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1. INTRODUCTION

The use of fundamental and technical analysis by financial market professionals is well doc-
umente(ﬂ Empirical evidence suggests that investors and fund managers use combinations of
fixed and switching strategies based on fundamental and technical analysis when making in-
vestment decisions. Recent laboratory experiments (e.g. Horatreds 2005 and Anufriev
and Hommes, 2012) provide further evidence on that agents use simple “rule of thumb” trading
strategies and are able to coordinate on a common prediction rule, showing that heterogeneity
in expectations is crucial to describe individual forecasting and aggregate price behavior. In
this paper we test a simple asset pricing model of heterogeneous agents using the daily DAX
30 indeE from 1975 to 2007. We show that the market is dominated by the adaptive investors
who constantly switch between fundamental and trend following strategies, although some in-
vestors never change their strategies over the time. The results provide a strong support to the
empirical evidence and laboratory experiments. Consequently, we provide further insights into
the explanatory power of heterogeneous agent models to financial markets.

This paper is largely motivated by the recent literature on heterogeneity and bounded rational-
ity. Due to limited information and endogenous uncertainty of the state of the world, investors
are prevented from forming and solving life-time optimization problems in favor of more sim-
ple reasoning and rules of thumb (Shefrin, 2005). In general, investors are boundedly ratio-
nal by making optimal decisions based on their limited information and expectations (Sargent,
1993). There is a growing evidence on investors’ heterogeneity and bounded rationality, which
has profound consequences for the interpretation of empirical evidence and the formulation of
economic policy (Heckman, 2001). Research into asset pricing and financial market dynam-
ics resulting from bounded rationality and interaction of adaptively heterogeneous traders has
flourished over the last three decades and various heterogeneous agent models (HAMs) have

been developeﬂl.‘l’o explore the role of agents’ heterogeneity in financial markets, the market

Isee, for example, Allen and Taylor (1990), Taylor and Allen (1992), Menkhoff (1998) and Cheguaig(2004)

for foreign exchange rate markets and Menkhoff (2010) for fund managers.

2The DAX, Deutscher Aktienindex (German stock index), tracks the segment of the largest and most im-
portant companies, known as blue chips, on the German equities market. It contains the shares of the 30
largest and most liquid companies admitted to the Frankfurt Stock Exchange in the Prime Standard seg-
ment. The DAX represents about 80% of the aggregate prime standards market capttpSéevw.dax-
indices.com/EN/index.aspx?pagelD=1

3See, for example, Frankel and Froot (1990), Day and Huang (1990), Chiarella (1992), Lux (1995, 1998), Brock
and Hommes (1998), Lux and Marchesi (1999), Hommes (2001), Chen and Yeh (2002), Farmer and Joshi (2002),
Chiarellaet al.(2002), Chiarella and He (2002, 2003), and De Grauwe and Grimaldi (2006).
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dominance of different trading strategies represented by different types of traders plays a central
role in market price behavior. It has been modelled either implicitly by examining their relative
activity impacts, such as Day and Huang (1990) and Chiarella (1992) in early literature, or ex-
plicitly by examining their market fractions, such as Lux (1995), Brock and Hommes (1998),
and Dieci, Foroni, Gardini and He (2006). The HAMs have successfully explained market
booms, crashes, and deviations of the market price from the fundamental price. They are also
able to replicate various stylized facts (including excess volatility, excess skewness, fat tails,
volatility clustering and power-law behavior in return volatility) observed in financial maerts.
The promising perspectives of the HAMs have motivated further empirical studies. Focusing
on the model of Dieci et al. (2006), which allows for agents either having fixed strategies or
switching their strategies based on past performance over time, we extend the model to include
noise traders to rationalize the market noise in the model, our main contribution is then to sys-
tematically calibrate a large number of structural parameters of the model and subsequently
perform series of formal econometric tests showing that the calibrated model is well able to
replicate a large number of stylized facts.

This paper is closely related to a growing literature on the calibration and estimation of the
HAMs in which the heterogeneity has been modeled through the well-known fundamentalists
and chartists approach. These models have been successfully used to empirically explain spec-
ulation and bubble-like behavior in financial marlga@espite the success such as Franke and
Westerhoff (2011, 2012), econometric analysis and estimation of HAMs are still challenging
tasks. The difficulties of estimation come from the complexity of the HAMs, together with
(typically) many parameters, which makes verification of identification rather difficult, and thus
proving consistency of estimation troublesome. Quite possibly a HAM might be misspecified,
so that likelihood and/or moments based methods might produce poor results. But this situation
is not alone when we look at literatures in other areas of economics and finance. In the real busi-

ness cycles literature (Kydland and Prescott, 1982) and equity premium puzzle literature (Mehra

“We refer the reader to Hommes (2006), LeBaron (2006), Chiagélél (2009), Lux (2008), and Cheret al.

(2012) for surveys of recent developments in this literature.

SSee, for instance, earlier works by Vigfusson (1997), Baak (1999), Chavas (2000), and for stock markets (Boswijk
et al, 2007; Franke, 2009; Franke and Westerhoff, 2011, 2012; Chiagtl# 2012, 2014; He and Li, 2015),
foreign exchange markets (Westerhoff and Reitz, 2003; De @baf 2010; ter Elleret al, 2013), mutual funds
(Goldbaum and Mizrach, 2008), option markets (Frigisl, 2010), oil markets (ter Ellen and Zwinkels, 2010),

and sovereign European CDS spreads (Chiasgli, 2015). Also, HAMs have been estimated with contagious
interpersonal communication by Gilli and Winker (2003), Alfaraataal. (2005), Lux (2008, 2012), and other

works reviewed in Liet al. (2010) and Cheeet al. (2012).
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and Prescott, 1985), we face with the very similar problems, and the models are assessed by cal-
ibration method. For example, in Kydland and Prescott (1982), the calibration consists in two
steps. First, structural parameters are calibrated to values in previous empirical studies and to
match long run average values. Second, the verification is implemented by judging the ade-
guacy of the model to reproduce well chosen stylized facts, the parameters asides from those in
the first step are treated as free parameters, their values are then chosen to minimize the distance
between the well chosen stylized facts of the U.S. economy and the corresponding ones of the
model. The calibration methodology is widely used in areas including Dynamic Stochastic Gen-
eral Equilibrium (DSGE) models. It does not consider the identification problem, precision of
estimates and the goodness of fit are provided by the distance between the model and the data.
It causes a huge amount of debate comparing with the usual estimation methodology where
it attempts to find the parameters that lead to the best statistical fit by Maximum Likelihood
(ML), Generalized Method of Moments (GMM), Method of Simulated Moments (MSM), or
Efficient Method of Moments (EMM), and the performance of the model is examined through
specification and goodness of fit t£t§he calibration and estimation are closest in spirit to
Geweke (2006) classification of weak and strong econometric interpretation. The advantage
of weak econometric interpretation is that the estimators are often moreH'ﬁ’nmstthe full
information estimators. In addition, it allows the researcher to focus on the characteristics in
the data for which the model (which is necessarily an abstraction of reality) is most relevant.
The attractions of strong econometric interpretation are clear, when successful, it provides a full
characterisation of the data generating process and allows for proper specification testing. In
existing works on estimation of HAMs, Franke (2009) applies MSM to a small model of Man-
zan and Westerhoff (2005) successfully. Franke and Westerhoff (2012) further develop model
comparison method. The methods of Gilli and Winker (2003), Winker and Gilli (200331 Li

al. (2010) and He and Li (2015) belong to the weak econometric interpretation. HAMs are
still in its infancy and they are very likely be misspecified. It is from this point we argue that

this leaves room for weak econometric interpretation, it is an alternative to other existing ones,

5The debate are best summarized by Canova (1994), Hansen and Heckman (1996), Kydland and Prescott (1991,
1996), and Dridiet al. (2007).
’see, also in Diebolét al. (1998) and Schorfheide (2000).
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and it is also usable for more complicated models. It can be interpreted in terms of consistent
estimation of the parameter of interest (Dratial, 2000

In this paper, following Liet al. (2010) and He and Li (2015) we take the weak economet-
ric interpretation based on the power-law decay patterns of the autocorrelation of returns, the
squared returns and the absolute returns for the DAX 30 stock market daily closing price in-
dex. We do this by choosing the interesting parameters in the whole model class that minimize
the distance between particular actual data based autocorrelations and HAMs based autocorre-
lations. By conducting econometric analysis via Monte Carlo simulations, we show that the
autocorrelation patterns, the estimates of the power-law decay indices, (FI)\GARCH parame-
ters, and tail index of the model match closely to the corresponding estimates for the DAX 30.
Consequently, our results provide a strong support to the empirical evidence, including the pop-
ularity of fundamental and technical analysis, and boundedly rational and adaptive behavior of
investors in financial markets.

The paper is structured as follows. Section 2 extends the adaptive asset pricing model de-
veloped in Dieci et al. (2006). Sectidn 3 calibrates the model to characterize the power-law
behavior of the DAX 30. Based on the calibrated parameters of the model, we use Monte Carlo
simulations to examine the effectiveness of the calibration in generating the autocorrelation
patterns, the decay indices of the power-law, and the tail behavior. SECtion 4 presents an expla-
nation on the generating mechanism of the power-law behavior of the model. We also conduct
formal tests to see how well the calibrated model is able to describe the characteristics of the

DAX 30 and how the model fits better than a pure switching model. Sddtion 5 concludes.

2. THE MODEL

The use of technical analysis by financial market professionals is well documented. Empiri-
cal evidence (Allen and Taylor, 1990 and Taylor and Allen, 1992) suggests that the proportions
of agents relying on particular strategies such as technical and fundamental analysis may vary
over time, although there are certaionfidentagents who do not change their strategy over

time. Recently, Menkhoff (2010) analyzes survey evidence from 692 fund managers in five

8The weak econometric interpretation is closely linked to the indirect inference methodology proposed by Gourier-
oux et al. (1993), which has been extended in Dradial. (2000, 2007). This methodology could gather both the
advantages of the weak and strong econometric interpretation to consistently estimate some of the parameters of
interests despite of model misspecification. Exploring on how to apply this methodology to HAMs might be a way
forward in the future research.
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countries. He finds that the share of fund managers that put at least some importance on tech-
nical analysis is very large. Though technical analysis does not dominate the decision-making
of fund managers in general, but at a forecasting horizon of weeks, Menkhoff (2010) finds that
technical analysis is the most important form of analysis and is thus more important than funda-
mental analysis, which is in line with findings from foreign exchange in Menkhoff (1998) and
Cheunget al. (2004). Menkhoff (2010) strongly supports the view that heterogeneous agents
possess different sets of information or different beliefs about market processes and the use of
technical analysis seems to react to this view with trend-following behavior (and also by relying
more strongly on momentum and contrarian investment strategies), believing that psychologi-
cal factors are important and herding is beneficial. This view has also been shared by recent
laboratory experiments in Hommesal. (2005) and Anufriev and Hommes (2012). They show

that agents using simple “rule of thumb” trading strategies are able to coordinate on a com-
mon prediction rule. Therefore heterogeneity in expectations is crucial to describe individual
forecasting and aggregate price behavior.

Based on the empirical evidence, Dieci et al. (2006) extend early HAMs of Brock and
Hommes (1998) by considering the case that market fractions have both fixed and adaptive
switching components. In each trading period agents are assumed to be distributed among two
groups, relying upon different predictors (or strategies, or behavioral rules), fundamental traders
(or fundamentalists) and trend followers (or chartists). The market fractions in a given period
are partially determined by the past performance of the strategies over time and partially fixed.
In other words, a switching component is introduced to charactadaptively rational behav-
ior of agents who select different strategies over time according to a performance measure, and
a constant component of agents is used to represent agents who are confident and stay with
their strategies over time. While the fixed fraction component expressesatiet moodthe
switching fraction component captures the effeceéwblutionary adaptionThe focus of Dieci
et al. (2006) is to explore the complicated price dynamics of the corresponding nonlinear de-
terministic model. Apart from the fundamentalists and trend followers, we also consider noise
traders who play an important role in financial market (see, for example, Delioaig1990).

In the following, we extend the model of Dieci et al. (2006) to include noise traders and show

that the resulting model is actually the same as the model of Dieci et al. (2006).



;
Consider an asset pricing model with one risky asset and one risk free asset that is assumed
to be perfectly elastically supplied at gross retdtn= 1 + r/K, wherer is the constant
risk free rate per annum and is the frequency of trading period per year. ete the (ex
dividend) price per share of the risky asset &} the stochastic dividend process of the risky
asset at time. There are three types of traders (or investors/agents), fundamental traders (or
fundamentalists), trend followers (or chartists) and noise traders, denoted by, %/pad 3
traders respectively. L&D, .(i = 1,2, 3) be their market fractions at time respectively. We
assume that there is a fixed fraction of noise traders, denotegl. ®ymong1 — n3, the market
fractions of the fundamentalists and trend followers have fixed and time varying components.
Denote byn; andn, the fixed proportions of fundamentalists and trend followers amengs,
respectively. Theril — n3)(ny + n9) represents the proportion of traders who stay with their
strategies over time, whil@ — n3)[1 — (n; + n2)] is the proportion of traders who may switch
between the two types. Among the “switching” traders, we denptendny; = 1 — ny, the
proportions of fundamentalists and trend followers at timeespectively. It follows that the

market fractiong(Q); ;, Q2.+, Q3 ) at timet are expressed by

Q1+ = (1—ng)[m+(1—n1—ng)n1 4, Q21 = (1—n3)[no+(1—ny—ng)ngyl, Q3 = ns.

Denoteny = ny + ng, mg = (ny — na2)/ne andm, = n,; — na. Then the market fractions at

timet can be rewritten as

Qi = 3(1—mng) [ng (14 mg) + (1 —no) (14 my)],
Qo = 2(1—n3) [no (1 —mo) + (1 —ng) (1 —my)], (2.1)
Q3t =mn3

Let R, 1 := prr1 + Diy1 — Rp, be the excess return per shargint + 1). Forh = 1,2,
let £, andV},; be the conditional expectation and variance of typtaders. LetiV,; be
investor’s wealth at time and z;,, the number of shares of the risky asset held by the investor
from¢ tot + 1. Then the wealth of investor of typeatt + 1 is given byW), ;11 = RW),, +
znt(pev1 + Div1 — Rpe). Assume that traders maximize the expected utility of wealth function
Un(W) = —exp(—a,W), whereq, is the risk aversion coefficient of typetraders. Then,
under the standard conditional normality assumption, the demgnof a typeh trader on the

risky asset is given by, ; = Ep, +(Riv1)/(anVii(Res1))-



Assume the demand of the noise traders is giveg,by N(0,07), which is an i.i.d. ran-
dom disturbance. With zero supply of outside shares, the population weighted average excess

demandZ, ; at timet is given by

Zer = Qi 214 + Qoy 224 + n3és.

Following Chiarella and He (2003), the market price in each trading period is determined by
a market makgrwho adjusts the price as a function of the excess demand. The market maker
takes a long position whe#, ; < 0 and a short position whe#i.; > 0. The market price is
adjusted according to

DPir1 = Pt + Ay, (2.2)

where)\ denotes the speed of price adjustment of the market maker. Deretd — n3)\ and

os = Angoe. Then equatior (212) becomes
Per1 = Dt + pley + 0r, (2.3)

whereZ.; = q14 214 + @24 22, @ndd; ~ N(0,03) with ¢;; = Q;,/(1 — n3) fori = 1,2. The
price equation(2]3) is exactly the model developed in Dieci et al. (2006).

We now describe briefly the heterogeneous beliefs of the fundamentalists and trend followers
and the adaptive switching mechanism. This part is the same as in Dieci et al. (2006) and He
and Li (2008). Fundamental traders are assumed to have some information on the fundamental
valuepy , of the risky asset at timé They believe that the stock price may be driven away
from the fundamental price in a short run, but it will eventually return to the fundamental value
in a long-run. Thus the conditional mean and variance of the price for the fundamental traders

are assumed to follow

Eiy (pey1) = pe + (1 — )Py — p1)s Vig (pes1) = o3, (2.4)

wheres? is a constant variance on the price. The speed of adjustment towards the fundamental
price is represented byl — «), where0 < o < 1. Anincrease imx may thus indicate less
confidence on the convergence to the fundamental price, leading to a slower adjustment.
‘Different from the Walrasian equilibrium price mechanism used in Boseiij&l. (2007), we use market maker

partial equilibrium mechanism for the convenience of calibration. The market maker mechanism has often been
used in HAMs for its simplicity and convenience.
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Unlike the fundamental traders, trend followers are assumed to extrapolate the latest observed
price deviation from a long run sample mean price. More precisely, their conditional mean and

variance are assumed to follow

Esy (pes1) = pr + 7 (pr — we) Vou (pes1) = U% + by, (2.5)

wherey > 0 measures the extrapolation from the tremdandv, are sample mean and variance,

respectively, which follow
up = 0ug—1 + (1 —0) py, V= 6v1 + 0 (1 —0) (pe — Ut71)2 )

representing limiting processes of geometric decay processes when the memory lag tends to
infinity. Hereb, > 0 measures the sensitivity to the sample variancedand0, 1) measures
the geometric decay rate. Note that a constant variance is assumed for the fundamentalists who
believe the mean reverting of the market price to the fundamental price; while a time-varying
component of the variance for the trend followers reflects the extra risk they take by chasing the
trend.

We now specify how traders compute the conditional variance of the dividepdand of
the excess retur®;,; over the trading period. For simplicity we assume that traders share
homogeneous belief about the dividend process and that the trading period diidiesnd.d.
and normally distributed with meah and variancer?,. The common estimate of the variance
of the dividend ¢%) is assumed proportional to the variance of the fundamental price, with no
correlation between price and dividend. It follows that traders’ conditional variances of the ex-
cess return can be estima@adsvl,t (Rev1) = (1 +7r?)o? andVo, (Riy ) = o3 (1 + 1% + buy),

whereb = by/0?. Denote byp* = D/(R — 1) = (K/r)D the long-run fundamental price.

Owith a geometric decaying probability distributiofi — §){1,4,42,6%,---} over the historical prices
{pt,pt—1,pt—2,pt—3, - , }, ux andv; are the corresponding sample mean and variance. See He (2003) for a
detailed discussion on the process.

1 The long-run fundamental value is given py = (K D)/r, where K D is the average annual dividend. Let

op be the annual volatility of the price whereo represents the annual volatility ©fdollar invested in the risky
asset. Under independent price increments, the trading period variance of the price can be estimated as
(p*0)2 /K. Denote byD 4 ando?,, the annual dividend and its variance and assume an approximate relationship
D, = rp between annual dividend and price. Then one géfs = r*(op*)* and therefore?, = 07, /K =
r?(op*)?/K = r?0?. Assuming zero correlation between price and dividend at trading period frequency, one then
obtainVl,t (Rt+1) = (1 + 7“2) 0’% anqu (Rt+1) = 0‘%(1 + T2) + bavy.
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Using (2.4) and(2]5), it turns out that traders’ optimal demands are determined by

(a—1) (pt —p;k+1) —(R—=1)(p: —p") _ (pe —ue) — (R—=1) (pr — p*)
Z1,t 2 2 ) 2t = 2 2 .
a; (14 r?) o7 asof (1412 + buy)
(2.6)
Denote by, ¢+, the realized profit, or excess return, betweemdt + 1 by traders of type
h, Thi+1 = 2nt(Pes1 + Diy1 — Rpr) = Whn — RW,,, for h = 1,2. Following Brock and
Hommes (1997, 1998), the proportion of “switching” traders at timel is determined by

. _ exp [5 (7Th,t+1)]
hyt4+1 Yo exp [B(m41)]

where parametes is theintensity of choiceneasuring the switching sensitivity of the popula-

h=1,2,

tion of adaptively rational traders to the better profitable strategy. Togethefwith (2.1) the market

fractions and asset price dynamics are determined by the following random discrete-time dy-

namic syste
Pey1 = P+ Qs 210 + ot 224) + O, 5 ~ N(0,03), (2.7)
up = ouy—q + (1 —9) py, (2.8)
v =001 +6(1=0)(p—u1)?, (2.9)
m; = tanh {g (z14-1 — 224-1) (Pt + Dy — Rpt_l)} , (2.10)
D, =D + opuv,, v, ~ N(0,1), (2.11)

wherez; ; andz,, are given by[(2)6). The fundamental price is assumed to follow a random
walk, such th

2

g
D1 =D; eXp(—ge + Oc€rr1), e ~N(0,1), oe >0, po=p">0(2.12)

whereg, is independent of the noisy demand procgsd he corresponding deterministic model

can exhibit complicated price dynamics, which help us to understand the underlying mechanism

?Here the hyperbolic functiomnh(z) is defined bytanh(z) = (e* — e=*)/(e® + e~%).

BThe specification of the fundamental price proces$in {2.12) is to make sure that there is no significant ACs
in returns, absolute returns and squared returns in the fundamental price. Since the focus of the paper is on the
characteristics of returns, we also choose the fundamental price pygicdefined in equation (2.12) to have an
expected mean value of zero. The long-run fundamental yélee (K D) /r defined in Footnote11 only indicates

a reference long-run fundamental value, which is chosen as the initial value of the fundamental price process.
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of the power-law behavior of the stochastic model. We refer the reader to &iat(2006) for

the complex price dynamics and He and Li (2007) for a detailed discussion on the mechanism.

3. ESTIMATION OF THE POWER-LAW BEHAVIOR IN THE DAX 30

Econometric analysis, especially estimation, of HAMs is still a challenging task. In general,
the difficulties of estimation come from the complexity of the HAMs, together with (typically)
many parameters, which makes verification of identification rather difficult, and thus proving
consistency of estimation troublesome, as we have discussed in the introduction. For recent at-
tempts to estimate HAMs, the identification problem is typically circumvented by focussing on
a relatively simple HAMs, or by estimating a few key parameters only. For example, Boswijk
et al. (2007) derive a reduced and simplified Brock and Hommes (1997, 1998) type model
and estimate it by using the nonlinear least square method; Alfaaaab (2005) estimate a
simplified herding model by the maximum likelihood method; Amilon (2008) estimates two
specifications of the extended Brock and Hommes switching models by using the efficient
method of moments and maximum likelihood method; Franke (2009) applies the method of
simulated moments to a model developed by Manzan and Westerhoff (2005); Franke and West-
erhoff (2012) use the same method to estimate a structural stochastic volatility HAM and show
a strong herding component by conducting a model contest. Although a good progress seems
to be made in estimating HAMs, even if consistent estimation was possible, the likely heav-
ily nonlinear relationship between observables and unknown parameters to be estimated might
seriously complicate estimatiof.

This section provides a calibration of the model(2[7)-(R.12) to characterize the power-law
behavior of the DAX 30. After a brief discussion of the stylized facts of the DAX 30, includ-
ing both fat tail and power-law behavior, we introduce the calibration procedure to match the
autocorrelation patterns in the returns, absolute and squared returns for the DAX 30, present
the calibration result and conduct an out-of-sample test. Based on the calibrated parameters for
the model, we use Monte Carlo simulations to examine the effectiveness of the calibration in
generating the autocorrelation patterns and estimating the decay indices of the power-law be-

havior, comparing with those of the DAX 30. We also used the calibration result to examine the

14 see, for example, Cheaeat al. (2012) and Amilon (2008). Amilon (2008) concludes that the simple prototype
models seems to have potential to explain empirical facts although the fit is generally not quite satisfactory, he
reports local minima, possibly not the global minimum, when calculating the estimators.
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power-law tail behavior of the model comparing with the DAX 30. We show that the calibrated
model closely generates the characterization of the power-law behavior of the DAX 30 in the

return autocorrelation and tails.

3.1. Stylized Facts and Autocorrelations of Returns for the DAX 30. The price index data

for the DAX 30 comes from Datastream, which contains 8001 daily observations from 11 Au-
gust, 1975 to 29 June, 2007. We yseto denote the price index for the DAX 30 at time

(t = 0,...,8000) with log returnsr; defined byr;, = lnp, —Inp, 1 (t = 1,--- ,8000). Ta-
ble[3.1 gives the summary statisticsffor the DAX 30. We can see from Tahle B.1 that

the kurtosis for; is much higher than that of a normal distribution (which is 3). The kurtosis
and studentized range statistics (which is the range divided by the standard deviation) show
the characteristic fat-tailed behavior compared with a normal distribution. The Jarque-Bera
normality test statistic is far beyond the critical value, which suggests-thatnot normally
distributed. Figures 3.1 (a) and (b) plot the time serieg, @ndr;, showing volatility cluster-

ings and time-varying market volatility. This suggests that a suitable model for the data should
be able to generate time varying volatility and volatility clustering as suggested by the ARCH
and (FI)GARCH models.

TABLE 3.1. Summary statistics of.

mean std. skewness kurtosis  min max  stud. range Jarque-Bera
0.00034 0.01244 -0.4765 10.436 -0.1371 0.0755  17.092 18735
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1000 [

o . . . . . .
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FIGURE 3.1. Time series on prices and log returns of the DAX 30 from 11
August, 1975 to 29 June, 2007.

Note that at daily frequency, the difference between log-returns and simple returns is very small.
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FIGURE 3.2. Autocorrelations of;, r? and|r;| for the DAX 30.

Among those reported stylized facts shared among different market indices, a well known
stylized fact of stock returns is that the returns themselves contain little serial correlation, but the
absolute returng| and the squared returm$ do have significantly positive serial correlation
over long lags. For example, Dirgf al. (1993) investigate autocorrelations (ACs) of returns
(and their transformations) of the daily S&P 500 index over the period 1928 to 1991 and find that
the absolute returns and the squared returns tend to have very slow decaying autocorrelations,
and further, the sample autocorrelations for the absolute returns are greater than those for the
squared returns at every lag up to at least 100 lags. This kind of AC feature indicates the long-
range dependence or the power-law behavior in volatility. The autocorrelations for the DAX 30

are plotted in Figure_3l2, which clearly support the findings in Dehgl. (1993).

3.2. Model Calibration and Result. In principle, to calibrate the power-law behavior of the
DAX 30 to our model, we minimize the average distance between the autocorrelations of the
log returns, the squared log returns, and the absolute log returns of the DAX 30 and the corre-
sponding autocorrelations generated from the m%(mx)re precisely, denot® the parameter
space of the model. Lét € O be the vector of parameters in the model to be calibratede

the number of independent simulations of the mo@élbe the estimated autocorrelations of

then-th run of the model, anEDAX be that of the DAX 30. In calibration, we solve

N
~ ' 1 N
0 € argming gDy, Dy := HN Zﬁ — Bpax|? (3.1)

n=1

16Note that we do not consider other moments such as scales of returns and absolute returns and others. By
exclusively focusing on the autocorrelations of return, squared return and absolute return, we provide a simple way
to gain insight into the generating mechanism of power-law behavior of volatility of the model.
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for the standard Euclidian norh- ||, using an asynchronous parallel pattern search algo-
rithm The parameters in the model are chosen to lie in the following rafiges< [0, 1],

v € [0.05,5.5], ay, az € [0.001,9.0], i € [0.1,5], mg € [—1,1], ng € [0.05,0.995], 6 € [0,1],

b € [0.05,8.5], 3 € [0.5,1.5], 0. € [0.005,0.05], ¢ = VKo. andos € [0.05,8.5]. However

py = p* = 100, ¢ = 72, andr = 0.05 are kept fixed. In the calibration and the subsequent
econometric analysis, we ran 1,000 independent simul%oner 9,000 time periods and dis-
carded the first 1,000 time periods to wash out possible initial noise effect. For each run of the
model we obtain 8,000 observations to match the sample size of the DAX 30. It is not possible
to use autocorrelations at all lags, so we focus on a limited set of autocorrelations. In particular,
we focus on all lags until 50 and then each fifth lag up tOIDhis corresponds to 60 auto-
correlations in total for return, the absolute return and squared return, respectively. Essentially,
with 60 autocorrelations estimated for each ofithe? and|r,|, the dimens[i;;i” andfpax

is 180 in total. The calibrated parameters of the model are reported in 3.2.

We note that HAMs are highly likely to be misspecified, the calibration procedufe ih (3.1)
is based on the distance between the model and real world for a selected set of moments. It
is designed to answer the question “given that the model is false, how true is it?” It allows us
to focus on the characteristics in the data (in our case, this refers to the power law behavior

in volatility) for which the model is most relevant. A related important question is “to find

1™The software implementing the algorithm is APPSPACK 5.01, see more details in Gray and Kolda (2006), Griffin
and Kolda (2006), and Kolda (2005). In the implementation, to avoid possible local minima we tried different set
of starting values, and for each set of starting value we search for the minimum and then we re-initialize and search
for the new minimum again. We repeat the procedure until there’s no further improvements.

18The parameter ranges far, mg,n,,d are implied by the model specifications. The ranges for parameters
~v,a1,a2 andp are selected to reflect reasonable behavior of the traders based on the analysis of the underly-
ing deterministic model in Dieci et al. (2006). The rangedprepresents the volatility of the fundamental price,
while the range fob; indicates the daily market price volatility level.

9Note that 1,000 simulation runs works well for us to produce accurate and relatively smooth ACs lines reported in
Fig.[3.3, we do not consider the problem of the optimal number of simulations needed for solving this optimization
problem. In other applications, much fewer number of simulation might be sufficient.

2One choose a large numbers of lags of ACs because our method of calibration of the model is exclusively focused
on the ACs, and it works well to produce reasonable results reported il Fig. 3.3. In practice, much less lags may
contain the same information and too many lags would waste computation time and even affect the accuracy of
estimation, see for instance, Franke and Westerhoff (2012) for related discussion.

Utis likely that the estimated parameter values can be different for differ indices over different time periods. In
fact, in our earlier exploratory model (He and Li, 2007, 2008, 2015 aneltlal, 2010) using other indices or
different periods of an index, the estimated model parameters are different in each of the cases. Quantitatively the
stylized facts can vary over time, however, qualitatively the main feature of the stylized facts remains the same
over long time periods and across different markets. It is this qualitative feature of the long memory pattern and
the generating mechanism provided in Section 4.1 that this paper contributes to the current literature. It is from
this perspective that the model estimation in this paper is robust. We would like to thank an anonymous referee for
bringing up this discussion.
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out how wrong a model is and to compare the performance of different models” (Kan and

Robotti, 2008, 2009). In representative agent and rational expectation setting, measures of
model misspecification developed by Hansen and Jagannathan (1997) and recently, Kan and
Robotti (2008, 2009) are used to rank model performance. The distarncelin (3.1) is an analogue

of Hansen and Jagannathan measure of model misspecification in the context OQ'lAMS.
TABLE 3.2. The calibrated parameters of the models

Q v ay as 1 no mo ) b o Os 15}

0.488 1.978 7.298 0.320 1.866 0.313 -0.024 0.983 3.537 0.22D530.954

We now provide an economic intuition of the calibrated resBlsed on the calibrated pa-
rameters in Table_3.2, the parametgr= 0.313 implies that, among two strategies, there are
some traders who do not change their investment strategies and most of traders switch between
two strategies with a switching intensity measuredsby: 0.954. This is consistent with the
empirical evidence of using fundamental and technical analysis and the adaptive behavior of
investors. Withm, = —0.024, it indicates that, among those traders who do not change their
investment strategies, there are about equal numbers of trend followers and fundamentalists.
These results demonstrate that both fundamentalists and trend followers are active in the mar-
ket and the market is populated with confident traders as well as adaptive traders. Thisis in line
with the findings from foreign exchange markets in Allen and Taylor (1990) and Taylor and
Allen (1992) and fund managers in Menkhoff (2010). The relatively highehana, implies
that the fundamentalists are more risk averse than the trend foIQwArsalue ofa = 0.488
indicates that the speed of price adjustment of the fundamentalists towards the fundamental
value is indicated byl /(1 — «), which is about two trading periods. This may explain the
frequent deviations of the market price from the fundamental value in short-run but not in long-
run. A value ofy = 1.978 indicates that trend followers extrapolate the price trend, measured
22For HAMs, model comparison have been discussed iatlal. (2010) and Franke and Westhoff (2012). Franke
and Westhoff (2012) suggest measures of model comparison if the models can be successfully estimated by the
methods of simulated moments. Developing measures using (approximated) stochastic discount factor would
provide better insight into HAMs, however, this seems not feasible for the paper at the moment. Behavioral
finance literature often finds limits of arbitrage (see, e.g., Shleifer and Vishny, 1997; Froot and Dabora, 1999;
Lamont and Thaler, 2003; and Gromb and Vayanos, 2010), verification of existence of stochastic discount factor
is not trivial, we plan to explore it further in future research.
23\ote that for simplicity, we assume that agents’ risk preferences switch when their strategies switch. Comparing
to the trend followers who invest in short-run and are less risk averse, the fundamentalists invest in long-run and
are more risk averse in general. We see from Foofndte 11 that trend followers have a systematically higher variance
estimate relative to the fundamentalists fbyo?). When the additional term is much larger th@an+ r2)o?, the

trend followers have much higher risk perception which also justifies the relative lower risk aversion of the trend
followers than the fundamentalists.
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by the difference between the current price and the geometric moving average of the history
prices, actively. Also note that= 1.978 > 1 does not lead to explosive expectations by trend
followers because of the quadratic volatility function in the denominator of the demand func-
tion. The geometric decay rate= 0.983 indicates a slow decaying weight. The parameter

by = bo? measures the influence of the sample variancén addition to the common belief

on the price volatilityo?, to the estimated price volatility for trend followers. The value of

b = 3.537 implies that trend followers are cautious when estimating the price volatility, though
they are less risk averse. The annual return volatility ef 23.1% is close to the annual return
volatility of 19.67%(= /250 x 0.01244) for the DAX 30. A value ofu = 1.866 indicates

that the market maker actively adjusts the market price to the excess demand of the traders. A
positives; indicates that the noise traders are active in the market. In summary, the market is
dominated by traders who switch between the two strategies based on their performance over
the time, although there are some traders who do not change their strategies over the time. Due
to the switching, the market becomes more volatile, which supports the theoretical predica-
tion in Brock and Hommes (1998), but in contrast to the finding in Amilon (2008) who find

insignificant switching effect when estimating a structure HAM.

sesli)

(a) (b)

FIGURE 3.3. (a) Autocorrelations of;, r? and|r,| for the model. (b) The ACs

of the returns, the squared returns and the absolute returns for the calibrated
model and the DAX 30. The smooth lines refer to the model while the 95%
confidence intervals are those for the DAX 30.
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3.3. The Autocorrelation Patterns of the Calibrated Model and Out-of-Sample Test. It is
interesting to verify that our calibrated model is able to replicate the power-law behavior of the
DAX 30 described in Fig[3]2. Using the parameters in Table 3.2, we run 1,000 independent
simulations for the model. For each run, we estimate the ACs for returns, squared returns and
absolute returns. We then take the average over the 1,000 runs and plot the AC$ inlFig. 3.3(a).
It shows that for the model, the ACs are insignificant for the returns, but significantly positive
over long lags for? and|r|. Further, the sample autocorrelations for the absolute returns are
greater than that for the squared returns at all lags up to at least 100 lags. Comparing with Fig.
[3.2 for the DAX 30, we see that the patterns of decay of the autocorrelation functions of return,
the squared return and the absolute return are very similar. To see how well the calibrated model
is able to match the autocorrelations-gfr? and|r;| for the DAX 30, Fig.[3.B(b) plots the ACs
of returns, the squared returns and the absolute returns for the model together with the DAX 30
respectively. For comparison purposes, we use the Newey-West corrected standard error and
plot the corresponding 95% confidence intervals of the ACs of the DAX 30. It clearly indicates
that all of the ACs of the model lie inside the confidence intervals of the DA 30.

We also perform an out-of-sample test for performance of the n%tképall that we cali-
brate the model using the DAX 30 daily price index from 11 August 1975 to 29 June 2007, we
now use data from 02 July 2007 to 02 April 2015 and plot ACs for returns, squared returns and
absolute returns of the DAX 30 together with their 95% confidence intervals i Fig. 3.4, and
to see if the ACs from the calibrated model fit in these intervals. We see fromh Fig. 3.4 that the
ACs of returns and squared returns of the calibrated model fit in the 95% confidence intervals of
the DAX 30 reasonably well, but the ACs of absolute returns of the calibrated model lie outside
of the corresponding confidence intervals of the DAX 30 after lag 30, which indicate that the
persistence in volatility of the DAX 30 is not as strong as before since the global financial crisis.
Overall, the out-of-sample result indicates that the model performs reasonably well out of the

sample and the calibration method effectively captures the ACs patterns of the DAX 30.

3.4. Effectiveness of the Calibration. Based on the calibrated parameters for the model, we
use Monte Carlo simulations to further examine the effectiveness of the calibration in estimating
the decay indices of the power-law behavior of ACs and in volatility clustering, comparing with

24ere we report the averages of the ACs based on 1,000 simulations and some of the ACs from a single simulation
may lie outside the confidence band.
25Ve thank an anonymous referee for the suggestion.
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FIGURE 3.4. The ACs of the returns, the squared returns and the absolute re-
turns for the calibrated model and the DAX 30. The smooth lines refer to the

model while the 95% confidence intervals are those for the DAX 30 from 02

July 2007 to 02 April 2015.

those of the DAX 30. We also used the calibration result to examine the power-law tail behavior
of the model comparing with the DAX 30. We show that the calibrated model closely generates
the characterization of the power-law behavior of the DAX 30 in the return autocorrelation,

volatility clustering and tails.

3.4.1. Estimates of Power-law Decay IndeResides the visual inspection of ACsiof 2 and
|7¢|, one can also construct models to estimate the decay rate of the AGs-band|r;|. For
instance, we can semiparametrically model long memory in a covariance stationaryrgeries
t =0, £1, ..., by s(w) ~ c;w? asw — 0%, where0d < ¢; < oo, s(w) is the spectral density
of z;, andw is the frequency. Note thafw) has a pole at = 0 for 0 < d < 1/2 (when there
is a long memory inc;). Ford > 1/2, the process is not covariance stationary. &ct 0,
s(w) is positive and finite. For-1/2 < d < 0, we have short memory, negative dependence,
or antipersistence. The ACs can be describegby: c,k??~!, wherec, is a constant and
i = 2d — 1 corresponds to the hyperbolic decay index. In the literature, there are two most
often used estimators df namely the Geweke and Poter-Hudak (1983), henceforth GPH, and
Robinson and Henry (1999), henceforth RH. We describe the estimators and report the results
in AppendixA.

For the DAX 30, we see from Table_A.1 in Appendix A that the estimatéar the returns

are not significant at any conventional significance levels but significant for the squared and the
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absolute returns. Thus the DAX 30 displays clear evidence of power-law for the squared and the
absolute returns whetrgis positive, and the persistence in the absolute returns is much stronger
than that in the squared returns. These results coincide with the well-established findings in
the empirical finance literature. For the estimated model, the estimates of the decapmate
reported in Tablé_Al2 in Appendix]A, where the column ‘Sig%’ indicates the percentage of
simulations for which the corresponding estimates are significant at the 5% level over 1,000 in-
dependent simulations. We find that on average the estimategrefnegative and significantly
different from those of the DAX 30 for returns at the 5% level (and insignificant at the 10%
level), but significantly positive for the squared returns and the absolute returns. This verifies
that there is a clear evidence of power-law for the squared returns and the absolute returns. It
also shows that the patterns of the estimatesfof the squared returns and the absolute returns
are comparable to those of the DAX 30 in TablelA.1.

The above analysis clearly demonstrates that our calibration is effective in matching the auto-
correlation patterns of the DAX 30. In the following discussion, we want to see if the calibrated
model can be used to characterize the volatility clustering and power-law tail behavior, for

which our calibration procedure is not designed.

3.4.2. Volatility Clustering, Power-law and (FI)\GARCH Estimate&nother striking feature of
the return series in market indicesvslatility clustering A number of econometric models
of changing conditional variance have been developed to test and measure volatility clustering.
The most widely used one is the one introduced by Engle (1982) and its generalization, the
GARCH model, introduced by Bollerslev (1986). The GARCH implies that shocks to the
conditional variance decay exponentially. In response to the finding that most of the financial
time series are long memory volatility processes, Badli@l. (1996) consider the Fractional
Integrated GARCH (FIGARCH) process, where a shock to the conditional variance dies out at
a slow hyperbolic rate. For convenience, in Apperdix A, we describe the models and report the
results.

Table[A.3 in AppendiX_A reports the estimates of the GARQH1) model for the DAX
30, where the mean process follows an AR(1) structure. Based on estimates, one can see that
a small influence of the most recent innovation (sma)lis accompanied by a strong persis-

tence of the variance coefficient (large). It is also interesting to observe that the sum of the
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coefficientsa; + 3, is close to one, which indicates that the process is close to an integrated
GARCH (IGARCH) process. Such parameter estimates are rather common when consider-
ing returns from daily financial data of both stock and foreign exchange markets (see, Pagan
(1996)). However the IGARCH implies that the shocks to the conditional variance persist in-
definitely. Tablé_A.4 in AppendikJA reports the estimates of the FIGARCH, 1) model for

the DAX 30, where the mean process follows an AR(1) model. The estimate for the fractional
differencing parametey is statistically very different from both zero and one. This is consis-
tent with the well known finding that the shocks to the conditional variance die out at a slow
hyperbolic rate.

For the same specifications of the GARCH and FIGARCH models, we report resulting esti-
mates for the calibrated model in Tables]A.5 and A.6 in Appendix A, respectively. Again, all
these estimates are the average of the estimations for each independent run of the calibrated
model. The results from the GARCH model are very similar to that from the DAX 30, that
is, a small influence of the most recent innovation is accompanied by strong persistence of the
variance coefficient and the sum of the coefficiemtst 3; is close to one. For the estimates
of the FIGARCHZ, 9, 1), we see that the estimate®for the calibrated model is significantly

different from zero and one.

3.4.3. Power-law Tail behavior.Since the work of Mandelbrot (1963), power-law tail behavior
has been found in a wide range of financial time series, and it has become one of the salient
features in financial markets. In general,fif,.... IS the probability density function of a
normal distribution with meam and variancer?, then we haveog f,.orma () ~ —ﬁﬁ as
r — too. Arandom variableX is said to follow a power-law or Pareto distribution with shape
parametery > 0 and scale parametér > 0 if Pr(X > z| = (z/5)"¢, forz > (. In this
caselog fpareto(r) ~ —(a + 1) log(x) asx — +o00. Hence the difference of the tail behavior
between the normal and Pareto distribution is significant.

The estimation of tail indices has been studied in great detail in extreme value theory. More
precisely, letX , X, ..., X,, be a sequence of observations from some distribution funétion
with its order statistics(; ,, < X, < ... < X, ,. As an analogue to the central limit theorem,

we know that, on average, if the maximukf, ,,, suitably centered and scaled, converges to a

non-degenerate random variable, then there exist two sequéngeés,, > 0) and{b,} such
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that
Xon—b
lim Pr (M < x) =G, (x), (3.2)

n—r00 Qa
whereG,,(z) := exp(—(1 + vx)~'/7) for somey € R andz such thatl + vz > 0. Note that
fory = 0, —(1 +~2)~'/7 = e7=. If (B.2) holds, theny is called the extreme value index. In
Pareto distribution, the tail index := 1/« measures the thickness of the tail distribution; the
bigger they, the heavier the tail. The estimationphas been thoroughly studied, see Beirlant
et al. (2004) for a detailed account. In Appendikx A, we outline three major estimatorstbé
Hill estimator, the Pickands estimator, and the moment estimator in Dekkals(1989) and
report the corresponding results.

The Hill index relies on the average distance between extreme observations and the tail cutoff
point to extrapolate the behavior of the tails into the broader part of the distribution. In practice,
the behavior of the Hill index depends heavily on the choice of cutoff painthich is also
true for the other two estimators. This choice involves a tradeoff between bias and variance,
which is well known in non-parametric econometrics.klfs chosen conservatively with few
order statistics in the tail, then the tail estimate is sensitive to outliers in the distribution and
has a high variance. On the other hand if the tail includes observations in the central part of
the distribution, the variance is reduced but the estimate is biased upward. So, we plot these
estimates index over a range of tail sizes. In the top panel of Fig. A.1 in Appendix A, we plot
the Hill index. We see that for the negative tail, the Hill index of the model fits in the 95%
confidence intervals of the DAX 30; for the positive talil, it fits well wheis less than 500. The
Pickands estimates, plotted in the middle panel of A.1, show a larger variability. It seems
that on average the estimates from the model are not far away from those of the DAX 30. The
moment estimates, plotted in the bottom panel of A.1 for the model are slightly below the
confidence intervals for the DAX 30. To conclude, the model exhibits power-law tail behavior
which is very close to that of the DAX 30.

The overall analysis in this section shows that the calibration method is effective. The cal-
ibrated model is able to characterize successfully not only the power-law behavior in AC, but

also the volatility clustering and power-law tail behavior in the DAX 30 as well.
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4. EXPLANATION AND COMPARISON OF THECALIBRATION RESULTS

We have shown that the calibrated model closely matches the stylized facts of the DAX 30. In
this section, we provide an explanation on the generating mechanism of the power-law behavior
of the model. In addition, we conduct formal tests to see how well the calibrated model is able
to describe the characteristics of the DAX 30 and how the model fits better than a pure switching

model.

920 1 1 1 1 1 1 1 1 1
[} 200 400 600 800 1000 1200 1400 1600 1800 2000
t

FIGURE4.1. The price of the deterministic model with the calibrated parameters.

4.1. Mechanism Analysisof the Power-Law Behavior. With the help of the underlying deter-
ministic dynamics, we now provide some insights into the mechanism of generating the power-
law behavior. For the corresponding deterministic model with the calibrated parameters, the
constant fundamental equilibrium becomes unst%ﬂeading to (a)periodical oscillation of

the market price around the fundamental equilibrium, illustrated in[Eid. 4.1. Such periodical
deviations of the price from the fundamental value in the deterministic model are inherited in
the stochastic model. Fig._4.2(a) plots the time series of typical market price and fundamental

price of the stochastic model. It shows that the price deviates from the fundamental price from

26The fundamental price becomes unstable through a so-called Hopf bifurcation. This is different from the mecha-
nism provided in Gaunersdorfet al. (2008) that volatility clustering is characterized by the underlying determin-
istic dynamics with two co-existing attractors with different sizes. In fact, the model developed in this paper can
display such co-existence of locally stable fundamental price and periodic cycle, which has been demonstrated in
Fig 3 in Dieci et al. (2006). Whether the model developed in this paper is able to provide a supporting evidence on
the mechanism of Gaunersdortgral. (2008) would be an interesting issue for future research. We would like to
thank Cars Hommes to bring our attention to this point.
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time to time, but in general, follows the fundamental price. In addition, the returns of the sto-
chastic model display the stylized facts of volatility clustering in Eigl 4.2(b) and non-normality

of return distribution in Figl_4]2(c).
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FIGURE4.2. Thetime series of (a) the price (red solid line) and the fundamental
price (blue dot line) and (b) the return; (c) the return density distribution; the ACs
of (d) the returns; (e) the absolute returns, and (f) the squared returns.
The calibrated result provides a strong support on the power-law behavior mechanism re-
ported in He and Li (2007). In He and Li (2007), a constant market fraction model is used
to examine the potential source of agent-based models with heterogeneous belief in generating

power-law behavior in return autocorrelation patterns. By examining the dynamics of the under-

lying deterministic model and simulating the impact of the fundamental noise and noise traders
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on the deterministic dynamics, He and Li (2007) find that the interaction of fundamentalists,
risk-adjusted trend chasing from the trend followers and the interplay of noisy fundamental and
demand processes and the underlying deterministic dynamics can be the source of power-law
behavior. The calibrated model in this paper shares the same spirit of He and Li (2007). In fact,
with the two noise processes, Fig.14.2(d) demonstrates insignificant ACs for the returns, while
Figs[4.2(e) and (f) show significant and decaying ACs in the absolute and squared returns, re-
spectively. We also plot the times series of price, fundamental value, returns, return distribution,
the ACs of return, absolute and squared returns with one noise, either the fundamental noise in
Fig. [C.1 or market noise in Fid._C.2, respectively, in Appendix C. They clearly demonstrate
that, for the calibrated model, noise traders play an important role in the generation of insignif-
icant ACs on the returns, while the significant decaying AC patterns of the absolute returns and
squared returns are more influenced by the noisy fundamental process. This shows that the po-
tential source of power-law generating mechanism obtained here shares the same spirit as He

and Li (2007) and Chiarella, He and Hommes (2006).

4.2. A Comparison Test. To see how well the model is able to describe the characteristics in
the DAX 30, we construct confidence intervals for the estimates based upon the DAX 30 to see
if the estimates based upon the calibrated model lie in these intervals or not. In the following,
we focus on the average estimates of the model rather than their accuracy since, by running the
model independently many times, the estimates converge much faster than those of the DAX 30.
Apart from checking the confidence intervals, we also construct the Wald test for this purpose.
For instance, for the decay indéxof the returns, the squared returns or the absolute returns,
we test whether the values of the paramétestimated from both the DAX 30 and the model

are the same. In other words, we test hypothesis
HO : dDAX =d.

Using the Wald test, this null hypothesis can be tested by assuming that both the number of
simulations and the number of time periods for each simulation go to infinity. In the construction

of the Wald test, the test statistic is given by

W = (dpax — d)?/3,
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wherey. is simply the variance QfDA. The resulting test statistics are summarized in Table
4. In the column?,’, the first sub-row reports the test statistics corresponding;$g;, and

the second sub-row correspondingimq, and so on. Notice that the critical values of the Wald

test at 5% and 1% significant levels are 3.842 and 6.635, respectively. For the returns, we see
that the estimated of the DAX 30 and the model are significantly different. However, for the
squared returns and the absolute returns, the differences between the esfiwfatieel DAX

30 and the model are not statistically significant. This result shows that the calibrated model is
able to describe the ACs of the absolute and squared returns in the DAX 30.

TABLE 4.1. The Wald test of with m = 50, 100, 150, 200, 250

m | 50 100 150 200 250
. 19.41 45.62 61.94 65.86 76.35
*135.41 92.24 126.0 117.5 129.4
2 0.071 1.309 0.282 0.036 0.023
£ 10.037 1.246 0.050 0.767 0.276
0.116 1.165 1.672 0.413 0.195
i 0.020 0.350 0.067 0.031 0.015

Another comparison test is to see if the model (denoted SMerti& 2 performs better
than a pure switching model (denoted PSM) with= 0 in line of Brock and Hommes (1998).
Intuitively, the calibration conducted for the SM should fit the data better than thg?ﬁivl
Appendix B, we provide the calibrated parameters in Tab. B.1, the ACs patterns in Fig. B.1, the
estimated decay indices in Tab. B.2, the GARCH and FIGARCH estimates in Tabs B.3 and B.4,
the tail index plots in Fig. B.2, and the Wald test for the PSM. Apart from sharing similar results
and implications to the SM, we calculate the distances of ACsD¢himm Eq. (3.1), between
the DAX 30 and the SM and PSM and obtain 4.56 and 4.59 respectively. The test s@tistics
(Boax — B)C (Bpax — ), wheref is estimated from the simulation model afid! is the
generalized inverse (see, for example, Cameron and Trivedi, 2005) of corresponding covariance
matrix, for ACs up to 50 lags for the return, the squared return and the absolute return of the SM
and PSM are 106 and 108 respectively. Both results confirm that the SM performs better than

2\Ne emphasize that the parameter uncertaintiias not been taken into account because the simulations of the
model are dependent on calibrated structural parameters.

28Ne notice that the main idea of this exercise is to show that the SM model can perform better than the PSW
model in terms of generating stylized facts, which justifies the existence of agents in the market with fixed trading
strategies in line with the model of He and Li (2007). So, we are not aiming to compare the SW model with various
restricted version of the model to draw inference on the empirical importance of the SW model, we leave this to
future research.

29The test statistics follows a Chi-square distribution with critical value 180 &%hsignificant level.
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the PSM in terms of minimizing the distance in Hg. {3.1) and the weighted average distance by
taking into account th .

Itis possible to develop measures of goodness of fit. While the measures of goodness of fit are
very useful when comparing the performance of different HAMs (see, for example, Franke and
Westerhoff, 2012), the comparison results on various econometric characterizations between
HAM and the actual data seem to imply that it might be difficult to get meaningful test statistics.
In our approach the sampling error from the actual data is dealt with the confidence intervals
of the estimates and that from the simulation data is eliminated by running many independent
simulation. For a more general discussion on the comparison of the simulation models with the

real world data, see lat al. (2006, 2010).

5. CONCLUSION

Theoretically oriented HAMs have provided many insights into market behavior such as mar-
ket booming and crashing, multiple market equilibrium, short-run deviation of market price
from the fundamental price and long-run convergence of the market price to the fundamental
price. Combined with numerical simulations, the HAMs are able to reproduce some stylized
fact, such as non-normality in return and volatility clustering. More recent developments in
HAMs have stimulated many interests in the generation mechanism of those stylized facts and in
particular, power-law behavior. However, estimation and calibration of HAMSs to the power-law
behavior of financial data, together with some mechanism explanation and economic intuition,
are still a difficult and challenging task.

This paper calibrates an extended HAM to characterize the power-law behavior in the DAX
30. The model considers a market populated by heterogeneous traders who use either funda-
mental or chartist strategies. The market fractions of traders who use the two strategies have
both fixed and switching components. The calibration method is based on minimization of
the average distance between the autocorrelations (ACs) of the returns, the squared returns and
the absolute returns of the DAX 30 and the corresponding ACs generated from the MF model.
With the parameter values of the calibrated model, we show that the ACs of the market fraction

model share the same pattern as the DAX 30. By conducting econometric analysis via Monte

3Owe emphasize that the comparison is based upon the magnitudes of distances we use. In other words, this is
not to say that 4.56 (106) is significantly lower than 4.59 (108). A formal procedure such as that suggested by
Hnatkovskeet al, (2012) might be explored further.
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Carlo simulations, we estimate the decay indices, the (FI)\GARCH parameters, Hill index and
related tests. We show that the calibrated model matches closely to the corresponding estimates
for the DAX 30. As a by-product, the calibrated model also generates non-normality return
distribution, volatility clustering, and fat tails. Therefore the calibrated model can fit most of
the stylized facts observed in the DAX 30.

The calibration results support the empirical evidence in financial markets that investors and
fund managers use combinations of fixed and switching strategies based on various fundamen-
tal and technical analysis when making complicated investment decisions. By calibrating the
model to the daily DAX 30 index from 1975 to 2007, we show that the market is dominated
by the adaptive investors who constantly switch between the fundamental and trend following
strategies, though there are some investors who never change their strategies over the time. In
addition, the calibrated model also provides a consistent explanation on the generating mecha-
nism of the power-law behavior in the literature. In conclusion, the calibration results provide
strong support to the explanatory power of heterogeneous agent models and the empirical evi-

dence of heterogeneity and bounded rationality.
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APPENDIX A. ESTIMATES OF POWERLAW DECAY INDEX, (FI)GARCH, AND
POWERLAW TAIL BEHAVIOR

This appendix provides the details of estimates of power-law decay index, (FI)GARCH, and
power-law tail behavior.

A.l. Power-law decay index. Geweke and Poter-Hudak (1983) suggest a semiparametric es-
timator of the fractional differencing parametébased on a regression of the ordinates of the
log spectral density. Given spectral ordinatgs= 27;j/7 (j = 1,2, ...,m), GPH suggest to
estimate/ from

log I(w;) = ¢ — dlog(4sin®*(w;/2)) + v, (A.1)
wherev; are assumed to big.d. with zero mean and varianeé /6. If the number of ordinates
m is chosen such that = ¢(7") and satisfylimr_,, ¢(T") = oo, limr_,. g(7)/T = 0 and
limr o (log(T)?)/g(T) = 0, then the OLS estimator af based on[{All) has the limiting

distribution ,

Vin(dapi — d) 5 N0, 7). (A.2)
Robinson (1995) provides a formal proof ferl/2 < d < 1/2, Velasco (1999) proves the
consistency ofl;py; in the casel /2 < d < 1 and its asymptotic normality in the casg2 <
d < 3/4. ltis clear from this result that the GPH estimator is RGE-consistent and in fact
converges at a slower rate.
Another most often used estimatord&has been developed by Robinson and Henry (1999),
they suggest a semiparametric Gaussian estimate of the memory parénbgteonsidering

7 : I <~ d -
dpp = arg min R(d), R(d) = log {E lej I(wj)} — 2% leog Wy, (A.3)
Jj= Jj=
in whichm € (0, [T'/2]). They prove that, under some conditions,

Vildrs —d) % N (0,7) (A.4)

whenm < [T'/2] such thatl/m + m/T — 0 asT — oco.

A major issue in the application of the GPH and the RH estimators is the choiecgdafe to
the fact that there is limited knowledge available concerning this issue, see Geweke (1998) for
instance. Hence it is a wise precaution to report the estimated results for a range of bandwidths.
In our study, for both the GPH and the RH estimateg, aVe report the corresponding estimates
form = 50, 100, 150, 200 and250, respectively. For instance, for the DAX 30, TablelA.1 reports
the GPH and the RH estimates @for returns, the squared returns, and the absolute returns,
respectively. In each panel of Talle A.1, the first row reports the results from the GPH and the
RH estimates withn = 50, the second row reports the results of the GPH and the RH estimates
with m = 100, and so on. Table Al2 is arranged similarly.

A.2. (FI)GARCH. Following the specification of Bollerslev (1986), if we model the returns
as an AR(1) process, then a GARGHg) model is defined by:

Ty =a + bri_y + &4, Et = Ot2,
2 _ 2 2 (A.5)
o; =ap+ a(L)e; + B(L)o;, 2z ~ N(0,1),
whereL is the lag operatory(L) = 3!, a; L' andB(L) = >="_, 8;1/. Definingu; = ¢} — o7,
the process can be rewritten as an ARMAv) process
[1—a(L) - B(L))e} = ag + [1 = B(L)]v, (A.6)

with s = max{p, ¢}. Table[A.3 reports the estimates of the GARCH1) model for the DAX
30, where the mean process follows an AR(1) structure.
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TABLE A.1. The estimates af for the DAX 30 withm = 50, 100, 150, 200, 250

depy t  p-value 95% ClI dru t  p-value 95% ClI

7, 0.0014 0.014 0.989 [-0.2005, 0.203%}0.0179 -0.253 0.801 [-0.1565, 0.1207]
0.0407 0.587 0.557 [-0.0954, 0.1769]0.0615 1.229 0.219 [-0.0365, 0.1595]
0.0548 0.985 0.325 [-0.0542,0.1638]0.0829 2.031 0.042 [0.0029, 0.1629]
0.0406 0.852 0.394 [-0.0528,0.1340]0.0482 1.362 0.173 [-0.0211, 0.1175]
0.0543 1.283 0.199 [-0.0286, 0.137P]0.0571 1.807 0.071 [-0.0048, 0.1191]

rZ 04111 3.990 0.000 [0.2091,0.613(]0.3785 5.353 0.000 [0.2399, 0.5171]
0.4527 6.518 0.000 [0.3165, 0.5888]0.4365 8.731 0.000 [0.3385, 0.5345]
0.4053 7.288 0.000 [0.2963, 0.5143]0.3735 9.149 0.000 [0.2935, 0.4535]
0.3666 7.696 0.000 [0.2733, 0.4600]0.3508 9.923 0.000 [0.2816, 0.4201]
0.3785 8.946 0.000 [0.2956, 0.4614]0.3605 11.40 0.000 [0.2985, 0.4225]

;] 05242 5087 0.000 [0.3222,0.7261]0.4801 6.790 0.000 [0.3415, 0.6187]
0.5495 7.911 0.000 [0.4133, 0.6856]0.5167 10.33 0.000 [0.4187, 0.6147]
0.5442 9.785 0.000 [0.4352, 0.6532]0.4914 12.04 0.000 [0.4114,0.5714]
0.4993 10.48 0.000 [0.4059, 0.592]]0.4818 13.63 0.000 [0.4125, 0.5511]
0.4797 11.34 0.000 [0.3968, 0.5626]0.4708 14.89 0.000 [0.4088, 0.5327]

TABLE A.2. The estimates af for the model withm = 50, 100, 150, 200, 250

dapH t p-value 95% ClI Sig%| dru t p-value 95% ClI Sig%
re -0.4524 -4.390 0.060 [-0.4588,-0.4460] 83|9-0.4386 -6.203 0.038 [-0.4430,-0.4342] 90.4
-0.4287 -6.173 0.034 [-0.4330, -0.4244] 91|2-0.4187 -8.374 0.026 [-0.4218,-0.4156] 94.0
-0.3828 -6.883 0.030 [-0.3863,-0.3794] 92/6-0.3750 -9.187 0.022 [-0.3776,-0.3725] 94.7
-0.3457 -7.257 0.025 [-0.3487,-0.3428] 93|l1-0.3355 -9.488 0.016 [-0.3376,-0.3333] 95.3
-0.3153 -7.453 0.024 [-0.3179,-0.3127] 93|l1-0.3023 -9.559 0.019 [-0.3043,-0.3003] 95.3
r7 03836 3.723 0.022 [0.3772,0.3900] 90[40.3920 5.544 0.002 [0.3876,0.3964] 99.2
0.3732 5.374 0.002 [0.3689,0.3775] 99| 0.3807 7.615 0.000 [0.3776,0.3838] 100
0.3758 6.758 0.000 [0.3724,0.3793] 99|90.3826 9.372 0.000 [0.3801, 0.3851] 100
0.3756 7.884 0.000 [0.3726,0.3785] 10p 0.3818 10.80 0.000 [0.3796, 0.3840] 100
0.3721 8.795 0.000 [0.3695,0.3747] 10p 0.3771 11.92 0.000 [0.3751,0.3790] 100
|r¢] 0.4891 4.747 0.003 [0.4827,0.4954] 98|r0.4902 6.932 0.000 [0.4858,0.4946] 99.9
0.4745 6.831 0.000 [0.4702,0.4788] 10p 0.4749 9.497 0.000 [0.4718,0.4780] 100
0.4723 8.493 0.000 [0.4689,0.4758] 10p 0.4731 1159 0.000 [0.4706, 0.4757] 100
0.4687 9.839 0.000 [0.4658,0.4717] 100 0.4693 13.28 0.000 [0.4672,0.4715] 100
0.4610 10.90 0.000 [0.4584,0.4637] 10p 0.4621 14.61 0.000 [0.4601, 0.4640] 100

TABLE A.3. GARCH(1, 1) Estimates for the DAX 30

a x 10° b ap x 10% (o7l B
0.4827 0.0539 0.0218 0.1056 0.8831
(0.1136) (0.0127) (0.0073) (0.0232) (0.0216)

Note: The numbers in parentheses are standard errors.

TABLE A.4. FIGARCH (1,0, 1) Estimates for the DAX 30

a b ap x 10? 0 ol B
-0.0019 0.0012 0.0699 0.3259 0.2286 0.7716
(0.0003) (0.0092) (0.0248) (0.0078) (0.0148) (0.0034)

Note: The numbers in parentheses are standard errors.

In response to the finding that most of the financial time series are long memory volatility
processes, Bailliet al. (1996) consider the Fractional Integrated GARCH (FIGARCH) process,
where a shock to the conditional variance dies out at a slow hyperbolic rate. Chung (1999)
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suggests a slightly different parameterization of the model:
G(L)(1 = L)(ef — 0%) = ag + [1 = B(L)]u,, (A7)

whereg(L) =1-"7_, ¢;L*, ap = ¢(L)(1—L)°c?, ando? is the unconditional variance of the
corresponding GARCH model. Taljle A.4 reports the estimates of the FIGARGH1) model

for the DAX 30, where the mean process follows an AR(1) model. For the same specifications
of the GARCH and FIGARCH models, we report resulting estimates for the estimated model
in Tabled A5 and A6, respectively.

TABLE A.5. GARCH(1, 1) Estimates for the Model

a X 103 b Qg X 104 Qaq 61
-0.0754 0.0292 0.3084 0.0963 0.9084
(0.5974) (0.0121) (0.0886) (0.0087) (0.0076)
0.5 64.7 87.7 100 100
Note: The numbers in parentheses are the standard errortheandmbers in the last
row are the percentages that the test statistics are significadr¥t &vel over 1000
independent simulations. This also holds for Tablg A.6.

TABLE A.6. FIGARCH (1,0, 1) Estimates for the Model

a b a0><104 0 §Z51 61
0.0325 0.0358 0.1314 0.4234 0.2108 0.7446
(0.0871) (0.0296) (0.1217) (0.0642) (0.0426) (0.0413)
71.8 67.8 4.5 87.3 91.0 94.9

A.3. Power-law tail behavior. We outline three major estimators of the Hill estimator, the
Pickands estimator, and the moment estimator in Dekkél. (1989). The Hill index is
defined by

k
1
Hk,n = <E Z log anJrl,n) - log ank,n-

j=1
This estimator is consistent far — oo, k/n — 0 asn — oo, and under extra conditions,
Vk(Hy,,, — ) is asymptotically normal with meahand variance?. The Pickands estimator

is defined as
”A}/Rk _ 1 1o (Xn—(k/éﬂ—i—l,n - n—fk/Q]-i—l,n) .
IOg 2 Xn—fk/Z]-i—l,n - An—k+1n
The simplicity of the Pickands estimator is appealing but offset by large asymptotic variance,

equal toy?(227+1 + 1){(2” — 1) log 2} 2. Dekkerset al.(1989) introduce a moment estimator,
which is a direct extension of Hill index,

1 HL\
Mk,n:Hk,n+1_§ 1-— 2) s

where

Y =

n

(log Xy jy1,0 — log Xn—k,n)Q'

| =
-

1
nd asymptotic normality. I FEid. A.1, we plot the estimates of

<
I

They also prove the consistenc
the three tail estimators.

<
Q
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FIGUREA.L1. The tail index plotgk, Hy.,,), (k,ypx), and(k, M ,,) of the neg-
ative tails @), (b1), (c1) and the positive tailsat), (b2), (c2) for the SMF model
and the DAX 30, respectively. The smooth lines refer to the model while the

95% confidence intervals are those for the actual data.
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This Appendix provides calibration results of the pure switching mddel (P.7)}(2.12) with

APPENDIX B. ECONOMETRIC ANALYSIS OF THEPURE SWITCHING MODEL

n, = 0 to characterize the power-law behavior of the DAX 30.

-0.05 ‘
0

TABLE B.1. The calibrated parameters of the SW models
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FIGURE B.1. (a) Autocorrelations aof;, r? and|r,| for the SW model. (b) The
ACs of the returns, the squared returns and the absolute returns for the calibrated
SW model and the DAX 30. The smooth lines refer to the SW model while the

95% confidence intervals are those for the DAX 30.

TABLE B.2. The estimates af for the SW model withn = 50, 100, 150, 200, 250

dapH t p-value 95% ClI Sig%| dru t p-value 95% ClI Sig%
re -0.4466 -4.334 0.059 [-0.4530, -0.4402] 84{1-0.4361 -6.168 0.037 [-0.4405,-0.4318] 90.6
-0.4241 -6.106 0.033 [-0.4284,-0.4198] 91|9-0.4159 -8.317 0.025 [-0.4190, -0.4128] 94.2
-0.3816 -6.861 0.028 [-0.3850,-0.3781] 92|5-0.3746 -9.175 0.021 [-0.3771,-0.3720] 95.1
-0.3466 -7.277 0.024 [-0.3496, -0.3437] 94}11-0.3373 -9.539 0.015 [-0.3395,-0.3351] 96.1
-0.3176 -7.506 0.023 [-0.3202,-0.3149] 94|2-0.3059 -9.673 0.016 [-0.3078,-0.3039] 95.6
r7 03843 3.730 0.021 [0.3779,0.3907] 90[1 0.3918 5.540 0.002 [0.3874,0.3961] 99.2
0.3751 5.400 0.001 [0.3708,0.3794] 99|60.3801 7.603 0.000 [0.3770,0.3832] 100
0.3768 6.776 0.000 [0.3734,0.3803] 99|90.3815 9.345 0.000 [0.3790,0.3840] 100
0.3754 7.879 0.000 [0.3724,0.3783] 100 0.3803 10.76 0.000 [0.3781,0.3825] 100
0.3717 8.786 0.000 [0.3691,0.3743] 10p 0.3758 11.88 0.000 [0.3738,0.3778] 100
|r¢] 04909 4.765 0.003 [0.4845,0.4973] 98|60.4910 6.943 0.000 [0.4866,0.4954] 100
04771 6.869 0.000 [0.4728,0.4814] 100 0.4760 9.520 0.000 [0.4729,0.4791] 100
0.4738 8519 0.000 [0.4703,0.4772] 100 0.4735 11.60 0.000 [0.4710,0.4761] 100
0.4687 9.839 0.000 [0.4658,0.4717] 100 0.4693 13.27 0.000 [0.4671,0.4715] 100
0.4609 10.89 0.000 [0.4583,0.4636] 100 0.4618 14.60 0.000 [0.4598, 0.4637] 100
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TABLE B.3. GARCH(1, 1) Estimates for the SW Model

a x 103 b ap x 10% o B
-0.0660 0.0351 0.3141 0.0971 0.9078
(0.6081) (0.0121) (0.0905) (0.0089) (0.0078)
0.5 68.2 87.8 99.8 100
Note: The numbers in parentheses are the standard errortheandmbers in the last
row are the percentages that the test statistics are significarit &vel over 1000
independent simulations. This also holds for Tablg B.4.

TABLE B.4. FIGARCH(1,?,1) Estimates for the SW Model

a b a0><104 0 §Z51 61
0.0410 0.0244 0.1229 0.4282 0.1981 0.7578
(0.2272) (0.0694) (0.1311) (0.0899) (0.1519) (0.0578)
72.6 66.2 4.2 88.3 90.7 96.1

00 300 500 700 900 1100

100 300 500 700 900 1100 100 300 500 700 900 1100
() ()

FIGURE B.2. The tail index plot$k, Hy ), (k,ypk), and(k, My ) of the neg-
ative tails ¢1), (b1), (c;) and the positive tailsa), (b2), (c2) for the SW model

and the DAX 30, respectively. The smooth lines refer to the SW model while the
95% confidence intervals are those for the actual data.

TABLE B.5. The Wald test off with m = 50, 100, 150, 200, 250

m | 50 100 150 200 250
18.92 44.73 61.61 66.17 77.30
34.99 91.16 125.7 118.6 132.0
2 0.068 1.247 0.263 0.034 0.026
£ 10.035 1.272 0.038 0.694 0.234
0.105 1.085 1.603 0.413 0.198
0.024 0.331 0.064 0.031 0.016

Tt

|7¢]
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APPENDIX C. THE EFFECT OFONE NOISE

This appendix demonstrates the impact of single noise in the nadkl [2.7)-(2.12) on the AC
patterns of the return, absolute returns and squared returns.
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FIGURE C.1. The time series of (a) the price (red solid line) and the funda-
mental price (blue dot line) and (b) the return; (c) the density distribution of the
returns; the ACs of (d) the returns; (e) the absolute returns, and (f) the squared
returns, with the fundamental noise onby (= 0).
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FIGURE C.2. The time series of (a) the t price (red solid line) and the funda-
mental price (blue dot line) and (b) the return; (c) the density distribution of the
returns; the ACs of (d) the returns; (e) the absolute returns, and (f) the squared
returns, with the market noise only (= 0).
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