Tm) ∥

)
1≤n≤N,1≤m≤M

, (32)

where m and n are indices for different expiries and forward (settlement) times, respectively,
and k is the index relating to the stochastic factor. We skip the calendar time dependence,
since it could be considered as fixed throughout the rest of this subsection. Then, the model
cross-correlation in (29) can be written as

Rmodel
LF = (ΛLΛ⊤

F )⊘ ULF , (33)
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where ⊘ denotes the element-wise division. Merging the individual interest rate and commodity
calibrations in order to get a joint calibration means to modify the calibrated matrices ΛL and
ΛF such that equation (33) is matched (maybe only as closely as possible) for an exogenously
given correlation matrix Rexogen

LF ,

Rexogen
LF ≈ (ΛLΛ⊤

F )⊘ ULF = Rmodel
LF .

Note that the skew parameter, being part of φL(·) and φC(·), as well as the smile parameter,
being part of the specification of the square root processes zF (t) and zL(t), need not to be
modified, as they do not determine the cross-correlations, as equation (29) demonstrates.

Clearly, there are many possible approaches to improve the relation Rexogen
LF ≈ Rmodel

LF . The
approach we propose in this section will be guided by the following. Firstly, the quality of the
individual calibrations to market instruments relating to one asset class only – interest rates or
commodities – is more important that the cross-correlation fit. This is because these market
instruments are much more liquidly traded, and therefore provide reliable information. Secondly,
the adjustment step needs to be carried out in an efficient way, having a common fit criterion
for the approximation.
An approach that combines these considerations is to find a rotation matrix Q, that is applied
to one of the calibrated matrices, say ΛF , with the objective to minimize the Frobenius distance
between the model and the exogenous covariance matrices. Formally, a matrix Q is sought, such
that

∥ Rexogen
LF ⊙ ULF − ΛL(ΛF Q)⊤ ∥F−→ min, subject to QQ⊤ = Id, (34)

with Id the (d× d) identity matrix and ∥ . ∥F the Frobenius norm. From the theory of normal
distributions it follows that an orthonormal rotation changes the cross-covariances, but not the
covariance matrices ΣL = ΛLΛ⊤

L and ΣF = ΛF Λ⊤
F , hence, the individual calibrations remain

unaffected.

For the problem of (34) it is quite reasonable to assume d ≤ N , i.e., the number of stochastic
factors has to be equal or less than the number of forward interest rates.16

The problem of finding the Q satisfying (34) is similar to the so-called "orthonormal Procrustes"
problem: For given matrices A, B ∈ Rm×p find an orthonormal matrix Q ∈ Rp×p that minimizes
the distance between A and B,

∥ A−BQ ∥F −→ min, such that QQ⊤ = Id, (35)

In Golub & Van Loan (1996, Section 12.4.1) it is shown that the solution is given by Q = UV ⊤,
where U and V result from the singular value decomposition (SVD) of B⊤A, i.e. B⊤A = UDV ⊤.
Unfortunately, (34) is more complicated than the Procrustes problem in (35), because in our
case Q comes under a transposition. As stated in Gower & Dijksterhuis (2004), Section 8.3.3,
“there seems to be no algebraic solution to the problem” (34), to which they refer as a “scaled
orthonormal Procrustes” problem. However, the authors discuss a numerical solution, based on
an algorithm of Koschat & Swayne (1991), that works well in our case, as we will demonstrate
in Section 6 below.

16Note that the roles of ΛL and ΛF can be interchanged, and the sufficient assumption actually is d ≤
max{M, N}. Furnishing the model with more stochastic factors than max{M, N} contributes only spurious
complexity to the model. From a practical point of view, the aim is to keep the number of stochastic factors
small.
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Algorithm 1 Orthogonal scaled procrustes
1: procedure OSProcrustes(Q0, X1, S, X2, TOL, MAXITER)
2: r ←∥ X1 ∥F
3: iter← 0
4: δ ← 2 · TOL
5: Q← Q0
6: while δ > TOL and iter < MAXITER do
7: Z ← S(X⊤

2 X1 + S⊤Q⊤(rI −X⊤
1 X1))

8: Compute singular value decomposition Z = UDV ⊤

9: Qnew ← V U⊤

10: δ ← | ∥ X1QS −X2 ∥F − ∥ X1QnewS −X2 ∥F |
11: iter← iter + 1
12: Q← Qnew
13: end while
14: return Q

15: end procedure

Proposition 5.1 The problem (34) is equivalent to the problem of finding a T satisfying

∥ DLTD⊤
F − U⊤

L ΣLF UF ∥F −→ min, such that TT ⊤ = Id, (36)

where the matrices used are from the singular value decompositions17

ΛL = ULDLV ⊤
L UL ∈ RN×N , DL ∈ RN×d, VL ∈ Rd×d

ΛF = UF DF V ⊤
F UF ∈ RM×M , DF ∈ RM×d, VF ∈ Rd×d,

and
ΣLF := Rexogen

LF ⊙ ULF .

The orthonormal solution Q of (34) is given by

Q = (VLTV ⊤
F )⊤ (37)

Proof: Substituting th SVD yields

∥ ΛL(ΛF Q)⊤ − ΣLF ∥F =∥ ULDLV ⊤
L Q⊤VF D⊤

F U⊤
F − ΣLF ∥F

=∥ ULDLTD⊤
F U⊤

F − ΣLF ∥F abbreviating T := V ⊤
L Q⊤VF

=∥ DLTD⊤
F U⊤

F − U⊤
L ΣLF ∥F UL is orthonormal

=∥ DLTD⊤
F − U⊤

L ΣLF UF ∥F UF is orthonormal

�

The solution for T in (36) can be numerically approximated by Algorithm 8.1 in Gower &
Dijksterhuis (2004). For completeness we describe the algorithm here again (see Algorithm 1
above).

17Note that rank(ΛL) = d ≤ N and rank(ΛF ) = d ≤ M
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The objective is to find a Q that minimizes

∥ X1QS −X2 ∥F , subject to QQ⊤ = I,

where S has entries on its diagonal only.
The stopping of the numerical procedure is controlled by the maximal number of iterations
(MAXITER) and the tolerance in change of the Frobenius norm (TOL) in the objective above.
As initial guess the trivial transformation Q0 = I can be used.

6 Applying the calibration to market data

6.1 Summary of the Calibration Procedure

The following scheme summarises the steps of the calibration procedure, bringing together the
steps discussed in the previous sections and assuming the calibration of the (domestic) interest
rate LMM has already been carried out.18

I. Preliminary calculations applied to the LMM calibration outcome.

1. For each calendar time ti (1 ≤ i ≤ nL):

(a) Compute the covariance matrix ΣL
i as in (20).

(b) Decompose ΣL
i into λL

i using PCA as described in Section 3.

II. Hybrid Calibration.

1. Calibrate on all commodity data to obtain the global θF , and ηF .

2. Calibrate on all data to obtain the skew term-strucutre BF , see Remark 3.3.

3. For each calendar time ti (1 ≤ i ≤ nF ):

(a) Compute the covariance matrix ΣF
i as in (20).

(b) Decompose ΣF
i into UF

i using PCA as described in Section 3.
(c) Compute the rotation matrix Q using Algorithm 1

4. Compute forward prices from futures prices using (26).

5. Compute model options prices on forwards.

6. Continue with Step 3 until a sufficiently close fit to commodity market instru-
ments and assumed cross–correlations is reached.

The dynamics of the thus calibrated hybrid Commodity LMM with time-dependent SLV can
then be written as follows. Let W be a d-dimensional Brownian motion and denote by λL

i,j and
λF

i,j the d-dimensional vectors in ΛL and ΛF of volatilities for calendar times t ∈ [ti−1, ti) and

18Note that we must iterate over repeated calibration to the commodity market and to the cross–correlations,
as the conversion of commodity futures into forwards depends on cross–correlations.
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Figure 2: Left: Historical Brent Crude Oil 1M, 1Y, 2Y and 4Y Futures contracts between
January 2014 and March 2015. Historical Brent Crude Oil 1M, 1Y, 2Y and 4Y at-the-money
implied volatilities between January 2014 and March 2015

times to maturity x ∈ [xj−1, xj). Then, the dynamics of the forward interest rates L(t, T ) and
the dynamics of the commodity forwards F (t, T ) are

dL(t, Tk) =
√

zL (t)φL (L (t, T )) λL
i,jdW Tk+1(t),

dF (t, Tk) =
√

zF (t)φF (F (t, T )) λF
i,jdW Tk(t),

for all maturity times satisfying Tk = ti +xj (for some 1 ≤ i ≤ nc and 1 ≤ j ≤ mf or 1 ≤ j ≤ nf ,
respectively) and all calendar times ti−1 ≤ t < ti.

6.2 Calibration Setup

The Brent Crude Oil is selected as commodity, and USD forward rate as interest rate.
The calibration date is January 13th, 2015. Figure 2 illustrates the historical Brent crude oil
futures and implied volatilities for a selected number of contracts. As one can observe, the
futures price (implied volatility) at lowest (highest) level for the selected calibration date; thus
we are using a somewhat “stressed” market scenario to best illustrate the effectiveness of the
calibration.
We assume that both the instantaneous volatility functions and skew functions are piecewise
constant. The LIBOR forward rates and Brent crude oil futures correlation matrix as used
for calibration is historically estimated from the time series of LIBOR forward rates and Brent
futures prices covering 3 months before the calibration date.
For the correlations and cross-correlations we use the parametric form given in Andersen &
Piterbarg (2010). The correlation of the underlying (LIBOR, oil futures) with fixings/maturities
Tk and Tj is given by

Corr (dL (t, Tj) , dL (t, Tk)) = q (Tj − t, Tk − t) ,

where

q (x, y) = ρ∞ + (1− ρ∞) exp (−a (min (x, y)) |x− y|) , (38)
a (z) = a∞ + (a0 − a∞) e−κz, (39)

and subject to 0 ≤ ρ∞ ≤ 1, a0, a∞, κ ≥ 0. The two calibrated correlation matrices for the
LIBOR forward rates and the Brent crude oil futures are illustrated in Figure 5.
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Figure 4: Left: The calibrated effective volatility λ̄mkt
n,m for the swaption cube. Right: The

calibrated effective skew b̄mkt
n,m for the swaption cube

6.3 The Interest Rate Calibration

The calibration of the SLV–LMM for the USD interest rate market was conducted based on
Piterbarg (2005) by first performing a pre–calibration to fit the SLV–LMM, with constant pa-
rameters for each tenor and expiry, to the swaption cube. Figure 4 illustrates the obtained
effective at–the–money volatility λ̄mkt

n,m and effective skew b̄mkt
n,m for each tenor Tn and expiry Tm.

These obtained model parameters then serve as target values in the main calibration when
calibrating the volatility and skew term–structure as described in Piterbarg (2005). Figure 3
shows the resulting volatility and skew term-structure obtained by the main calibration. Figure
4 shows the quality of fit effective at–the–money volatility λ̄mkt

n,m and effective skew b̄mkt
n,m. The

overall model fit to the implied volatility is very good. Moreover, we chose dL = 4 factors, which
typically explains about 99.99% of the overall variance.

6.4 The Cross-Calibration

The calibration of the Brent Crude Oil futures was achieved by the method described in Section
3. The market instruments are futures and options on futures. Figure 7 shows the calibrated
volatility and skew surface. Calendar and forward times go out to 3 years, and although on the
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Figure 5: Left: The historically estimated LIBOR forward rate correlation matrix. Right: The
historically estimated Brent crude oil futures correlation matrix.
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Figure 6: Left: The target cross-correlation matrix (green) estimated from historical futures
returns, the rotated cross correlation (blue) and the un-rotated cross correlation (grey) matrix,
for the calendar time 0. Right: The absolute differences between target and rotated cross-
correlations.

exchange futures with expiries in every month are traded, we chose the calendar and forward
time vectors to be unequally spaced (while still calibrating to all traded instruments), [0, 1M,
3M, 6M, 9M, 1Y, 2Y, 3Y]. This setup speeds up the calibration without losing much structure
in the volatility surface, since the market views futures with long maturity to have almost flat
volatility. For weighting in the calibration objective function we have chosen ηλ,1 = ηb,1 = 0.1
(time homogeneity, i.e. smoothness in calendar time direction), ηλ,2 = ηb,2 = 0.01 (smoothness
in forward time direction).
The exogenously given target cross-correlation matrix (calculated from the historical time series
covering 3 months before the calibration time) and the estimated cross-correlation from historical
futures returns and the cross-correlation matrix for the calendar time that fitted worst are
illustrated in Figure 6.
Finally, we link both separately calibrated volatility matrices to one set of stochastic factors.
Table 1 shows how much of the overall variance, i.e. of the sum of variances over all factors,
can be explained by the leading factors, when the factors are sorted according to decreasing
contribution to total variance of the commodity forwards. The first two factors already account

20



Number of Factors 1 2 3 4 5 . . . 19
Percentage of 98.14 99.84 99.96 99.98 99.99 . . . 100Overall Variance

Table 1: The percentage of overall variance that can be generated by the first i factors, obtained
from PCA of the commodity forward covariance matrix for the first calendar time t1.

for more than 99% of the overall variance
Note that if it is necessary to interpolate the forward interest rate volatility matrix in order to
match the calendar times of the commodity volatility matrix, the forward rate covariance matrix
will change and, hence, eigenvalue decompositions of the calendar time adjusted covariance
matrices yield different results than an eigenvalue decompositions of the original covariance
matrices as used for calibration. However, these differences should not be substantial as long as
the calibrated volatility matrix is sufficiently smooth in calendar time.
The model fit to the commodity implied volatility is illustrated in Figure 8.
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Figure 7: Left: The calibrated commodity volatility surface. Right: The calibrated commodity
skew surface.

7 Conclusion

As the market data example in the previous section demonstrates, the LMM approach to term
structure modelling remains is one of the most flexible in allowing for good calibration of the
model to market data, even when it is extended to allow for market quotes across multiple
strikes (volatility “skews” and “smiles”) and the integration of (and correlation between) multiple
sources of risk — commodity and interest rate risk in our present example. This is due to actual
market observables (in particular forward LIBORs) being modelled directly and model prices
for calibration instruments (e.g. caps/floors, swaptions, commodity futures and options) being
available either in exact or accurate approximate closed form.
The dynamics of all market variables can be expressed in terms of the same, vector–valued
Brownian motion and correlation between market variables is obtained via the sum products
of the respective vector–valued volatilities. As a consequence, the calibration across multiple
sources of risk can be broken down into stages, simplifying the high–dimensional optimisation
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Figure 8: The calibrated commodity smile.

problems to be solved at each stage. The interest rate market can be calibrated separately
using well established procedures. We chose to base our interest rate volatility calibration on
the robust and widely used method of Pedersen (1998), but this could easily be replaced by a
different method without impacting the remainder of our calibration approach. The model is
fitted to an exogenously given correlation structure (typically estimated statistically from histor-
ical data) between forward interest rates and commodity prices (cross–correlation) — without
impacting the interest rate volatility calibration already obtained — via a modified version of
the “orthonormal Procrustes” problem in linear algebra, for which an efficient numerical solu-
tion exists. Finally, it is worth noting that a model which is calibrated to the term structures
of commodity futures and options will implicitly reflect any seasonality and/or mean reversion
of commodity prices. If seasonality is present and priced by the market, this information will
be contained in the initial term structure of commodity futures prices, and integrated into the
model by the fact that it fits the initial observed term structure by construction. If mean rever-
sion is present and priced by the market, this information will be contained in the term structure
of commodity volatilities, or, more completely, the commodity option implied volatility surface,
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to which the model is calibrated.19

19Specifically, mean reversion would manifest itself in the market as a downward sloping term structure of
commodity option implied volatilities.
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