
QUANTITATIVE  FINANCE RESEARCH CENTRE QUANTITATIVE  F 

INANCE RESEARCH CENTRE 

QUANTITATIVE  FINANCE RESEARCH CENTRE 

 Research Paper 371 April 2016 

Toward a General Model of 
Financial Markets

 Nihad Aliyev and Xue-Zhong He

ISSN 1441-8010     www.qfrc.uts.edu.au



Toward A General Model of Financial Markets∗

Nihad Aliyev and Xue-Zhong He†

April 27, 2016

Abstract

This paper aims to discuss the possibilities of capturing efficient

market hypothesis and behavioral finance under a general framework

using the literature of decision theories and information sciences. The

focus is centered on the broad definition of rationality, the imprecision

and reliability of information. The main thesis advanced is that the

root of behavioral anomalies comes from the imprecision and reliability

of information. Modeling on basis of imprecision and reliability of

information within the broad definition of rationality will lead us to a

more general model of financial markets.
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1 The Argument

The key argument of this paper takes its root from “fact” vs. “opinion”. In

an environment rife with heterogeneous opinions, behavioral biases naturally

arise when agents deal with imprecise and partially true information. For

example, suppose there are two urns, A and B, and two groups of people,

G1 and G2. One of the urns contains 100 of $1 bills and the other one 70 of

$1 bills. Everyone in G1 will pick the urn A given that P (A) > P (B) where

P (A) and P (B) show the probabilities of total $100 being in urns A and B.

Now suppose, similar to the balls-in-box problem of Zadeh (2005), people

in G2 are given an opportunity to look at each box without being able to

count the total amount in the boxes. Clearly, in this situation people in G2

will have different opinions based on their visual perceptions. This simple

illustration shows that, information becomes open to interpretation when it

is not a precise fact as in the first case. In other words, heterogeneity is

created by simply providing imperfect information.

In view of this simple mind experiment, we redefine rationality and sug-

gest a more general framework of financial markets. Specifically, we use

Zadeh (2011) classification of information, “numerical”, “interval-valued”,

“second-order uncertain”, “fuzzy” and “Z” information, based on its gener-

ality. We argue such that individuals are subjectively rational if they apply

correct decision technique to each class of information separately rather than

defining rationality based on only one decision technique such as the standard

Savage’s axioms of subjective expected utility for all classes of information.

Also, the majority of existing financial market models do not take the reli-

ability of information into account which is indeed a major determinant in

real life decision process. Therefore, most of the existing financial models

become too simplistic to account for real world with partially reliable, im-

precise information. Once we increase the imprecision and at the same time

decrease the reliability of information the environment becomes too complex

to be explained by standard techniques.

With the same “fact” vs. “opinion” argument, we further argue that effi-

cient market hypothesis and behavioral finance become special cases of this

more general framework with the imprecision and reliability of information

2



connecting them. More precisely, imprecise and partially reliable information

triggers interaction between psychological factors to play a primary role in fi-

nancial decision-making process and in generating “anomalies” while precise

facts approximately lead to efficient market hypothesis. In order to forestall

needless arguments, let us also mention that we do not claim that imprecision

and reliability are the only factors connecting EMH and behavioral finance,

but the most important factors.

1.1 Arguments of ‘Efficient Market Hypothesis’

The random walk movement of stock prices is first comprehensively formal-

ized in Osborne (1959) by making a number of assumptions. One of the

underlying assumptions of Osborne’s world is ‘logical decision’, in which

investors are assumed to form expectations in a probabilistic manner and

choose the course of action with a higher expected value. That is to say,

investors form objective probabilities and make rational decisions as if they

know each individual outcome. Another crucial assumption made by Os-

borne (1959) is an independence of decisions in the sequence of transactions

of a single stock which leads to independent, identically distributed succes-

sive price changes. This implies that changes in prices can only come from

unexpected new information. In this setting, central limit theorem assures

that daily, weekly and monthly price changes converge to Gaussian or normal

distribution which is later generalized by Mandelbrot (1963) to account for

the empirical evidence of leptokurtic distributions of price changes. Stable

Paretian distribution hypothesis is later supported by Fama (1965). Fama

also argues that an independence assumption may still hold due to an ex-

istence of sophisticated traders even though the processes generating noise

and new information are dependent. That is, an independence assumption is

consistent with ‘efficient markets’ where prices at every point in time repre-

sent the best estimates of intrinsic values. The combination of independence

and stable Paretian distribution allows him to argue that the actual prices

adjust instantaneously to the changes in intrinsic value due to the discontinu-

ous nature of stable Paretian distribution. Therefore, this version of efficient

market hypothesis includes random walk theory as a special case. However,
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the first formal general economic argument of ‘efficient markets’ is given by

Samuelson (1965) by focusing on the martingale property. Similar to the

‘logical decision’ assumption of Osborne (1959), Samuelson (1965) also as-

sumes that people in financial markets make full use of the past probability

distribution. Overall, the proponents of EMH essentially argued the use of a

probability calculus as a foundation of economic analysis. This also justified

an application of probability based decision techniques (e.g., expected utility

theory) to financial modeling.

1.2 Arguments of ‘Behavioral Finance’

The main arguments of behavioral finance stand in sharp contradiction to the

logical decisions assumption of efficient market hypothesis in forming expec-

tations. The early works of Kahneman and Tversky is a foundational block

of this area of finance. In a series of experiments, they show that people use

heuristic to decide under uncertainty and conjecture that the same heuristic

plays an important role in the evaluation of uncertainty in real life. In their

seminal paper, Kahneman and Tversky (1979) present a critique of expected

utility theory and develop prospect theory as an alternative. At the same

time, Shiller (1979) shows that long-term interest rates are too volatile to be

justified by rational models. Inspired by Tversky and Kahneman’s works,

Thaler (1980) argues that consumers do not follow economic theory and

proposes an alternative descriptive theory on the basis of prospect theory.

Similarly, Shiller (1981) argues that stock prices fluctuate too much to be jus-

tified by subsequent dividend changes. All of these arguments and findings

sharply contradicted efficient market hypothesis and shaped the emergence

of a new field. Finally, Bondt and Thaler (1985) marked the birth of behav-

ioral finance with empirical evidence of overreaction hypothesis suggested by

experimental psychology. Since then, the number and magnitude of anoma-

lies noticed by researchers have increased and the focus of finance academic

discussion has shifted. Overall, the main arguments of behavioral finance is

categorized by Shefrin (2000) as follows:

1. Financial practitioners commit errors due to relying on rules of thumb

called heuristics.
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2. Frame of a decision problem influences financial practitioners when

making their decisions.

3. Heuristic-driven biases and framing effects affect the prices in financial

markets to deviate from fundamental values.

Behavioral finance is criticized by efficient market supporters for not hav-

ing any unifying principles to explain the origin of behavioral anomalies. At

the same time, behavioral economists criticize efficient market supporters for

making unrealistic assumptions and systematic errors in predicting behavior.

Although these paradigms differ on their foundations, under some realistic

assumptions they can be merged together as a more real approximation of

financial markets. Discussion of a more general model of financial markets

on the basis of fuzzy logic is the main purpose of this paper.

The plan of the rest of the paper is structured as follows. We first

provide prerequisite materials in fuzzy logic, measures, and integrals un-

derlying the proposed view of financial markets. Then, we present a new

framework to define subjective rationality as a broad concept. Consistent

with this framework, we exemplify decision situations in which different de-

cision theories account for rational behavior. Then, we discuss how some of

the well-known behavioral biases/anomalies are rationalized in the proposed

framework. Specifically, we focus on “insurance and gambling”, and “equity

premium puzzle” for illustrative purposes. Lastly, we discuss a possibility

and advantages of a general model of financial markets (“GMFM”) on the

basis of fuzzy logic and offer conclusions.

2 Preliminaries

Fuzzy Set Theory: The ideas of fuzzy sets and fuzzy logic date back to

Black (1937) and it has been mathematically formalized by Zadeh (1965).

The most common type of fuzzy sets is standard fuzzy sets. Each of the

standard fuzzy sets is uniquely defined by a membership function of the

form, µÃ : Ω → [0, 1] where Ω denotes universal set and Ã is a fuzzy subset

of Ω. Since, a characteristic function of crisp (classical) sets is a special
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case of a membership function of fuzzy sets, {0, 1} ⊆ [0, 1], fuzzy sets are

considered a formal generalization of classical sets.

Three basic operations on sets - complementation, intersection, and union

- are not unique in fuzzy sets as they are in crisp sets. The standard com-

plement of a fuzzy set Ã is a fuzzy set Ãc with the membership function

µÃc = 1 − µÃ. The standard intersection of two fuzzy sets Ã and B̃ is a

fuzzy set with the membership function µÃ∩B̃(ω) = min{µÃ(ω), µB̃(ω)} and

the standard union of two fuzzy sets is also a fuzzy set with µÃ∪B̃(ω) =

max{µÃ(ω), µB̃(ω)} where ω ∈ Ω.

A fuzzy set Ã is said to be a subset of fuzzy set B̃, Ã ⊆ B̃, if and only

if µÃ(ω) ≤ µB̃(ω), ∀ω ∈ Ω given that fuzzy sets Ã and B̃ are defined on the

same universal set Ω.

One of the most important concepts of fuzzy sets is an α-cut of a fuzzy set

which is one way of connecting fuzzy sets to crisp sets. An α-cut of a fuzzy set

Ã on Ω denoted as αA is a crisp set that satisfies αA = {ω | µÃ(ω) ≥ α} where

α ∈ [0, 1]. It is then easy to see that the set of all distinct α-cuts is always a

nested family of crisp sets. That is, α1A ⊆ α2A is satisfied when α1 ≥ α2. It is

also well-known that each fuzzy set is uniquely represented by the associated

family of its α-cuts, Ã =
⋃
α∈[0,1]{α · [αA]}. A strong α-cut, denoted as α+A,

is similar to the α-cut representation, α+A = {ω | µÃ(ω) > α}, but with a

stronger condition. 0+A and 1A are called support and core of a fuzzy set Ã,

respectively. When the core of a fuzzy set Ã is not empty, 1A 6= ∅, Ã is called

normal, otherwise it is called subnormal. A fuzzy set is convex if and only if

all its α-cuts are convex sets as in the classical sense.

Definition 1. A fuzzy set Ã on R (a set of real numbers) is a fuzzy number

if (i) Ã is a normal fuzzy set, (ii) αA is a closed interval for every α ∈ (0, 1]

and (iii) the support of Ã is bounded.

A fuzzy number Ã is said to be less than a fuzzy number B̃, Ã ≤ B̃, if
αA ≤ αB is satisfied for every α ∈ (0, 1]. Equivalence of two fuzzy numbers,

Ã = B̃, is attained when Ã ≤ B̃ and B̃ ≤ Ã. When fuzzy numbers are used

to formulate linguistic concepts such as very small, small, and so on, the final

constructs are called linguistic variables.
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Definition 2. Let En be a space of all fuzzy subsets of Rn consisting of fuzzy

sets which are normal, fuzzy convex, upper semi-continuous with compact

support. A fuzzy function is a mapping from universal set Ω to En, f̃ : Ω→
En.

The other principle of connecting crisp sets and fuzzy sets is to fuzzify

functions with an extension principle. Let f be a mapping from X to Y,

f : X → Y where X and Y are crisp sets. The function f is fuzzified when it

is extended to fuzzy sets on X and Y . Formally, the fuzzified function f̃ is

a mapping from F(X) to F(Y ), f̃ : F(X) → F(Y ) where F(X) and F(Y )

denote fuzzy power sets which is the family of all fuzzy subsets of X and Y,

respectively. According to Zadeh’s extension principle, B̃ = f̃(Ã) for any

given fuzzy set Ã ∈ F(X) and ∀y ∈ Y ,

B̃(y) =

sup{µÃ(x) | x ∈ X, f(x) = y} when f−1(y) 6= ∅,

0 otherwise.
(1)

Definition 3. Let Ã, B̃ ∈ En. If there exists C̃ ∈ En such that Ã = B̃ + C̃,

then C̃ is called a Hukuhara difference (−h) of Ã and B̃.

Example: Let Ã and B̃ be triangular fuzzy sets Ã = (5, 7, 9) and B̃ = (1, 2, 3).

Then, Ã−h B̃ = (5, 7, 9)− (1, 2, 3) = (5− 1, 7− 2, 9− 3) = (4, 5, 6). Hence,

B̃+(Ã−h B̃) = (1, 2, 3)+(4, 5, 6) = (5, 7, 9) = Ã. Note that, in the standard

fuzzy arithmetic Ã− B̃ = (5, 7, 9)− (1, 2, 3) = (5− 3, 7− 2, 9− 1) = (2, 5, 8)

and B̃ + (Ã− B̃) = (1, 2, 3) + (2, 5, 8) = (3, 7, 11) 6= Ã.

Definition 4. Given a fuzzy number Ã on Ω, absolute value |Ã| is defined

as

µ|Ã|(ω) =

max
(
µÃ(ω), µ−Ã(ω)) for ω ∈ R+,

0 for ω ∈ R−.
(2)

Definition 5. Given a universal set Ω and its non-empty power set F(Ω)

with appropriate algebraic structure, a classical measure, µ, on F(Ω) is a

mapping from F(Ω) to a positive real number R+, µ : F(Ω) → [0,∞], with

the following requirements:
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1. µ(∅) = 0 (vanishing at the empty set);

2. For every sequenceA1, A2, ... of pairwise disjoint sets of F(Ω), if
⋃∞
i=1Ai ∈

F(Ω) then µ(
⋃∞
i=1Ai) =

∑∞
i=1 µ(Ai) (Additivity).

Note that, probability is a classical measure with µ(Ω) = 1 and F(Ω)

being a σ-algebra.

Definition 6. Given a finite universal set Ω = {ω1, ω2, ..., ωn} and a real-

valued function f(ωk) on Ω, the integral of f on Ω w.r.t. (with respect to) a

classical measure µ is expressed as∫
Ω

fdµ =
n∑
k=1

f(ωk)µ(ωk). (3)

Definition 7. Given a universal set Ω and its non-empty power set F(Ω)

with appropriate algebraic structure, a monotone measure, η, on F(Ω) is a

mapping from F(Ω) to a positive real number R+, η : F(Ω) → [0,∞], with

the following requirements:1

1. η(∅) = 0 (vanishing at the empty set);

2. For all A,B ∈ F(Ω), if A ⊆ B, then η(A) ≤ η(B) (monotonicity);

3. If A1 ⊆ A2 ⊆ · · ·An ∈ F(Ω), then limn→∞ η(An) = η(
⋃∞
n=1An) (conti-

nuity from below);

4. If A1 ⊇ A2 ⊇ · · ·An ∈ F(Ω) then limn→∞ η(An) = η(
⋂∞
n=1An) (conti-

nuity from above).

Note that, 3 and 4 are trivially satisfied when Ω is finite.

Definition 8. Given a finite universal set Ω = {ω1, ω2, ..., ωn} and a non-

negative (utility) function f(ωk) on Ω where f(ω1) ≥ f(ω2) ≥ ... ≥ f(ωn)

and f(ωn+1) = 0, the Choquet integral of f on Ω w.r.t. a monotone measure

η is expressed as

(C)

∫
Ω

fdη =
n∑
k=1

(f(ωk)− f(ωk+1))η({ω1, ω2, ..., ωk}). (4)

1Monotone measures are also called fuzzy measures in the literature. Since no fuzzy

sets are involved in monotone measures, following Klir (2005) we save the term ”fuzzy

measures” to measures defined on fuzzy sets.
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Definition 9. Let Q(Ω) denote {(A,B) ∈ F(Ω) × F(Ω) | A ∩ B = ∅}
the set of all pairs of disjoint sets. A bi-capacity on Q(Ω) is a set function

η : Q(Ω)→ R that satisfies the following requirements:2

1. η(∅, ∅) = 0;

2. If A ⊂ B, then η(A, ·) ≤ η(B, ·) and η(·, A) ≥ η(·, B).

A bi-capacity is a generalization of capacities that enables to account for

the interaction between gains and losses. η is normalized if η(Ω, ∅) = 1 =

−η(∅,Ω).

Definition 10. Given a finite universal set Ω = {ω1, ω2, ..., ωn} and a real-

valued function f(ωk) on Ω, Choquet-like aggregation of f on Ω w.r.t. a

bi-capacity η(·, ·) is expressed as

Cη(f) =
n∑
k=1

(
|f(ω(k))|−|f(ω(k+1))|

)
η
(
{ω(1), ...ω(k)}∩N+, {ω(1), ...ω(k)}∩N−

)
,

(5)

where |f(ω1)| ≥ |f(ω2)| ≥ ... ≥ |f(ωn)|; f(ωn+1) = 0; N+ = {ω ∈ Ω | f(ω) ≥
0} and N− = {ω ∈ Ω | f(ω) < 0}.

Example: Let Ω = {ω1, ω2, ω3} and the function f on Ω takes the values of

f(ω1) = 4, f(ω2) = 3 and f(ω3) = −2. Then N+ = {ω1, ω2} and N− = {ω3},

Cη(f) =
(
|f(ω1)| − |f(ω2)|

)
η({ω1}, {∅})

+
(
|f(ω2)| − |f(ω3)|

)
η({ω1, ω2}, {∅}) + |f(ω3)|η({ω1, ω2}, {ω3})

= η({ω1}, {∅}) + η({ω1, ω2}, {∅}) + 2η({ω1, ω2}, {ω3}).

Definition 11. Given a finite universal set Ω = {ω̃1, ω̃2, ..., ω̃n} and a fuzzy-

valued function f̃(ω̃k) on Ω, generalised Choquet-like aggregation of f̃ on Ω

w.r.t. a fuzzy-valued bi-capacity η̃(·, ·)is expressed as

Cη(f̃) =
n∑
k=1

(
|f̃(ω̃(k))|−h|f̃(ω̃(k+1))|

)
η̃
(
{ω̃(1), ...ω̃(k)}∩N+, {ω̃(1), ...ω̃(k)}∩N−

)
,

(6)

2The same symbol, η, is used for both, monotone measures (capacities) and bi-

capacities. This should not create any notational confusion since η(·) is a capacity and

η(·, ·) is a bi-capacity. A fuzzified version of a bi-capacity η(·, ·) is further denoted as η̃(·, ·).
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where |f̃(ω̃1)| ≥ |f̃(ω̃2)| ≥ ... ≥ |f̃(ω̃n)|; f̃(ω̃n+1) = 0; N+ = {ω̃ ∈ Ω | f̃(ω̃) ≥
0} and N− = {ω̃ ∈ Ω | f̃(ω̃) < 0}.

Definition 12. A linguistic lottery is a linguistic random variable S̃ with

known linguistic probability distribution P̃ l = {P̃1, P̃2, ..., P̃n} and is repre-

sented by a vector L̃ = (P̃1, S̃1; P̃2, S̃2; ...P̃n, S̃n).

For a more detailed view of mathematical formalization of fuzzy set theory

one can refer to Klir and Yuan (1995), topological properties of spaces of

fuzzy sets to Diamond and Kloeden (1994), fuzzy measures and integrals to

Grabisch, Sugeno and Murofushi (2000), capacities and Choquet integral to

Choquet (1955), bi-capacities and Choquet-like aggregation to Grabisch and

Labreuche (2005a), (2005b) and (2006), uncertainty based analysis of related

topics to Klir (2005) and an application to decision theories to Aliev and

Huseynov (2014).

3 Broad Concept of Subjective Rationality

The main goal of this section is to attempt to answer a question of what is

meant by rational behavior when the decision maker is confronted with dif-

ferent type of information. The proposed framework is based on the fact that

the right decision method changes when the specificity and reliability of the

information change. Also, the considered notion of rationality is subjective

in the sense of Gilboa, Maccheroni, Marinacci and Schmeidler (2010). That

is to say, the decision maker (DM) cannot be convinced that (s)he is wrong

in making them.

The current interpretation of rationality in economics and finance relies

heavily on the subjective expected utility (SEU) axioms of Savage (1954).

Simply, you are rational if you follow axioms of SEU and irrational if you

don’t. This definition of rationality is too narrow to capture a real life de-

cision situation. Also, this definition contradicts what has been tentatively

argued by many economists such as Keynes (1921), Knight (1921), Shackle

(1949), Arrow (1951) and so on. Specifically, Knight (1921) makes a clear

distinction between risk (when relative odds of the events are known) and
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uncertainty (when the degree of knowledge only allows us to work with esti-

mates). Also, Arrow (1951) notes that descriptions of uncertain consequences

can be classified into two major categories, those which use exclusively the

language of probability distributions and those which call for some other

principle, either to replace or to supplement. We agree with the need of

another principle to be a supplement to a language of probability to better

approximate a real life decision situation. This is due to the fact that infor-

mation that decisions are based on are not only uncertain in nature, but at

the same time imprecise and partially true. Using only a probabilistic ap-

proach is not sufficient to treat uncertainty, imprecision and partial truthness

of information adequately. The main argument advanced by Zadeh (1978)

is that imprecision of the real life information is possibilistic rather than

probabilistic in nature and a fuzzy set theory is a necessary mathematical

tool to deal with possibilistic uncertainty. While there has been substantial

progress on modeling uncertainty probabilistically, economics as a discipline

has been somewhat reluctant with some exceptions to account for the latter

over the years. For this reason, we focus on how the rational behavior should

be changed as the imprecision and reliability of the information change.

One of the motivations of this paper comes from Gilboa et al. (2010) who

propose behavioral foundation of objective and subjective rationality. They

specifically show how the Knightian decision theory of Bewley (2002) and

the maxmin expected utility (MEU) of Gilboa and Schmeidler (1989) are

complementary to each other in terms of defining objective and subjective

rationality. The other motivation comes from Peters (2003) who outlines

rationality as an application of right decision techniques to right problems

or irrationality as a mismatch of the methodology and problem. Defining

the right decision technique is the major issue in this context. One might

reasonably ask “what is the right decision technique” and “what is the right

problem”. However, these questions can be dealt appropriately in certain cir-

cumstances. For example, an application of an objective probability-based

decision technique to an objective problem is a right decision technique, while

applying the same technique to a situation in which a decision maker has im-

precise information is not a rational option. So that, expected utility theory

(EUT) of Von Neumann and Morgenstern (1944) can be regarded as a right
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decision technique in probability theory applicable circumstances as it builds

upon objective probabilities. If the asset returns follow the random walk

theory, then application of EUT becomes acceptable. By generous stretch

of imagination, a similar logic can be used to determine the right decision

techniques for more general classes of information. The higher the generality

of information and corresponding decision theories, the more paradoxes we

can solve in the existing financial models. Specifically, Zadeh (2011) outlines

the following classification of information based on its generality.

Numerical Information (Ground Level – ‘G’) - This is single valued

information with exact probability, e.g.: there is 80% chance that there will

be 3 % growth in Australian economy next year.

Interval-valued Information (First Level – ‘F’) - This is the first

order uncertainty in which probability and value take intervals, e.g.: there is

75 - 85% chance that there will be 2 – 3.5% growth in Australian economy

next year.

Information with second-order uncertainty (Second Level ‘S’) -

This is partially reliable information with sharp boundaries, e.g.: there is 70

- 85% chance that there will be 1.5 - 3.5% growth in Australian economy next

year and the lower probability of the given chances being reliable is 80%.

Fuzzy Information (Third Level – ‘T’) - This is the information

with un-sharp boundaries, e.g.: there will be moderate growth in Australian

economy next year.

Z-information and visual information (Z Level – ‘Z’) - This is

partially reliable information with un-sharp boundaries and often in natural

language, e.g.: it seems likely that there will be moderate growth in Aus-

tralian economy next year.

The distinction between these levels can be difficult. Sometimes we can

think of one upper level as the same as one below. However, there is no doubt

that the degree of informativeness or specificity of information diminishes as

we move away from the ground level. The former implies the latter while

it is not true for the reverse. Then, we can say that the former is more

specific than the latter and the latter is more general. One can think of this

generalization as a subsethood relation,

G ⊆ F ⊆ S ⊆ T ⊆ Z,
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but not in a strict mathematical sense of subsethood as, for example, it is

not obvious to see the relation between S and T.

We do not wish to face here the question of whether or not the infor-

mation is sufficiently informative to serve a particular purpose. However,

using a logic similar to Peters (2003), though his representation is vague,

we approximate the definition of rationality in Table 1. Individuals can be

considered subjectively rational along the diagonal in this framework. That

is, for each level of information class there should be a different decision

theory (methodology) to account for rational behavior. Following the argu-

ment and representation in Table 1, a broad definition of rationality is given

accordingly.3

Definition 13. A rational man is expected to hold belief degrees that are

consistent with different decision theories for different class of information.

Table 1: A rationality

Table 1 representation of rationality also hides a philosophical subtlety

in itself. Philosophically, rationality is not a 0/1 property. Then, we can

modify Table 1 to describe a degree of irrationality of a DM. For example,

an irrationality of applying decision method 1 to interval-valued information

and applying the same method to Z information has to be different. More

3In a private conversation, David Easley mentioned that the definition is way too

vague. We specifically keep the vague definition in order to capture both, precise and

vague aspects of reality.
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specifically, the latter is more irrational than the former. The same logic can

be consistently applied to the whole Table 1 as represented in Table 2.

Table 2: A changing degree of irrationality

Note that, we do not adopt maximally rational, rational and minimally ra-

tional classification of Rubinstein (2001) in this framework. We set maximum

level as rational and then for each level of deviation from the corresponding

information level reduce 1 unit. Also, we do not confine ourselves to only

maxmin expected utility model in defining subjective rationality as proposed

by Gilboa et al. (2010). This in turn, enables us to differentiate irrationality

of a DM as in Table 2. A changing degree of irrationality provides a novel

foundation on the theory of choice under uncertainty.

Similarly, an application of the more general decision theory where the

less general is sufficient to capture the given decision situation is an inefficient

use of resources but not irrational. In terms of consistency of the framework,

an application of the more general decision theory should give the same

result as the less general one in the corresponding information class of the

less general theory, nevertheless, the latter provides computational ease. In

line with consistency and computational ease, there are two fundamental

reasons to move from one decision theory to another. Firstly, a more general

decision theory is needed if it solves, at least, one more paradox that the

existing theory can not solve. Secondly, the existing decision theory becomes

inconvenient (e.g., excessively complex) at some stage and it is desirable to

move to a more convenient theory. The principle of replacing the existing
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decision theory with a more general decision theory is similar to the principle

of requisite generalization in generalized information theory (GIT). Here, a

generalization is also not optional, but requisite, imposed by the nature of

the decision situation.

We now illustrate and discuss the ideal candidates for the right decision

theory by considering 5 financial practitioners with different uncertainty who

consider three alternatives (bonds - f1, stocks - f2 and term deposit - f3) for

a short-term investment plan. Before, it should be emphasized that rough

approximations of a real life decision situation are made for the sake of con-

veying the main points of the paper to readers, especially in fuzzy and Z

environment.

Practitioner 1

Suppose, Practitioner 1 evaluates each alternative under strong growth

(s1), moderate growth (s2), stable economy (s3) and recession (s4). He notes

that the following precise utilities will be achieved under each state of the

economy for different acts.

s1 s2 s3 s4

f1 15 9 8 4

f2 16 9 4 0

f3 10 10 10 10

Table 3: Utilities of each act under different states

He also has perfect information about the uncertainty of 3 states with the

following (subjective) probabilities: P (s1) = 0.5, P (s2) = 0.3, and P (s3) =

0.15. He faces the question of what option to choose.

Clearly, this situation is a perfect information situation as Practitioner 1

is in the province of probability theory. For this type of simplistic information

Definition 5 is an adequate measure to capture the uncertainty and Definition

6 is a right tool to calculate overall utilities of each act. In this environment,

Practitioner 1 can easily calculate P (s4) and then determine his preferences

as f1 � f2 � f3 by calculating overall utilities:

U(f1) = 11.6, U(f2) = 11.3 and U(f3) = 10.
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In (subjective) expected utility theory, choice under uncertainty is per-

ceived as the maximization of the mathematical expectation of individual

utilities w.r.t. (subjective) probabilities. If preferences of Practitioner 1 co-

incide with what is suggested by (SEU) EUT, then his action is perfectly

justifiable and can be regarded as rational based on our framework. So that,

the optimal solution for Practitioner 1 is the bonds. In what follows, we

shall try to illustrate information where Definitions 5 and 6 are not directly

applicable.

Practitioner 2

Suppose, Practitioner 2 also evaluates each alternative under strong growth

(s1), moderate growth (s2), stable economy (s3) and recession (s4) and

he also notes the same precise utilities shown in Table 3. However, he

assigns the following subjective probability intervals: P (s1) = [0.4, 0.45],

P (s2) = [0.3, 0.35], and P (s3) = [0.15, 0.20]. He faces the question of what

option to choose.

The information of Practitioner 2 is interval-valued information. For

simplicity we assumed that only his probability assessments take interval

values. This can easily be extended to interval-valued utilities.

Given a set S = {s1, s2, s3, s4} and its power set F(S), let I =< [l(si), u(si)]

| i ∈ N4 > denote 4-tuples of probability intervals on si ∈ S where l(si) and

u(si) denote corresponding lower and upper probability bounds, respectively.

Given the probability intervals of 3 states, we first calculate the probability

interval of state s4, P (s4) = [0, 0.15], by solving l(s4) = 1 −
∑3

i=1 u(si) and

u(s4) = 1−
∑3

i=1 l(si). LetM denote a convex set of probability distribution

functions p on F(S) satisfying

M = {p | l(si) ≤ p(si) ≤ u(si), i ∈ N4,
∑
si∈S

p(si) = 1}.

From the probability distributions in set M, the lower probability measure

(lower prevision) is defined for all A ∈ F(S) as η(A) = infp∈M
∑

xi∈A p(xi).

It follows from this definition that lower probabilities satisfy the conditions

of Definition 7 and thus are monotone measures. Then, the lower probability

measure, η, are calculated4

4Note that, M is non-empty set if and only if,
∑4

i=1 l(si) ≤ 1 and
∑4

i=1 u(si) ≥
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η(A) = max

∑
xi∈A

l(xi), 1−
∑
xi /∈A

u(xi)

 , ∀A ∈ F(S). (7)

For the sake of clarity, let us exemplify;

η
(
{s1, s4}

)
=max{l(s1) + l(s4), 1− u(s2)− u(s3)} = 0.45,

η
(
{s1, s3, s4}

)
=max{l(s1) + l(s3) + l(s4), 1− u(s2)} = 0.65.

Following these steps, we obtain Table 4 values of lower probability measures.

States {s1} {s2} {s3} {s4} {s1, s2}
η(A) 0.4 0.3 0.15 0 0.7

States {s1, s3} {s1, s4} {s2, s3} {s2, s4} {s3, s4}
η(A) 0.55 0.45 0.45 0.35 0.20

States {s1, s2, s3} {s1, s2, s4} {s1, s3, s4} {s2, s3, s4} {S}
η(A) 0.85 0.80 0.65 0.55 1

Table 4: Lower probability measures (previsions)

Based on his probability intervals, Practitioner 2 can determine his pref-

erences as f1 � f3 � f2 by first ordering utility values in a descending order

and then aggregating overall utilities with the Choquet integral w.r.t. the

lower prevision η following Definition 8. Specifically, for a given alternative,

the Choquet integral based utility is computed as

U(fi) =

(
u
(
(fi)(s1)

)
− u
(
(fi)(s2)

))
η({s1})

+

(
u
(
(fi)(s2)

)
− u
(
(fi)(s3)

))
η({s1, s2})

+

((
u(fi)(s3)

)
− u
(
(fi)(s4)

))
η({s1, s2, s3}) + u

(
(fi)(s4)

)
η(S)

given that u
(
(fi)(s1)

)
≥ u

(
(fi)(s2)

)
≥ u

(
(fi)(s3)

)
≥ u

(
(fi)(s4)

)
. Following

the same steps for f1, f2 and f3, the overall utilities for each alternative are

obtained as

1. Also, equation (7) is only applicable when I satisfies
∑

j 6=i l(sj) + u(si) ≤ 1 and∑
j 6=i u(sj)+ l(si) ≥ 1. These conditions are trivially satisfied when l(s4) = 1−

∑3
i=1 u(si)

and u(s4) = 1−
∑3

i=1 l(si).
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U(f1) = 10.5, U(f2) = 9.7 and U(f3) = 10,

which leads to the preference order of f1 � f3 � f2.

For Practitioner 2, due to the imprecise nature of probability intervals,

Definitions 5 and 6 become deficient to directly determine the optimal so-

lution. Therefore, we first determine convex set of probability distribution

functions from the given intervals and calculate lower envelope of this closed

convex set as a lower probability measure. As this lower probability mea-

sures satisfy the conditions of Definition 7, the Choquet integral becomes the

right tool to determine overall utilities of each act. This is essentially the

Choquet Expected Utility (CEU) proposed by Schmeidler (1989) using the

notion of capacities or non-additive probabilities. With the convex capaci-

ties5, it is also well-known that CEU is the special case of the MEU under

the assumption of ambiguity-aversion (see proposition 3 of Schmeidler (1986)

for proof).

One point worth to note here is that the use of lower prevision is justi-

fied with the implicit assumption of full ambiguity-aversion. If the degree of

ambiguity-aversion, α ∈ [0, 1], in the sense of Ghirardato, Maccheroni and

Marinacci (2004) is known, Practitioner 2 is subjectively rational if he ap-

plies α-MEU. This is because α-MEU is a natural generalization of MEU to

account for degree of ambiguity-aversion and ambiguity-seeking.

Suppose, instead of being fully ambiguity-averse, Practitioner 2 is 70%

ambiguity-averse. Then, following the steps of α-MEU, U(fi) is determined

as

U(fi) = α min
P∈M

∫
S

u(fi(S))dP + (1− α) max
P∈M

∫
S

u(fi(S))dP,

where α denotes the degree of ambiguity-aversion. minP∈M
∫
S
u(fi(S))dP is

known from the previous calculation, as MEU coincides with CEU for convex

capacities. We first determine maxP∈M
∫
S
u(fi(S))dP for i = 1, 2, 3 and then

weight minimum and maximum utilities with α and (1 − α) respectively to

determine overall utilities of Practitioner 2. The results are

U(f1) = 10.8, U(f2) = 10.14 and U(f3) = 10.

5Capacity η is convex for all events A,B ∈ F(S) if it satisfies η(A ∪ B) + η(A ∩ B) ≥
η(A) + η(B).

18



Therefore, changing the degree of ambiguity-aversion changes the preference

order of Practitioner 2 from f1 � f3 � f2 to f1 � f2 � f3. In both situa-

tion, Practitioner 2 can be regarded as subjectively rational (he can not be

convinced that he is wrong in his preference order).

Practitioner 3

Again for consistency, suppose Practitioner 3 also evaluates each alterna-

tive under S = {s1, s2, s3, s4} with the same precise utilities shown in Table 3.

He also assigns the same subjective interval probabilities: P (s1) = [0.4, 0.45],

P (s2) = [0.3, 0.35], P (s3) = [0.15, 0.20] and P (s4) = [0, 0.15] (computed).

However, this time a probability interval of [0.7, 0.8] is assigned to measure

an imprecise degree of confidence of the assigned probabilities. This can be

considered as a reliability of the assigned probabilities. The question remains

the same.

Despite its simplicity, traditional methods are also incapable of solving

this problem due to the probability intervals and the second-order uncertainty

imposed by the reliability of assigned probabilities. There are two approaches

we can think of to proceed with this problem.

Approach 1: A plain way to address the given situation is to use the

methodology of interval-valued information by overlooking the reliability of

assigned probabilities. With this approach, the same preference order of

Practitioner 2 applies to Practitioner 3. That is if Practitioner 3 is fully

ambiguity averse f1 � f3 � f2 holds, but with the confidence interval of

[0.7, 0.8]. The reason for leaving the uncertainty imposed by the reliability

intact can be understood by the following illustration of Shafer (1987).

Suppose, we have asked Fred if the streets outside are slippery. He replies

“Yes” and we know that 80% of the time he speaks truthfully and 20% of

the time he speaks carelessly, saying whatever comes into his mind. With

p1 =“the streets are slippery” and p2 =“the streets are not slippery” propo-

sitions, Shafer derives a belief of 0.8 in proposition {p1} and 0.2 in {p1, p2}.
The main point here is that, if we don’t have additional information, we

should not allocate the remaining 0.2 between p1 and p2. In our example,

the Shafer’s illustration suggests that there is [0.7, 0.8] units of evidence sup-

porting {f1 � f3 � f2} and [0.2, 0.3] units of evidence supporting all the

combinations of preference order, {{f1 � f2 � f3}, {f1 � f3 � f2}, {f2 �
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f1 � f3}, {f2 � f3 � f1}, {f3 � f1 � f2}, {f3 � f2 � f1}}.
In line with Shafer’s example, the first approach concludes that, U(f1) =

10.5, U(f2) = 9.7 and U(f3) = 10 with the reliability (confidence, accuracy)

of [0.7, 0.8] if the Practitioner 3 is fully ambiguity averse.

Approach 2: It is easy to note that reliability and ambiguity attitude

are related to each other. More specifically, there is an inverse relationship

between reliability and ambiguity-aversion. As the information gets more

and more unreliable a DM should become more ambiguity averse. In that

sense, ambiguity-aversion α is a function of the reliability of information

α = ψ(r, r̄), where r and r̄ denote lower and upper reliability of information.

We have not been able to determine what confidence functional (ψ) would

account for rational behavior. This problem is similar to the problem of

which utility function makes sense and leads to beneficial outcome. For this

purpose, any utility function would suffice for an agent to be rational. In that

sense, any confidence functional leading to ambiguity-aversion would suffice

for our purposes as well. Suppose, ψ(r) = 1−(r+ r̄)/2 for the demonstration

purpose. Then, ambiguity-aversion, α, equals 0.25 and application of α-MEU

results in

U(f1) = 11.25, U(f2) = 10.79 and U(f3) = 10,

which leads to the preference order of f1 � f2 � f3.

So far, α-MEU is used as the most general decision theory and it suf-

fices to account for subjective rationality under the second-order imprecise

probability. However, in the fuzzy and Z-environment, due to the funda-

mental level dependence of human behavior α-MEU falls short of taking this

dependence into account.

Practitioner 4

Consider Practitioner 4 notes the following trends under S = {s̃1, s̃2, s̃3, s̃4}
and her possible set of states is H = {h1, h2} where h1 and h2 (non-fuzzy in

this example) stands for ambiguity-aversion and ambiguity-seeking, respec-

tively.

– f̃1 will yield high income under s̃1, medium income under s̃2, less than

medium income under s̃3 and small income under s̃4;

20



– f̃2 will yield very high income under s̃1, medium income under s̃2, small

income under s̃3 and a notable loss under s̃4;

– f̃3 will yield approximately the same medium income in all 4 fuzzy

states of economy.

Practitioner 4 also has information that s̃1 will take place with a medium

probability, s̃2 will take place with a less than medium probability, s̃3 with a

small probability and s̃4 with a very small probability. The probability of her

ambiguity-aversion is also known to be about 70% and she is assumed to be

ambiguity-seeking when she is not ambiguity-averse. The question remains

the same.

Clearly, Practitioner 4 has fuzzy information. This problem is considered

as the problem of decision making under possibilistic-probabilistic informa-

tion and linguistic preference. At this information level, there are also two

ways of dealing with the given problem.

Approach 1: The first approach is to compute a fuzzy-number-valued

lower prevision and use the Choquet integral w.r.t. to the computed lower

prevision to calculate the total utility values of each act. This is essen-

tially a generalized version of Choquet expected utility (CEU) of Schmeidler

(1989) and the argument advanced by Aliev, Pedrycz, Fazlollahi, Huseynov,

Alizadeh and Guirimov (2012). This approach is also consistent with the

previous decision theories used for Practitioners 2 and 3.

Approach 2: The second approach is more behavioral in nature. As ar-

gued, this type of information triggers psychological factors to interact with

each other. Because of capturing interaction among behavioral determinants

to account for the fundamental level dependence of human behavior, be-

havioral decision-making with combined states under imperfect information

(BDMCSII) of Aliev, Pedrycz and Huseynov (2013) serves perfectly well to

determine the optimal action of Practitioner 4 in this situation. Although,

the first approach is also consistent with the previous decision theories, we

are in favor of using BDMCSII in our framework due to an interaction among

factors induced by the fuzzy environment.

BDMCSII combines fuzzy states of nature and fuzzy states of the decision

maker as Ω = S × H (cartesian product of S and H) with the elements of
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ω̃ji = (s̃i, h̃j) to account for the fundamental level dependence of human

behavior. Here, neither Definition 5 nor Definition 7 is adequate to capture

the given uncertainty as well as the dependence of S and H. Therefore, at

this level, among the fuzzy set of actions, A = {f̃ ∈ A | f̃ : Ω→ X} where X

denotes a space of fuzzy outcomes, BDMCSII determines an optimal action

f̃ ∗ ∈ A with Ũ(f̃ ∗) = maxf̃∈A
∫

Ω
Ũ(f̃(ω̃))dη̃ which implies that an overall

utility of an action is determined by a fuzzy number valued bi-capacity based

aggregation over space Ω. The step by step formulation of the given problem

by BDMCSII is as follows.

Suppose the following outcomes represented by triangular fuzzy numbers

corresponds to each act under different states of economy. In other words,

the given fuzzy numbers are precisiated forms of the given linguistic gains.

s̃1 s̃2 s̃3 s̃4

f̃1 (8, 11, 14) (5, 8, 11) (3, 6, 9) (1, 3, 5)

f̃2 (11, 15, 19) (5,8,11) (1, 3, 5) (−3,−1.5, 0)

f̃3 (5, 8, 11) (5, 8, 11) (5, 8, 11) (5, 8, 11)

Table 5: Fuzzy outcomes of each act under different states

We first assign fuzzy utilities ũ(f̃k(ω̃
j
i )) (utility of action f̃k under state

of economy s̃i when her own state is hj) by applying a technique of value

function of Tversky and Kahneman (1992),

ũ(f̃k(ω̃
1
i )) =

(f̃k(s̃i))
α when f̃k(s̃i) ≥ 0,

−λ(−f̃k(s̃i))β when f̃k(s̃i) < 0;
(8)

ũ(f̃k(ω̃
2
i )) =

(f̃k(s̃i))
β when f̃k(s̃i) ≥ 0,

−λ(−f̃k(s̃i))α when f̃k(s̃i) < 0;
(9)

where α = 0.88, β = 1.25 and λ = 2.25. For instance,

ũ(f̃1(ω̃1
1)) = (f̃1(s̃1))α = (80.88, 110.88, 140.88) ≈ (6, 8, 10),

ũ(f̃1(ω̃2
1)) = (f̃1(s̃1))β = (81.25, 111.25, 141.25) ≈ (13, 20, 27).

A similar calculation follows for other utilities. The absolute values of ap-

proximate results in a descending order using a compatibility based ranking
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of fuzzy numbers are given in Table 6. Absolute values of utilities are only

different at f̃2(s̃4, h1) and f̃2(s̃4, h2).

ũ(f̃1(ω̃2
1)) ≈ (13, 20, 27) ũ(f̃1(ω̃2

2)) ≈ (7, 13, 20) ũ(f̃1(ω̃2
3)) ≈ (4, 9, 16)

ũ(f̃1(ω̃1
1)) ≈ (6, 8, 10) ũ(f̃1(ω̃1

2)) ≈ (4, 6, 8) ũ(f̃1(ω̃1
3)) ≈ (3, 5, 7)

ũ(f̃1(ω̃2
4)) ≈ (1, 4, 7) ũ(f̃1(ω̃1

4)) ≈ (1, 3, 4)

ũ(f̃2(ω̃2
1)) ≈ (20, 30, 40) ũ(f̃2(ω̃2

2)) ≈ (7, 13, 20) ũ(f̃2(ω̃1
1)) ≈ (8, 11, 13)

ũ(f̃2(ω̃1
2)) ≈ (4, 6, 8) |ũ(f̃2(ω̃1

4))| ≈ (0, 4, 9) ũ(f̃2(ω̃2
3)) ≈ (1, 4, 7)

|ũ(f̃2(ω̃2
4))| ≈ (0, 3, 6) ũ(f̃2(ω̃1

3)) ≈ (1, 3, 4)

ũ(f̃3(ω̃2
1)) ≈ (7, 13, 20) ũ(f̃3(ω̃2

2)) ≈ (7, 13, 20) ũ(f̃3(ω̃2
3)) ≈ (7, 13, 20)

ũ(f̃3(ω̃2
4)) ≈ (7, 13, 20) ũ(f̃3(ω̃1

1)) ≈ (4, 6, 8) ũ(f̃3(ω̃1
2)) ≈ (4, 6, 8)

ũ(f̃3(ω̃1
3)) ≈ (4, 6, 8) ũ(f̃3(ω̃1

4)) ≈ (4, 6, 8)

Table 6: Fuzzy utilities under different states of economy and decision-maker

After assigning fuzzy utilities to each act, the next step is to construct a

fuzzy joint probability distribution (FJP) P̃ on Ω given the fuzzy marginal

probabilities of S = {s̃1, s̃2, s̃3, s̃4} and H = {h1, h2}. With the given im-

perfect information on probabilities such as medium probability, less than

medium probability, and so on, the fuzzy marginal probability distributions

of S and H can be represented by the following triangular fuzzy numbers.6

P̃ (s̃1) = (0.45, 0.50, 0.55), P̃ (s̃2) = (0.325, 0.35, 0.375),

P̃ (s̃3) = (0.1, 0.125, 0.15), P̃ (s̃4) = (0, 0.025, 0.125) (computed),

P̃ (h1) = (0.65, 0.70, 0.75), P̃ (h2) = (0.25, 0.30, 0.35) (computed).

Given the fuzzy marginal probability distributions of S and H, the FJP

distribution is obtained on the base of positive and negative dependence

concept of Wise and Henrion (1985).7 Formally, the FJP is obtained with,

6By convention, we precisiate (n− 1) of the given linguistic probabilities and compute

the last one in order to add up total probabilities to 1.
7Given the numerical probabilities P (A) and P (B), the joint probability of A and B is

P (A,B) = P (A)P (B) if A and B are independent, P (A,B) = min
(
P (A), P (B)

)
if A and

B are positively dependent, and P (A,B) = max
(
P (A) + P (B) − 1, 0

)
if A and B have

opposite dependence. Equations (10) and (11) are the extensions of these formulations to

fuzzy probabilities via α-cuts.
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p̃(s̃i, hj) =
⋃

α∈[0,1]

α
[
αp1(si)

αp1(hj),min
(
αp2(si),

αp2(hj)
)]
, (10)

p̃(s̃i, hj) =
⋃

α∈[0,1]

α
[

max
(
αp1(si) + αp1(hj)− 1, 0

)
, αp2(si)

αp2(hj)
]

(11)

for positive and negative dependence, respectively.

For f̃1 and f̃3, there are positive dependences between, (s̃1, h1), (s̃2, h1),

(s̃3, h1), (s̃4, h1) and negative dependences between (s̃1, h2), (s̃2, h2), (s̃3, h2),

(s̃4, h2), and for f̃2 there are positive dependences between, (s̃1, h1), (s̃2, h1),

(s̃3, h1), (s̃4, h2) and negative dependences between (s̃1, h2), (s̃2, h2), (s̃3, h2),

(s̃4, h1) due to Baillon and Bleichrodt (2015). That is to say, people are

ambiguity-averse in the positive domain and ambiguity-seeking in the nega-

tive domain. Then, for f̃1, f̃2 and f̃3, p̃(s̃1, h1) is computed as follows given

α = 0, 0.5, 1.[
0p1(s̃1)0p1(h1),min

(
0p2(s̃1)0p2(h1)

)]
= [0.45 ∗ 0.65,min(0.55, 0.75)]

≈ [0.293, 0.55];

[
.5p1(s̃1).5p1(h1),min

(
.5p2(s̃1).5p2(h1)

)]
= [0.475 ∗ 0.675,min(0.525, 0.725)]

= [0.32, 0.525];

[
1p1(s̃1)1p1(h1),min

(
1p2(s̃1)1p2(h1)

)]
= [0.5 ∗ 0.7,min(0.5, 0.7)]

= [0.35, 0.5].

Hence, p̃(s̃1, h1) can be approximated by the trapezoidal fuzzy number of

(0.293, 0.35, 0.5, 0.55). For f̃1 and f̃3 the FJPs of s̃i and hj are as follows

p̃(s̃1, h1) = (0.293, 0.35, 0.5, 0.55), p̃(s̃2, h1) = (0.211, 0.245, 0.350, 0.375),

p̃(s̃3, h1) = (0.065, 0.088, 0.125, 0.15), p̃(s̃4, h1) = (0, 0.018, 0.025, 0.125),

p̃(s̃1, h2) = (0, 0, 0.150, 0.193), p̃(s̃2, h2) = (0, 0, 0.105, 0.131),

p̃(s̃3, h2) = (0, 0, 0.038, 0.053), p̃(s̃4, h2) = (0, 0, 0.008, 0.044).

The FJPs for f̃2 are the same as f̃1 and f̃3 for all the combinations but two,

due to an inverse relationship in s̃4.
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p̃(s̃4, h1) = (0, 0, 0.008, 0.044), p̃(s̃4, h2) = (0, 0.018, 0.025, 0.125).

The next step is to construct a fuzzy valued bi-capacity η̃(·, ·) based on the

obtained FJPs. A fuzzy valued bi-capacity is defined, η̃(Ã, B̃) = η̃(Ã)−η̃(B̃),

as a difference of fuzzy-valued lower probabilities η̃(Ã) and η̃(B̃).

Given a set Ω = {ω1
1, ω

2
1, ω

1
2, ..., ω

1
4, ω

2
4} and its power set F(Ω), let αI =<

[αli,
α ui] | i ∈ N8 > denote 8-tuples of probability intervals on ωji ∈ Ω where

αli and αui denote corresponding lower and upper bounds of α-cuts of the

computed FJPs, respectively. Consistent with Practitioners 2 and 3, let M̃
denote a set of fuzzy probabilities p̃ on F(Ω) satisfying

M̃ = {p̃ | αl(ωji ) ≤ αp(ωji ) ≤ αu(ωji ), i ∈ N4, j ∈ N2,
∑

ωj
i∈Ω p̃(ω

j
i ) = 1}.

From the fuzzy probabilities in set M̃, the lower probability measure is

defined for all Ã ∈ F(Ω) as η̃(Ã) = infp̃∈M̃
∑

xi∈Ã p̃(xi). An α-cut of a fuzzy

lower probability measure, αη, are calculated same as Practitioner 2

αη(Ã) = max

∑
xi∈Ã

αl(xi), 1−
∑
xi /∈Ã

αu(xi)

 ,∀Ã ∈ F(Ω). (12)

For the sake of clarity, let us exemplify;

αη(ω̃2
1) = max{αl(ω̃2

1), 1−
∑

i 6=1,j 6=2

αu(ω̃ji )} = αl(ω̃2
1) = 0.

Hence,

η(ω̃2
1) = (0, 0, 0).

αη(ω̃2
1, ω̃

2
2, ω̃

1
1, ω̃

1
2) = max

{(
αl(ω̃2

1) + αl(ω̃2
2) + αl(ω̃1

1) + αl(ω̃1
2)
)
,

(
1− αu(ω̃1

3)− αu(ω̃2
3)− αu(ω̃1

4)− αu(ω̃2
4)
)}

=
(
1− αu(ω̃1

3)− αu(ω̃2
3)− αu(ω̃1

4)− αu(ω̃2
4)
)

= 0.629 + 0.176 · α.

Hence,

η(ω̃2
1, ω̃

2
2, ω̃

1
1, ω̃

1
2) ≈ (0.63, 0.8, 0.8).
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Based on this formulation, we obtain Table 7 on the values of η̃ for f̃2. Note

that, η̃(B) should be directly set to 0 for f̃1 and f̃3 when calculated with the

same way as there is no loss.8

A,B ⊂ Ω η̃(A) η̃(B) η̃(A,B)

{ω̃2
1}, {∅} (0,0,0) (0,0,0) (0,0,0)

{ω̃2
1, ω̃

2
2}, {∅} (0,0,0) (0,0,0) (0,0,0)

{ω̃2
1, ω̃

2
2, ω̃

1
1}, {∅} (0.29,0.45,0.45) (0,0,0) (0.29,0.45,0.45)

{ω̃2
1, ω̃

2
2, ω̃

1
1, ω̃

1
2}, {∅} (0.63,0.8,0.8) (0,0,0) (0.63,0.8,0.8)

{ω̃2
1, ω̃

2
2, ω̃

1
1, ω̃

1
2}, {ω̃1

4} (0.63,0.8,0.8) (0,0,0) (0.63,0.8,0.8)

{ω̃2
1, ω̃

2
2, ω̃

1
1, ω̃

1
2, ω̃

2
3}, {ω̃1

4} (0.68,0.84,0.84) (0,0,0) (0.68,0.84,0.84)

{ω̃2
1, ω̃

2
2, ω̃

1
1, ω̃

1
2, ω̃

2
3}, {ω̃1

4, ω̃
2
4} (0.68,0.84,0.84) (0,0.02,0.02) (0.68,0.82,0.82)

{ω̃2
1, ω̃

2
2, ω̃

1
1, ω̃

1
2, ω̃

2
3, ω̃

1
3}, {ω̃1

4, ω̃
2
4} (0.83,0.97,0.97) (0,0.02,0.02) (0.83,0.95,0.95)

Table 7: Fuzzy-valued bi-capacities for f̃2

Now, we calculate fuzzy overall utilities of f̃2 by a fuzzy-valued bi-capacity

based aggregation over space Ω using Definition 11.

Ũ(f̃1) =
(
|ũ(f̃1(ω̃2

1))| −h |ũ(f̃1(ω̃2
2))|
)
η̃
(
{ω̃2

1}, {∅}
)

+
(
|ũ(f̃1(ω̃2

2))| −h |ũ(f̃1(ω̃1
1))|
)
η̃
(
{ω̃2

1, ω̃
2
2}, {∅}

)
+
(
|ũ(f̃1(ω̃1

1))| −h |ũ(f̃1(ω̃1
2))|
)
η̃
(
{ω̃2

1, ω̃
2
2, ω̃

1
1}, {∅}

)
+
(
|ũ(f̃1(ω̃1

2))| −h |ũ(f̃1(ω̃1
4))|
)
η̃
(
{ω̃2

1, ω̃
2
2, ω̃

1
1, ω̃

1
2}, {∅}

)
+
(
|ũ(f̃1(ω̃1

4))| −h |ũ(f̃1(ω̃2
3))|
)
η̃
(
{ω̃2

1, ω̃
2
2, ω̃

1
1, ω̃

1
2}, {ω̃1

4}
)

+
(
|ũ(f̃1(ω̃2

3))| −h |ũ(f̃1(ω̃2
4))|
)
η̃
(
{ω̃2

1, ω̃
2
2, ω̃

1
1, ω̃

1
2, ω̃

2
3}, {ω̃1

4}
)

+
(
|ũ(f̃1(ω̃2

4))| −h |ũ(f̃1(ω̃1
3))|
)
η̃
(
{ω̃2

1, ω̃
2
2, ω̃

1
1, ω̃

1
2, ω̃

2
3, }, {ω̃1

4, ω̃
2
4}
)

+
(
|ũ(f̃1(ω̃1

3))|
)
η̃
(
{ω̃2

1, ω̃
2
2, ω̃

1
1, ω̃

1
2, ω̃

2
3}, {ω̃1

4, ω̃
2
4}
)

= (3.99, 7.49, 9.61)

The values of overall utilities Ũ(f̃1) = (4, 6.92, 8.91) and Ũ(f̃3) = (4.12, 6.23,

8.25) can also be found based on the same computing scheme. One can then

rank these fuzzy numbers as f̃2 � f̃1 � f̃3.

After obtaining the fuzzy overall utilities of each act, BDMCSII goes

further and formulates the degrees of preferences among alternatives, the

concept we shall not discuss here in detail. The degrees of preferences among

8Approaches 1 and 2 of Practitioner 4 coincide with each other when there is no loss.

However, approach 2 accounts for ambiguity-seeking when there is loss as in f̃2(s̃4).
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alternatives essentially capture the vagueness of preferences of decision maker

in the fuzzy environment. One can refer to the original paper for a detailed

formulation of vague preferences.

Practitioner 5

Now, suppose Practitioner 5 evaluates the same alternatives under the

same economic conditions S = {s̃1, s̃2, s̃3, s̃4} and he has the same informa-

tion as Practitioner 4. As opposed to Practitioner 4, he has a degree of

reliability (expressed in natural language) of the given information. Specifi-

cally, he is very sure that each of his three actions will yield the same results

as Practitioner 4. He is also sure about the probability assessment of Prac-

titioner 4. The question remains the same.

Clearly, Practitioner 5 has imprecise and at the same time partially true

information (Z-information). Similar to the argument of Practitioner 3, there

are also two approaches of solving the optimal solution for Practitioner 5.

Approach 1: An easy way to proceed with the given problem is to use

BDMCSII and overlook the reliability of the given information in the first

stage. The argument set forth for Practitioner 3 with the illustration of

Shafer (1987) applies here with the same logic it applied for Practitioner 3.

With this approach, the resulting preferences are f̃2 � f̃1 � f̃3/sure.

Approach 2: The second approach uses the concept of Z-number sug-

gested by Zadeh (2011). Formally, a Z-number is defined as an ordered pair

Ẑ = (Ã, B̃) of fuzzy numbers to describe a value of a variable X. Here,

Ã is an imprecise constraint on values of a variable X and B̃ is an impre-

cise estimation of reliability of Ã. One can refer to Aliev, Huseynov, Aliyev

and Alizadeh (2015) for the arithmetic of Z-numbers and to Aliev, Pedrycz,

Kreinovich and Huseynov (2016) for the general theory of decisions (GTD)

on the basis of a Z-number concept. The GTD uses the idea of combined

states argument of BDMCSII and develops a unified decision model which

subsumes most of the well-known decision theories as its special cases includ-

ing BDMCSII. We refer to the original paper of GTD for the details.

The solutions are compared in Table 8. Although we specifically tried

to use similar information in different classes we obtained three different

scenarios out of six possible scenarios. We highlight that practitioners are

subjectively rational in their preference order in each scenario.
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Practitioner Decision Theory Outcome

Practitioner 1 EUT (SEU) f1 � f2 � f3

Practitioner 2 MEU (CEU) f1 � f3 � f2

Practitioner 2 α-MEU (α = 0.7) f1 � f2 � f3

Practitioner 3 (Approach 1) MEU (CEU)/reliability f1 � f3 � f2/[0.7, 0.8]

Practitioner 3 (Approach 2) α-MEU (α = 0.25) f1 � f2 � f3

Practitioner 4 (Approach 2) BDMCSII f2 � f1 � f3

Practitioner 5 (Approach 1) BDMCSII/reliability f2 � f1 � f3/sure

Table 8: Summary of the solutions

4 Paradoxes and Rationality

In modern economic literature, there is a lot of evidence contradicting the

preference of Savage’s axioms as well as the theory itself as a valid represen-

tation of rationality. The evidence ranges from Ellsberg (1961) to Kahneman

and Tversky (1979). However, over the years, the compiled evidence is re-

garded as an irrationality of economic agents while Savage’s axioms retained

its normative ground in economics and finance. Hence, different paradigms

such as efficient market hypothesis and behavioral finance are created. It is

this dogmatic view that we aimed to address in this article using imprecision

and reliability of information and existing decision theories.

It is also worth to note that, decision theory is silent on the issue of dis-

tinctions between rational and irrational beliefs. Simply, beliefs are derived

from observed behavior, while there is no explanation of how the belief itself

is created. There is no account of belief formation process in economic the-

ory. The arguments so far have yielded important implications on the theory

of belief formation suggested by Gilboa, Postlewaite and Schmeidler (2012).

An approach on the basis of imprecision and reliability of information enables

us to judge when a subjectively rational belief obeys the probability calculus

and when it is less structured.

This type of rationality is not the first time introduced to the economics

and finance literature. For example, the famous response of Thaler (1980) to
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Friedman and Savage (1948) billiard player analogy essentially suggests that

acting on the basis of prospect theory may be judged as rational. The flopping

of a fish analogy of Lo (2004) suggests that the same motion (flopping) makes

a fish rational in one environment (underwater) and makes it irrational in

another environment (dry land). The present paper reveals the bigger picture

of these environments.

The main goal set forth in this section is to briefly discuss a possibility

of a more general view of financial markets based on the proposed decision-

theoretic and information-based framework. In what follows, we shall ratio-

nalize some of the existing well-known paradoxes of behavioral finance with

the emphasis on that these rationalizations are the achievements of the used

decision theories not the framework per se.

4.1 Insurance and gambling

Buying both insurance and lottery tickets is a norm rather than an excep-

tion and it is hard to reconcile with rational decision making based on only

probability calculus. Buying insurance means a DM chooses a certainty in

preference to uncertainty while buying a lottery ticket suggests choosing un-

certainty in preference to certainty. Friedman and Savage (1948) suggest an

S-shaped utility function to rationalize this behavior and the approach is

criticized by Markowitz (1952). To see how both, insurance and gambling,

can be rationalized by BDMCSII, consider the following example.

Alice considers to buy fire insurance for her house. She notes a small

loss (insurance premium) under s̃1 (no fire) and a very large gain under s̃2

(fire) if she buys the insurance (f̃1). She also notes a very large loss under

s̃2, while nothing happens under s̃1 if she does not buy the insurance (f̃2).

Probability of fire occurring (P̃ (s̃2)) is very small. The gains and losses of

Alice under different circumstances are summarized in Table 9.

s̃1 (no fire) s̃2 (fire)

f̃1 (buy) a small loss a very large gain

f̃2 (don’t buy) no loss/gain a very large loss

Table 9: Fire Insurance
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Alice also considers to buy a lottery ticket in the hope of winning the

mega jackpot. She notes a very small loss (ticket price) under s̃′1 (not win)

and a very large gain under s̃′2 (win) if she buys a ticket (f̃ ′1). Assume for

simplicity, she feels nothing if she does not buy a ticket (f̃ ′2).9 Probability of

winning (P̃ (s̃′2)) is very small. The bet is summarized in Table 10.

s̃′1 (not win) s̃′2 (win)

f̃ ′1 (buy) a very small loss a very large gain

f̃ ′2 (don’t buy) no loss/gain no loss/gain

Table 10: A lottery ticket

Moreover, probability of her risk-aversion (P̃ (h1)) is approximately 70 % and

she is known to be risk-seeking (h2) when she is not risk-averse (h1).

Indeed, with the given imperfect information, one can follow the steps of

BDMCSII for each case (assign utilities, find FJPs, construct fuzzy-valued

bi-capacities, and aggregate with the generalized Choquet-like aggregation)

and verify that, Alice should not be ashamed of buying both a lottery ticket

and fire insurance at the same time.

4.2 Equity premium puzzle

The equity premium puzzle (first noted by Mehra and Prescott (1985)) refers

to the large difference between the average equity returns and average returns

of a fixed interest bearing bonds. To see how equity premium puzzle can be

rationalized consider the following simple example.

Bob is an (only) investor with an initial wealth of W0 and he can invest in

two assets, a risky stock with an uncertain payoff and a bond with a certain

payoff. The notation is given as follows.

Asset Quantity Price ($) Payoff in s ∈ S
Stock a p Rs

Bond b 1 R

9This can be extended to the case where for example, Alice considers a feeling of regret

for not buying a lottery ticket.
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Further denote π(s) as a finitely additive probability distribution over

state s. The end-of-period wealth is determined as Ws = Rs ·a+R · b. Using

a budget constraint, W0 = p · a+ b, one can get the end-of-period wealth as

Ws = R ·W0 + [Rs −R · p] · a.

First consider Bob as EU maximizer as a benchmark case

U(W1, ...,Ws) =
∑

s∈S πs · u(Ws) =
∑

s∈S πs · u(R ·W0 + [Rs −R · p] · a).

Without loss of generality (w.l.o.g), for an equilibrium stock price of p∗0 with

a total investment in stock, a > 0, and bonds, b = 0, Bob maximizes his

total utility

U ′(a) =
∑

s∈S πs · [Rs −R · p∗0] · u′(Rs · a) = 0.

The equilibrium condition of the benchmark case is solved for the equilibrium

stock price p∗0 explicitly;

p∗0 =

∑
s∈S πs ·Rs · u′(Rs · a)

R ·
∑

s∈S πs · u′(Rs · a)
. (13)

The benchmark equity premium is therefore the ratio of τ(p∗0) =
∑

s∈S π(s) ·
Rs/(p

∗
0 ·R).

Now suppose, preferences of Bob are represented by α-MEU

U(W1, ...,Ws) = α ·min{u(W1), ..., u(Ws)}+ (1− α) ·max{u(W1, ..., u(Ws)},

where α denotes ambiguity-aversion. Denote R̄ = max{R1, ..., Rs} and R =

min{R1, ..., Rs}. Then, for a > 0, the total utility of investing in “a” amount

of stock is

U(a) = α · u(R ·W0 + (R−R · p) · a) + (1− α) · u(R ·W0 + (R̄−R · p) · a).

W.l.o.g, for an equilibrium stock price of p∗ with a total investment in stock,

a > 0, and bonds, b = 0, Bob maximizes his total utility

U ′(a) = α · u′(R · a) · (R−R · p∗) + (1− α) · u′(R̄ · a) · (R̄−R · p∗) = 0.

Again, the equilibrium condition is solved for the equilibrium stock price p∗

explicitly;
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p∗ =
α · u′(R · a)R + (1− α) · u′(R̄ · a)R̄

α ·R[u′(R · a)− u′(R̄ · a)] + u′(R̄ · a) ·R
. (14)

The equity premium is the ratio of τ(p∗) =
∑

s∈S π(s) · Rs/(p
∗ · R). Now,

consider first the case where Bob is a risk neutral investor, u′(·) = c.

Case 1(a): The equity premium will be the higher the more ambiguity-

averse the investor is.

It suffices to show that the equilibrium stock price decreases when ambiguity-

aversion α increases due to an inverse relationship between the equity pre-

mium and the stock price. For u′(·) = c one gets a simplified equilibrium

stock price as

p∗ =
α · (R− R̄) + R̄

R
. (15)

Since R < R̄, the equilibrium stock price will be the lower and the equity

premium will be the higher the more ambiguity averse the investor is.

Case 1(b): For α > 1/2, a sufficient condition for an equity premium

τ(p∗) exceeding the benchmark τ(p∗0) is an average return exceeding the aver-

age return of the minimum and maximum return,
(
R + R̄

)
/2 < Eπ[Rs].

For u′(·) = c one gets a simplified benchmark stock price as

p∗0 =

∑
s∈S πs ·Rs

R
=
Eπ[Rs]

R
. (16)

From Eq.(13) and Eq.(14) we get,

p∗ − p∗0 =
α · (R− R̄) + R̄− Eπ[Rs]

R
,

p∗ = p∗0 +
α · (R− R̄) + R̄− Eπ[Rs]

R

= p∗0 +
1

R
·
[
α ·R + (1− α) · R̄− Eπ[Rs]

]
.

For p∗ < p∗0 and τ(p∗) > τ(p∗0) to hold, α ·R+ (1− α) · R̄ < Eπ[Rs] must be

satisfied. Then, for α = 1/2 sufficient condition for p∗ < p∗0 and τ(p∗) > τ(p∗0)

to hold is
(
R+ R̄

)
/2 < Eπ[Rs]. This is also a sufficient condition for α > 1/2

following the case 1(a).

Case 1(c): For α = 1 (full ambiguity-aversion), τ(p∗) exceeds the bench-

mark τ(p∗0).
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For α = 1, p∗ = R/R and it is less than p∗0 = Eπ[Rs]/R. Then, τ(p∗) > τ(p∗0)

follows immediately.

Now consider the second case where Bob is a risk-averse investor with a

strictly decreasing marginal utility function u′(·).
Case 2: A risk-averse investor with full ambiguity-aversion (α = 1) re-

quires an equity premium τ(p∗) exceeding the benchmark equity premium

τ(p∗0) where an investor is risk-averse with no ambiguity attitude.

For α = 1, p∗ = R/R and p∗0 = (1/R) ·
(∑

s∈S πs · Rs · u′(Rs · a)/
∑

s∈S πs ·
u′(Rs · a)

)
. Since

(∑
s∈S πs · Rs · u′(Rs · a)/

∑
s∈S πs · u′(Rs · a)

)
> R, p∗0

exceeds p∗ and τ(p∗) exceeds the benchmark equity premium τ(p∗0).

With the example of Bob, we have only added an ambiguity attitude

of the DM in the sense of Ghirardato et al. (2004) to his risk attitude and

confirmed that ambiguity-aversion requires an incremental equity premium.

In this context, any pessimistic attitude adds an incremental requirement for

the equity premium and completes the pieces of the puzzle (see Chateauneuf,

Eichberger and Grant (2007) for proof of the same propositions with neo-

additive capacities, and Epstein and Schneider (2008) for additional insights

on ambiguity premia in a financial context).

So deeply rooted is our commitment to EUT and SEU, that we regard

such patterns as paradoxical, or irrational. As we move away from the ground

level of the information many of the paradoxes, it turns out, are rational-

ized by more general decision theories. The idea of a consistent generalized

decision framework in some such way has been “in the air” for decades.

4.3 Fuzzy representation of EMH and behavioral fi-

nance

The key to understanding the main difference between efficient market hy-

pothesis and behavioral finance comes down to the probability and crisp sets

vs. possibility and fuzzy sets. With the Table 1 representation, they sit on

the two extreme sides of the table. Probability calculus lies in the foundation

of EMH, while fuzzy set theory lies in the foundation of behavioral finance.10

10Peters (1996) outlines how fuzzy membership functions can be used to understand

some of the prominent behavioral biases.
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Since fuzzy sets are the generalized version of crisp sets, a generalization of

financial market problem on the basis of fuzzy logic makes perfect sense.

In view of the presented arguments, we develop the following conjectures

and their validities can be tested. Unfortunately, we have not been able to

obtain a general proof of any of these propositions so far. Critical reasoning

and casual empiricism are the only pillars of the proposed conjectures.

Conjecture 1. Different opinions are the results of imprecision of the in-

formation in financial markets.

Fact vs. opinion argument and a simple mind experiment similar to

Zadeh’s balls-in-box problem presented at the beginning help to understand

the logic behind conjecture 1. The idea here is too simple to digest. If the

market participants receive fully-reliable simple numerical information (pure

fact) then it is no exaggeration to say there is a homogeneous belief in the

market. However, if the received information is fuzzy (e.g: medium growth)

and partially true (e.g: sure), different perceptions of the information lead

to different opinions. Zadeh’s balls-in-box problem is the essence of the first

conjecture.

Conjecture 2. Increasing imprecision of the information leads to “behav-

ioral biases” in decision-making.

Conjecture 2 is the natural extension of conjecture 1. Also, it should be

emphasized that most of the biases, if not all, are rationalized toward the

right side of the Table 1. The “behavioral biases” in the conjecture refer to

the biases in a traditional sense.

Conjecture 3. Increased imprecision of the aggregate information of the fi-

nancial markets leads to more “behavioral anomalies”11 observed in the mar-

ket in a traditional sense.

11In the current framework, we are not in favor of calling them as anomalies as we

argue that when the imprecision of the information increases, behavioral factors becomes

one’s only strength to play with. All of these anomalies are called anomalies because it

contradicts traditional finance and it cannot be explained (or odd to explain) with the

existing probabilistic tools.
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In aggregate, conjecture 2 leads to conjecture 3. We duly note the argu-

ment of Friedman (1953) and De Long, Shleifer, Summers and Waldmann

(1990) response. However, conjecture 3 is slightly different from both of the

arguments. Here we do not conjecture the survival of noise traders in finan-

cial markets. The conjecture is rather focusing on the imperfect information

that is received by everyone and perceived differently. This essentially shows

the room for behavioral finance increases as we move from the left to the

right on Table 1.

These conjectures elucidates a general view of financial markets that is

radically different from the presented arguments of the two main paradigms

of finance. The belief formation processes at the two edges of the information

classes separately support EMH and behavioral finance. Therefore, efficient

and inefficient markets supported by the fundamentally different beliefs have

a certain truthness degree at a point in time. More specifically, a general

view of financial markets include efficient and inefficient markets as its special

cases.

It seems very natural to us that the asset prices oscillate between (P’) and

(P) illustrated in Figure 1 leaving efficient market hypothesis, undervaluation

and overvaluation as special cases of more generalized asset price dynamics

of financial markets without sharp boundaries. Figure 1 subsumes 3 specific

fuzzy sets, namely “undervalued market”, “efficient market” and “overvalued

market”. The abscissa axis shows the overall price level of the market and the

ordinate axis shows the membership functions of fuzzy sets ranging between

“0” and “1”. “0” membership to the specific set means certain price level

is not the member of the set while “1” shows certain price level fully belong

to that specific set. For example, at P’ and P the degree of efficiency of the

market is “0” and, the degree of undervaluation is “1” at P’ and the degree

of overvaluation is “1” at P. At a point in time, for example at P*, the degree

of efficiency is 0.7 and the degree of undervaluation is 0.3. It is still far from

clear what measures to be used as a proxy of imprecision and reliability of

the aggregate information in financial markets and approximate the degree

of membership of the proposed fuzzy representation of EMH and behavioral

finance.
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Figure 1: Representation of financial markets with fuzzy memberships

There are two main reasons that this direction to be distinguished from both

paradigms. Firstly, the existence of efficient markets is not entirely excluded

though it becomes an utopic concept (see Grossman and Stiglitz (1980) on the

impossibility of efficient markets). Also, behavioral finance regards probability

based decision-techniques as its superior though the subjective rationality pre-

sented in this paper takes behavioral factors into account when the information of

the DM becomes imprecise and partially reliable.

5 Concluding Remarks

The exposition of a more general view of financial markets in the present paper

shows how the existing decision theory and information science literature can be

used to better understand financial markets. The main points which we have

attempted to convey should now be clear. Classical probability theory favors

EMH and rules out the possible room for behavioral finance. Individual behavioral

“biases” and aggregate market “anomalies” mainly originate from imprecision and

reliability attribute of information. Decision theories built on the foundations of a

set of probabilities and in a more general setting, fuzzy set theory can be used as

a complement to numeric probability based decision theories to rationalize most,

if not all, of the existing behavioral “anomalies”. Consequently, it will be essential

to explore a more general view of financial markets by taking into account the

main arguments of the present paper.
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transform and interaction’, Fuzzy Sets and Systems 151(2), 211–236.

Grabisch, M. and Labreuche, C. (2005b), ‘Bi-capacities—ii: The Choquet integral’,

Fuzzy Sets and Systems 151(2), 237–259.

Grabisch, M., Sugeno, M. and Murofushi, T. (2000), Fuzzy measures and integrals:

Theory and applications, Springer-Verlag New York.

Grossman, S. J. and Stiglitz, J. E. (1980), ‘On the impossibility of informationally

efficient markets’, American Economic Review 70(3), 393–408.

38



Kahneman, D. and Tversky, A. (1979), ‘Prospect theory: An analysis of decision

under risk’, Econometrica 47(2), 263–291.

Keynes, J. M. (1921), A treatise on probability, Cambridge University Press.

Klir, G. J. (2005), Uncertainty and information: Foundations of generalized infor-

mation theory, John Wiley & Sons.

Klir, G. J. and Yuan, B. (1995), Fuzzy sets and fuzzy logic, Prentice Hall New

Jersey.

Knight, F. H. (1921), Risk uncertainty and profit, Houghton Mifflin, Boston.

Labreuche, C. and Grabisch, M. (2006), ‘Generalized Choquet-like aggregation

functions for handling bipolar scales’, European Journal of Operational Re-

search 172(3), 931–955.

Lo, A. W. (2004), ‘The adaptive markets hypothesis: Market efficiency from an

evolutionary perspective’, Journal of Portfolio Management 30(5), 15–29.

Mandelbrot, B. (1963), ‘The variation of certain speculative prices’, Journal of

Business 36(4), 394–419.

Markowitz, H. (1952), ‘The utility of wealth’, Journal of Political Economy

60(2), 151–158.

Mehra, R. and Prescott, E. C. (1985), ‘The equity premium: A puzzle’, Journal

of Monetary Economics 15(2), 145–161.

Osborne, M. F. M. (1959), ‘Brownian motion in the stock market’, Operations

Research 7(2), 145–173.

Peters, E. E. (1996), Chaos and order in the capital markets: A new view of cycles,

prices, and market volatility, John Wiley & Sons.

Peters, E. E. (2003), ‘Simple and complex market inefficiencies: integrating ef-

ficient markets, behavioral finance, and complexity’, Journal of Behavioral

Finance 4(4), 225–233.

Rubinstein, M. (2001), ‘Rational markets: yes or no? the affirmative case’, Finan-

cial Analysts Journal 57(3), 15–29.

39



Samuelson, P. A. (1965), ‘Proof that properly anticipated prices fluctuate ran-

domly’, Industrial Management Review 6(2), 41–49.

Savage, L. J. (1954), The foundations of statistics., Wiley, New York [2nd ed. 1972

(Dover, New York)].

Schmeidler, D. (1986), ‘Integral representation without additivity’, Proceedings of

the American Mathematical Society 97(2), 255–261.

Schmeidler, D. (1989), ‘Subjective probability and expected utility without addi-

tivity’, Econometrica 57(3), 571–587.

Shackle, G. (1949), Expectation in economics, Gibson Press, London [2nd ed. 1952

(Cambridge University Press)].

Shafer, G. (1987), ‘Probability judgment in artificial intelligence and expert sys-

tems’, Statistical Science 2(1), 3–16.

Shefrin, H. (2000), Beyond greed and fear: Understanding behavioral finance and

the psychology of investing, Oxford University Press.

Shiller, R. J. (1979), ‘The volatility of long-term interest rates and expectations

models of the term structure’, Journal of Political Economy 87(6), 1190–1219.

Shiller, R. J. (1981), ‘Do stock prices move too much to be justified by subsequent

changes in dividends?’, American Economic Review 71(3), 421–436.

Thaler, R. (1980), ‘Toward a positive theory of consumer choice’, Journal of Eco-

nomic Behavior & Organization 1(1), 39–60.

Tversky, A. and Kahneman, D. (1992), ‘Advances in prospect theory: Cumulative

representation of uncertainty’, Journal of Risk and Uncertainty 5(4), 297–323.

Von Neumann, J. and Morgenstern, O. (1944), Theory of games and economic

behavior., Princeton University Press.

Wise, B. P. and Henrion, M. (1985), ‘A framework for comparing uncertain infer-

ence systems to probability’, Proceedings of the Annual Conference on Un-

certainty in Artificial Intelligence (UAI-85) 1, 99–108.

Zadeh, L. A. (1965), ‘Fuzzy sets’, Information and Control 8(3), 338–353.

40



Zadeh, L. A. (1978), ‘Fuzzy sets as a basis for a theory of possibility’, Fuzzy sets

and systems 1(1), 3–28.

Zadeh, L. A. (2005), ‘Toward a generalized theory of uncertainty (GTU)—-an

outline’, Information sciences 172(1), 1–40.

Zadeh, L. A. (2011), ‘A note on Z-numbers’, Information Sciences 181(14), 2923–

2932.

41


	The Argument
	Arguments of ‘Efficient Market Hypothesis’
	Arguments of ‘Behavioral Finance’

	Preliminaries
	Broad Concept of Subjective Rationality
	Paradoxes and Rationality
	Insurance and gambling
	Equity premium puzzle
	Fuzzy representation of EMH and behavioral finance

	Concluding Remarks



