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1. INTRODUCTION

The use of fundamental and technical analysis by financial market professionals is well doc-

umented.1 Empirical evidence suggests that investors and fund managers use combinations of

fixed and switching strategies based on fundamental and technical analysis when making in-

vestment decisions. Recent laboratory experiments (e.g. Hommeset al., 2005 and Anufriev

and Hommes, 2012) provide further evidence on that agents use simple “rule of thumb” trading

strategies and are able to coordinate on a common prediction rule, showing that heterogeneity

in expectations is crucial to describe individual forecasting and aggregate price behavior. In

this paper we test a simple asset pricing model of heterogeneous agents using the daily DAX

30 index2 from 1975 to 2007. We show that the market is dominated by the adaptive investors

who constantly switch between fundamental and trend following strategies, although some in-

vestors never change their strategies over the time. The results provide a strong support to the

empirical evidence and laboratory experiments. Consequently, we provide further insights into

the explanatory power of heterogeneous agent models to financial markets.

This paper is largely motivated by the recent literature on heterogeneity and bounded rational-

ity. Due to limited information and endogenous uncertainty of the state of the world, investors

are prevented from forming and solving life-time optimization problems in favor of more sim-

ple reasoning and rules of thumb (Shefrin, 2005). In general, investors are boundedly ratio-

nal by making optimal decisions based on their limited information and expectations (Sargent,

1993). There is a growing evidence on investors’ heterogeneity and bounded rationality, which

has profound consequences for the interpretation of empirical evidence and the formulation of

economic policy (Heckman, 2001). Research into asset pricing and financial market dynam-

ics resulting from bounded rationality and interaction of adaptively heterogeneous traders has

flourished over the last three decades and various heterogeneous agent models (HAMs) have

been developed.3 To explore the role of agents’ heterogeneity in financial markets, the market

1See, for example, Allen and Taylor (1990), Taylor and Allen (1992), Menkhoff (1998) and Cheunget al., (2004)
for foreign exchange rate markets and Menkhoff (2010) for fund managers.
2The DAX, Deutscher Aktienindex (German stock index), tracks the segment of the largest and most im-
portant companies, known as blue chips, on the German equities market. It contains the shares of the 30
largest and most liquid companies admitted to the Frankfurt Stock Exchange in the Prime Standard seg-
ment. The DAX represents about 80% of the aggregate prime standards market cap. Seehttp://www.dax-
indices.com/EN/index.aspx?pageID=1.
3See, for example, Frankel and Froot (1990), Day and Huang (1990), Chiarella (1992), Lux (1995, 1998), Brock
and Hommes (1998), Lux and Marchesi (1999), Hommes (2001), Chen and Yeh (2002), Farmer and Joshi (2002),
Chiarellaet al. (2002), Chiarella and He (2002, 2003), and De Grauwe and Grimaldi (2006).
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dominance of different trading strategies represented by different types of traders plays a central

role in market price behavior. It has been modelled either implicitly by examining their relative

activity impacts, such as Day and Huang (1990) and Chiarella (1992) in early literature, or ex-

plicitly by examining their market fractions, such as Lux (1995), Brock and Hommes (1998),

and Dieci, Foroni, Gardini and He (2006). The HAMs have successfully explained market

booms, crashes, and deviations of the market price from the fundamental price. They are also

able to replicate various stylized facts (including excess volatility, excess skewness, fat tails,

volatility clustering and power-law behavior in return volatility) observed in financial markets.4

The promising perspectives of the HAMs have motivated further empirical studies. Focusing

on the model of Dieci et al. (2006), which allows for agents either having fixed strategies or

switching their strategies based on past performance over time, we extend the model to include

noise traders to rationalize the market noise in the model, our main contribution is then to sys-

tematically calibrate a large number of structural parameters of the model and subsequently

perform series of formal econometric tests showing that the calibrated model is well able to

replicate a large number of stylized facts.

This paper is closely related to a growing literature on the calibration and estimation of the

HAMs in which the heterogeneity has been modeled through the well-known fundamentalists

and chartists approach. These models have been successfully used to empirically explain spec-

ulation and bubble-like behavior in financial markets.5 Despite the success such as Franke and

Westerhoff (2011, 2012), econometric analysis and estimation of HAMs are still challenging

tasks. The difficulties of estimation come from the complexity of the HAMs, together with

(typically) many parameters, which makes verification of identification rather difficult, and thus

proving consistency of estimation troublesome. Quite possibly a HAM might be misspecified,

so that likelihood and/or moments based methods might produce poor results. But this situation

is not alone when we look at literatures in other areas of economics and finance. In the real busi-

ness cycles literature (Kydland and Prescott, 1982) and equity premium puzzle literature (Mehra

4We refer the reader to Hommes (2006), LeBaron (2006), Chiarellaet al. (2009), Lux (2009b), and Chenet al.
(2012) for surveys of recent developments in this literature.
5See, for instance, earlier works by Vigfusson (1997), Baak (1999), Chavas (2000), and for stock markets (Boswijk
et al., 2007; Franke, 2009; Franke and Westerhoff, 2011, 2012; Chiarellaet al., 2012, 2014; He and Li, 2015),
foreign exchange markets (Westerhoff and Reitz, 2003; De Jonget al., 2010; ter Ellenet al., 2013), mutual funds
(Goldbaum and Mizrach, 2008), option markets (Frijnset al., 2010), oil markets (ter Ellen and Zwinkels, 2010),
and sovereign European CDS spreads (Chiarellaet al., 2015). Also, HAMs have been estimated with contagious
interpersonal communication by Gilli and Winker (2003), Alfaranoet al. (2005), Lux (2009a, 2012), and other
works reviewed in Liet al. (2010) and Chenet al. (2012).
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and Prescott, 1985), we face with the very similar problems, and the models are assessed by cal-

ibration method. For example, in Kydland and Prescott (1982), the calibration consists in two

steps. First, structural parameters are calibrated to values in previous empirical studies and to

match long run average values. Second, the verification is implemented by judging the ade-

quacy of the model to reproduce well chosen stylized facts, the parameters asides from those in

the first step are treated as free parameters, their values are then chosen to minimize the distance

between the well chosen stylized facts of the U.S. economy and the corresponding ones of the

model. The calibration methodology is widely used in areas including Dynamic Stochastic Gen-

eral Equilibrium (DSGE) models. It does not consider the identification problem, precision of

estimates and the goodness of fit are provided by the distance between the model and the data.

It causes a huge amount of debate comparing with the usual estimation methodology where

it attempts to find the parameters that lead to the best statistical fit by Maximum Likelihood

(ML), Generalized Method of Moments (GMM), Method of Simulated Moments (MSM), or

Efficient Method of Moments (EMM), and the performance of the model is examined through

specification and goodness of fit tests.6 The calibration and estimation are closest in spirit to

Geweke (2006) classification of weak and strong econometric interpretation. The advantage

of weak econometric interpretation is that the estimators are often more robust7 than the full

information estimators. In addition, it allows the researcher to focus on the characteristics in

the data for which the model (which is necessarily an abstraction of reality) is most relevant.

The attractions of strong econometric interpretation are clear, when successful, it provides a full

characterisation of the data generating process and allows for proper specification testing. In

existing works on estimation of HAMs, Franke (2009) applies MSM to a small model of Man-

zan and Westerhoff (2005) successfully. Franke and Westerhoff (2012) further develop model

comparison method. The methods of Gilli and Winker (2003), Winker and Gilli (2003), Liet

al. (2010) and He and Li (2015) belong to the weak econometric interpretation. HAMs are

still in its infancy and they are very likely be misspecified. It is from this point we argue that

this leaves room for weak econometric interpretation, it is an alternative to other existing ones,

6The debate are best summarized by Canova (1994), Hansen and Heckman (1996), Kydland and Prescott (1991,
1996), and Dridiet al. (2007).
7see, also in Dieboldet al. (1998) and Schorfheide (2000).
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and it is also usable for more complicated models. It can be interpreted in terms of consistent

estimation of the parameter of interest (Dridiet al., 2000).8

In this paper, following Liet al. (2010) and He and Li (2015) we take the weak economet-

ric interpretation based on the power-law decay patterns of the autocorrelation of returns, the

squared returns and the absolute returns for the DAX 30 stock market daily closing price in-

dex. We do this by choosing the interesting parameters in the whole model class that minimize

the distance between particular actual data based autocorrelations and HAMs based autocorre-

lations. By conducting econometric analysis via Monte Carlo simulations, we show that the

autocorrelation patterns, the estimates of the power-law decay indices, (FI)GARCH parame-

ters, and tail index of the model match closely to the corresponding estimates for the DAX 30.

Consequently, our results provide a strong support to the empirical evidence, including the pop-

ularity of fundamental and technical analysis, and boundedly rational and adaptive behavior of

investors in financial markets.

The paper is structured as follows. Section 2 extends the adaptive asset pricing model de-

veloped in Dieci et al. (2006). Section 3 calibrates the model to characterize the power-law

behavior of the DAX 30. Based on the calibrated parameters of the model, we use Monte Carlo

simulations to examine the effectiveness of the calibration in generating the autocorrelation

patterns, the decay indices of the power-law, and the tail behavior. Section 4 presents an expla-

nation on the generating mechanism of the power-law behavior of the model. We also conduct

formal tests to see how well the calibrated model is able to describe the characteristics of the

DAX 30 and how the model fits better than a pure switching model. Section 5 concludes.

2. THE MODEL

The use of technical analysis by financial market professionals is well documented. Empiri-

cal evidence (Allen and Taylor, 1990 and Taylor and Allen, 1992) suggests that the proportions

of agents relying on particular strategies such as technical and fundamental analysis may vary

over time, although there are certainconfidentagents who do not change their strategy over

time. Recently, Menkhoff (2010) analyzes survey evidence from 692 fund managers in five

8The weak econometric interpretation is closely linked to the indirect inference methodology proposed by Gourier-
oux et al. (1993), which has been extended in Dridiet al. (2000, 2007). This methodology could gather both the
advantages of the weak and strong econometric interpretation to consistently estimate some of the parameters of
interests despite of model misspecification. Exploring on how to apply this methodology to HAMs might be a way
forward in the future research.
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countries. He finds that the share of fund managers that put at least some importance on tech-

nical analysis is very large. Though technical analysis does not dominate the decision-making

of fund managers in general, but at a forecasting horizon of weeks, Menkhoff (2010) finds that

technical analysis is the most important form of analysis and is thus more important than funda-

mental analysis, which is in line with findings from foreign exchange in Menkhoff (1998) and

Cheunget al. (2004). Menkhoff (2010) strongly supports the view that heterogeneous agents

possess different sets of information or different beliefs about market processes and the use of

technical analysis seems to react to this view with trend-following behavior (and also by relying

more strongly on momentum and contrarian investment strategies), believing that psychologi-

cal factors are important and herding is beneficial. This view has also been shared by recent

laboratory experiments in Hommeset al. (2005) and Anufriev and Hommes (2012). They show

that agents using simple “rule of thumb” trading strategies are able to coordinate on a com-

mon prediction rule. Therefore heterogeneity in expectations is crucial to describe individual

forecasting and aggregate price behavior.

Based on the empirical evidence, Dieci et al. (2006) extend early HAMs of Brock and

Hommes (1998) by considering the case that market fractions have both fixed and adaptive

switching components. In each trading period agents are assumed to be distributed among two

groups, relying upon different predictors (or strategies, or behavioral rules), fundamental traders

(or fundamentalists) and trend followers (or chartists). The market fractions in a given period

are partially determined by the past performance of the strategies over time and partially fixed.

In other words, a switching component is introduced to characterizeadaptively rational behav-

ior of agents who select different strategies over time according to a performance measure, and

a constant component of agents is used to represent agents who are confident and stay with

their strategies over time. While the fixed fraction component expresses themarket mood, the

switching fraction component captures the effect ofevolutionary adaption. The focus of Dieci

et al. (2006) is to explore the complicated price dynamics of the corresponding nonlinear de-

terministic model. Apart from the fundamentalists and trend followers, we also consider noise

traders who play an important role in financial market (see, for example, Delonget al. 1990).

In the following, we extend the model of Dieci et al. (2006) to include noise traders and show

that the resulting model is actually the same as the model of Dieci et al. (2006).



7

Consider an asset pricing model with one risky asset and one risk free asset that is assumed

to be perfectly elastically supplied at gross returnR = 1 + r/K, wherer is the constant

risk free rate per annum andK is the frequency of trading period per year. Letpt be the (ex

dividend) price per share of the risky asset and{Dt} the stochastic dividend process of the risky

asset at timet. There are three types of traders (or investors/agents), fundamental traders (or

fundamentalists), trend followers (or chartists) and noise traders, denoted by type1, 2 and3

traders respectively. LetQi,t(i = 1, 2, 3) be their market fractions at timet, respectively. We

assume that there is a fixed fraction of noise traders, denoted byn3. Among1− n3, the market

fractions of the fundamentalists and trend followers have fixed and time varying components.

Denote byn1 andn2 the fixed proportions of fundamentalists and trend followers among1−n3,

respectively. Then(1 − n3)(n1 + n2) represents the proportion of traders who stay with their

strategies over time, while(1− n3)[1− (n1 + n2)] is the proportion of traders who may switch

between the two types. Among the “switching” traders, we denoten1,t andn2,t = 1 − n1,t the

proportions of fundamentalists and trend followers at timet, respectively. It follows that the

market fractions(Q1,t, Q2,t, Q3,t) at timet are expressed by

Q1,t = (1−n3)[n1+(1−n1−n2)n1,t], Q2,t = (1−n3)[n2+(1−n1−n2)n2,t], Q3,t = n3.

Denoten0 = n1 + n2, m0 = (n1 − n2)/n0 andmt = n1,t − n2,t. Then the market fractions at

time t can be rewritten as





Q1,t = 1
2
(1− n3) [n0 (1 +m0) + (1− n0) (1 +mt)] ,

Q2,t = 1
2
(1− n3) [n0 (1−m0) + (1− n0) (1−mt)] ,

Q3,t = n3

(2.1)

Let Rt+1 := pt+1 + Dt+1 − Rpt be the excess return per share in(t, t + 1). For h = 1, 2,

let Eh,t andVh,t be the conditional expectation and variance of typeh traders. LetWh,t be

investor’s wealth at timet andzh,t the number of shares of the risky asset held by the investor

from t to t + 1. Then the wealth of investor of typeh at t + 1 is given byWh,t+1 = RWh,t +

zh,t(pt+1 +Dt+1 −Rpt). Assume that traders maximize the expected utility of wealth function

Uh(W ) = − exp(−ahW ), whereah is the risk aversion coefficient of typeh traders. Then,

under the standard conditional normality assumption, the demandzh,t of a typeh trader on the

risky asset is given byzh,t = Eh,t(Rt+1)/(ahVh,t(Rt+1)).
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Assume the demand of the noise traders is given byξt ∼ N(0, σ2
ξ ), which is an i.i.d. ran-

dom disturbance. With zero supply of outside shares, the population weighted average excess

demandZe,t at timet is given by

Ze,t ≡ Q1,t z1,t +Q2,t z2,t + n3ξt.

Following Chiarella and He (2003), the market price in each trading period is determined by

a market maker9 who adjusts the price as a function of the excess demand. The market maker

takes a long position whenZe,t < 0 and a short position whenZe,t > 0. The market price is

adjusted according to

pt+1 = pt + λZe,t, (2.2)

whereλ denotes the speed of price adjustment of the market maker. Denoteµ = (1− n3)λ and

σδ = λn3σξ. Then equation (2.2) becomes

pt+1 = pt + µZe,t + δt, (2.3)

whereZe,t = q1,t z1,t + q2,t z2,t andδt ∼ N(0, σ2
δ ) with qi,t = Qi,t/(1 − n3) for i = 1, 2. The

price equation (2.3) is exactly the model developed in Dieci et al. (2006).

We now describe briefly the heterogeneous beliefs of the fundamentalists and trend followers

and the adaptive switching mechanism. This part is the same as in Dieci et al. (2006) and He

and Li (2008). Fundamental traders are assumed to have some information on the fundamental

valuep∗t+1 of the risky asset at timet. They believe that the stock price may be driven away

from the fundamental price in a short run, but it will eventually return to the fundamental value

in a long-run. Thus the conditional mean and variance of the price for the fundamental traders

are assumed to follow

E1,t (pt+1) = pt + (1− α)(p∗t+1 − pt), V1,t (pt+1) = σ2
1 , (2.4)

whereσ2
1 is a constant variance on the price. The speed of adjustment towards the fundamental

price is represented by(1 − α), where0 < α < 1. An increase inα may thus indicate less

confidence on the convergence to the fundamental price, leading to a slower adjustment.

9Different from the Walrasian equilibrium price mechanism used in Boswijket al. (2007), we use market maker
partial equilibrium mechanism for the convenience of calibration. The market maker mechanism has often been
used in HAMs for its simplicity and convenience.
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Unlike the fundamental traders, trend followers are assumed to extrapolate the latest observed

price deviation from a long run sample mean price. More precisely, their conditional mean and

variance are assumed to follow

E2,t (pt+1) = pt + γ (pt − ut) , V2,t (pt+1) = σ2
1 + b2vt, (2.5)

whereγ ≥ 0 measures the extrapolation from the trend,ut andvt are sample mean and variance,

respectively, which follow

ut = δut−1 + (1− δ) pt, vt = δvt−1 + δ (1− δ) (pt − ut−1)
2 ,

representing limiting processes of geometric decay processes when the memory lag tends to

infinity.10 Hereb2 ≥ 0 measures the sensitivity to the sample variance andδ ∈ (0, 1) measures

the geometric decay rate. Note that a constant variance is assumed for the fundamentalists who

believe the mean reverting of the market price to the fundamental price; while a time-varying

component of the variance for the trend followers reflects the extra risk they take by chasing the

trend.

We now specify how traders compute the conditional variance of the dividendDt+1 and of

the excess returnRt+1 over the trading period. For simplicity we assume that traders share

homogeneous belief about the dividend process and that the trading period dividendDt is i.i.d.

and normally distributed with mean̄D and varianceσ2
D. The common estimate of the variance

of the dividend (σ2
D) is assumed proportional to the variance of the fundamental price, with no

correlation between price and dividend. It follows that traders’ conditional variances of the ex-

cess return can be estimated11 asV1,t (Rt+1) = (1 + r2)σ2
1 andV2,t (Rt+1) = σ2

1 (1 + r2 + bvt),

whereb = b2/σ
2
1. Denote byp∗ = D̄/(R − 1) = (K/r)D̄ the long-run fundamental price.

10With a geometric decaying probability distribution(1 − δ){1, δ, δ2, δ3, · · · } over the historical prices
{pt, pt−1, pt−2, pt−3, · · · , }, ut andvt are the corresponding sample mean and variance. See He (2003) for a
detailed discussion on the process.
11 The long-run fundamental value is given byp∗ = (KD̄)/r, whereKD̄ is the average annual dividend. Let
σp̄ be the annual volatility of the pricep, whereσ represents the annual volatility of1 dollar invested in the risky
asset. Under independent price increments, the trading period variance of the price can be estimated asσ2

1 =

(p∗σ)
2
/K. Denote byDA andσ2

DA
the annual dividend and its variance and assume an approximate relationship

DA = rp between annual dividend and price. Then one getsσ2
DA

= r2(σp∗)2 and thereforeσ2
D = σ2

DA
/K =

r2(σp∗)2/K = r2σ2
1 . Assuming zero correlation between price and dividend at trading period frequency, one then

obtainV1,t (Rt+1) =
(
1 + r2

)
σ2
1 andV2,t (Rt+1) = σ2

1(1 + r2) + b2vt.
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Using (2.4) and (2.5), it turns out that traders’ optimal demands are determined by

z1,t =
(α− 1)

(
pt − p∗t+1

)
− (R− 1) (pt − p∗)

a1 (1 + r2)σ2
1

, z2,t =
γ (pt − ut)− (R− 1) (pt − p∗)

a2σ
2
1 (1 + r2 + bvt)

.

(2.6)

Denote byπh,t+1 the realized profit, or excess return, betweent andt + 1 by traders of type

h, πh,t+1 = zh,t(pt+1 + Dt+1 − Rpt) = Wh,t+1 − RWh,t for h = 1, 2. Following Brock and

Hommes (1997, 1998), the proportion of “switching” traders at timet+ 1 is determined by

nh,t+1 =
exp [β (πh,t+1)]∑
i exp [β (πi,t+1)]

, h = 1, 2,

where parameterβ is theintensity of choicemeasuring the switching sensitivity of the popula-

tion of adaptively rational traders to the better profitable strategy. Together with (2.1) the market

fractions and asset price dynamics are determined by the following random discrete-time dy-

namic system12

pt+1 = pt + µ(q1,t z1,t + q2,t z2,t) + δt, δt ∼ N (0, σ2
δ ), (2.7)

ut = δut−1 + (1− δ) pt, (2.8)

vt = δvt−1 + δ (1− δ) (pt − ut−1)
2 , (2.9)

mt = tanh

{
β

2
(z1,t−1 − z2,t−1) (pt +Dt − Rpt−1)

}
, (2.10)

Dt = D̄ + σDνt, νt ∼ N(0, 1), (2.11)

wherez1,t andz2,t are given by (2.6). The fundamental price is assumed to follow a random

walk, such that13

p∗t+1 = p∗t exp(−
σ2
ǫ

2
+ σǫǫt+1), ǫt ∼ N (0, 1), σǫ ≥ 0, p∗0 = p∗ > 0, (2.12)

whereǫt is independent of the noisy demand processδt. The corresponding deterministic model

can exhibit complicated price dynamics, which help us to understand the underlying mechanism

12Here the hyperbolic functiontanh(x) is defined bytanh(x) = (ex − e−x)/(ex + e−x).
13The specification of the fundamental price process in (2.12) is to make sure that there is no significant ACs
in returns, absolute returns and squared returns in the fundamental price. Since the focus of the paper is on the
characteristics of returns, we also choose the fundamental price processp∗t defined in equation (2.12) to have an
expected mean value of zero. The long-run fundamental valuep∗ = (KD̄)/r defined in Footnote 11 only indicates
a reference long-run fundamental value, which is chosen as the initial value of the fundamental price process.
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of the power-law behavior of the stochastic model. We refer the reader to Dieciet al. (2006) for

the complex price dynamics and He and Li (2007) for a detailed discussion on the mechanism.

3. ESTIMATION OF THE POWER-LAW BEHAVIOR IN THE DAX 30

Econometric analysis, especially estimation, of HAMs is still a challenging task. In general,

the difficulties of estimation come from the complexity of the HAMs, together with (typically)

many parameters, which makes verification of identification rather difficult, and thus proving

consistency of estimation troublesome, as we have discussed in the introduction. For recent at-

tempts to estimate HAMs, the identification problem is typically circumvented by focussing on

a relatively simple HAMs, or by estimating a few key parameters only. For example, Boswijk

et al. (2007) derive a reduced and simplified Brock and Hommes (1997, 1998) type model

and estimate it by using the nonlinear least square method; Alfaranoet al. (2005) estimate a

simplified herding model by the maximum likelihood method; Amilon (2008) estimates two

specifications of the extended Brock and Hommes switching models by using the efficient

method of moments and maximum likelihood method; Franke (2009) applies the method of

simulated moments to a model developed by Manzan and Westerhoff (2005); Franke and West-

erhoff (2012) use the same method to estimate a structural stochastic volatility HAM and show

a strong herding component by conducting a model contest. Although a good progress seems

to be made in estimating HAMs, even if consistent estimation was possible, the likely heav-

ily nonlinear relationship between observables and unknown parameters to be estimated might

seriously complicate estimation.14

This section provides a calibration of the model (2.7)-(2.12) to characterize the power-law

behavior of the DAX 30. After a brief discussion of the stylized facts of the DAX 30, includ-

ing both fat tail and power-law behavior, we introduce the calibration procedure to match the

autocorrelation patterns in the returns, absolute and squared returns for the DAX 30, present

the calibration result and conduct an out-of-sample test. Based on the calibrated parameters for

the model, we use Monte Carlo simulations to examine the effectiveness of the calibration in

generating the autocorrelation patterns and estimating the decay indices of the power-law be-

havior, comparing with those of the DAX 30. We also used the calibration result to examine the

14 See, for example, Chenet al. (2012) and Amilon (2008). Amilon (2008) concludes that the simple prototype
models seems to have potential to explain empirical facts although the fit is generally not quite satisfactory, he
reports local minima, possibly not the global minimum, when calculating the estimators.
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power-law tail behavior of the model comparing with the DAX 30. We show that the calibrated

model closely generates the characterization of the power-law behavior of the DAX 30 in the

return autocorrelation and tails.

3.1. Stylized Facts and Autocorrelations of Returns for the DAX 30. The price index data

for the DAX 30 comes from Datastream, which contains 8001 daily observations from 11 Au-

gust, 1975 to 29 June, 2007. We usept to denote the price index for the DAX 30 at timet

(t = 0, ..., 8000) with log returnsrt defined byrt = ln pt − ln pt−1 (t = 1, · · · , 8000)15. Ta-

ble 3.1 gives the summary statistics ofrt for the DAX 30. We can see from Table 3.1 that

the kurtosis forrt is much higher than that of a normal distribution (which is 3). The kurtosis

and studentized range statistics (which is the range divided by the standard deviation) show

the characteristic fat-tailed behavior compared with a normal distribution. The Jarque-Bera

normality test statistic is far beyond the critical value, which suggests thatrt is not normally

distributed. Figures 3.1 (a) and (b) plot the time series ofpt andrt, showing volatility cluster-

ings and time-varying market volatility. This suggests that a suitable model for the data should

be able to generate time varying volatility and volatility clustering as suggested by the ARCH

and (FI)GARCH models.

TABLE 3.1. Summary statistics ofrt.

mean std. skewness kurtosis min max stud. range Jarque-Bera
0.00034 0.01244 -0.4765 10.436 -0.1371 0.0755 17.092 18735
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FIGURE 3.1. Time series on prices and log returns of the DAX 30 from 11
August, 1975 to 29 June, 2007.

15Note that at daily frequency, the difference between log-returns and simple returns is very small.
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FIGURE 3.2. Autocorrelations ofrt, r2t and|rt| for the DAX 30.

Among those reported stylized facts shared among different market indices, a well known

stylized fact of stock returns is that the returns themselves contain little serial correlation, but the

absolute returns|rt| and the squared returnsr2t do have significantly positive serial correlation

over long lags. For example, Dinget al. (1993) investigate autocorrelations (ACs) of returns

(and their transformations) of the daily S&P 500 index over the period 1928 to 1991 and find that

the absolute returns and the squared returns tend to have very slow decaying autocorrelations,

and further, the sample autocorrelations for the absolute returns are greater than those for the

squared returns at every lag up to at least 100 lags. This kind of AC feature indicates the long-

range dependence or the power-law behavior in volatility. The autocorrelations for the DAX 30

are plotted in Figure 3.2, which clearly support the findings in Dinget al. (1993).

3.2. Model Calibration and Result. In principle, to calibrate the power-law behavior of the

DAX 30 to our model, we minimize the average distance between the autocorrelations of the

log returns, the squared log returns, and the absolute log returns of the DAX 30 and the corre-

sponding autocorrelations generated from the models16. More precisely, denoteΘ the parameter

space of the model. Letθ ∈ Θ be the vector of parameters in the model to be calibrated,N be

the number of independent simulations of the model,β̂n be the estimated autocorrelations of

then-th run of the model, and̂βDAX be that of the DAX 30. In calibration, we solve

θ̂ ∈ argminθ∈ΘDθ, Dθ := ‖ 1

N

N∑

n=1

β̂n − β̂DAX‖2 (3.1)

16Note that we do not consider other moments such as scales of returns and absolute returns and others. By
exclusively focusing on the autocorrelations of return, squared return and absolute return, we provide a simple way
to gain insight into the generating mechanism of power-law behavior of volatility of the model.
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for the standard Euclidian norm‖ · ‖, using an asynchronous parallel pattern search algo-

rithm.17 The parameters in the model are chosen to lie in the following ranges:18 α ∈ [0, 1],

γ ∈ [0.05, 5.5], a1, a2 ∈ [0.001, 9.0], µ ∈ [0.1, 5], m0 ∈ [−1, 1], n0 ∈ [0.05, 0.995], δ ∈ [0, 1],

b ∈ [0.05, 8.5], β ∈ [0.5, 1.5], σε ∈ [0.005, 0.05], σ =
√
Kσε and σδ ∈ [0.05, 8.5]. However

p∗0 = p∗ = 100, q = r2, andr = 0.05 are kept fixed. In the calibration and the subsequent

econometric analysis, we ran 1,000 independent simulations19 over 9,000 time periods and dis-

carded the first 1,000 time periods to wash out possible initial noise effect. For each run of the

model we obtain 8,000 observations to match the sample size of the DAX 30. It is not possible

to use autocorrelations at all lags, so we focus on a limited set of autocorrelations. In particular,

we focus on all lags until 50 and then each fifth lag up to 10020. This corresponds to 60 auto-

correlations in total for return, the absolute return and squared return, respectively. Essentially,

with 60 autocorrelations estimated for each of thert, r2t and|rt|, the dimension of̂βn andβ̂DAX

is 180 in total. The calibrated parameters of the model are reported in Table 3.2.21

We note that HAMs are highly likely to be misspecified, the calibration procedure in (3.1)

is based on the distance between the model and real world for a selected set of moments. It

is designed to answer the question “given that the model is false, how true is it?” It allows us

to focus on the characteristics in the data (in our case, this refers to the power law behavior

in volatility) for which the model is most relevant. A related important question is “to find

17The software implementing the algorithm is APPSPACK 5.01, see more details in Gray and Kolda (2006), Griffin
and Kolda (2006), and Kolda (2005). In the implementation, to avoid possible local minima we tried different set
of starting values, and for each set of starting value we search for the minimum and then we re-initialize and search
for the new minimum again. We repeat the procedure until there’s no further improvements.
18The parameter ranges forα,m0, no, δ are implied by the model specifications. The ranges for parameters
γ, a1, a2 andµ are selected to reflect reasonable behavior of the traders based on the analysis of the underly-
ing deterministic model in Dieci et al. (2006). The range forσǫ represents the volatility of the fundamental price,
while the range forσδ indicates the daily market price volatility level.
19Note that 1,000 simulation runs works well for us to produce accurate and relatively smooth ACs lines reported in
Fig. 3.3, we do not consider the problem of the optimal number of simulations needed for solving this optimization
problem. In other applications, much fewer number of simulation might be sufficient.
20We choose a large numbers of lags of ACs because our method of calibration of the model is exclusively focused
on the ACs, and it works well to produce reasonable results reported in Fig. 3.3. In practice, much less lags may
contain the same information and too many lags would waste computation time and even affect the accuracy of
estimation, see for instance, Franke and Westerhoff (2012) for related discussion.
21It is likely that the estimated parameter values can be different for differ indices over different time periods. In
fact, in our earlier exploratory model (He and Li, 2007, 2008, 2015 and Liet al., 2010) using other indices or
different periods of an index, the estimated model parameters are different in each of the cases. Quantitatively the
stylized facts can vary over time, however, qualitatively the main feature of the stylized facts remains the same
over long time periods and across different markets. It is this qualitative feature of the long memory pattern and
the generating mechanism provided in Section 4.1 that this paper contributes to the current literature. It is from
this perspective that the model estimation in this paper is robust. We would like to thank an anonymous referee for
bringing up this discussion.
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out how wrong a model is and to compare the performance of different models” (Kan and

Robotti, 2008, 2009). In representative agent and rational expectation setting, measures of

model misspecification developed by Hansen and Jagannathan (1997) and recently, Kan and

Robotti (2008, 2009) are used to rank model performance. The distance in (3.1) is an analogue

of Hansen and Jagannathan measure of model misspecification in the context of HAMs.22

TABLE 3.2. The calibrated parameters of the models

α γ a1 a2 µ n0 m0 δ b σ σδ β
0.488 1.978 7.298 0.320 1.866 0.313 -0.024 0.983 3.537 0.231 3.205 0.954

We now provide an economic intuition of the calibrated result. Based on the calibrated pa-

rameters in Table 3.2, the parameterno = 0.313 implies that, among two strategies, there are

some traders who do not change their investment strategies and most of traders switch between

two strategies with a switching intensity measured byβ = 0.954. This is consistent with the

empirical evidence of using fundamental and technical analysis and the adaptive behavior of

investors. Withmo = −0.024, it indicates that, among those traders who do not change their

investment strategies, there are about equal numbers of trend followers and fundamentalists.

These results demonstrate that both fundamentalists and trend followers are active in the mar-

ket and the market is populated with confident traders as well as adaptive traders. This is in line

with the findings from foreign exchange markets in Allen and Taylor (1990) and Taylor and

Allen (1992) and fund managers in Menkhoff (2010). The relatively highera1 thana2 implies

that the fundamentalists are more risk averse than the trend followers23. A value ofα = 0.488

indicates that the speed of price adjustment of the fundamentalists towards the fundamental

value is indicated by1/(1 − α), which is about two trading periods. This may explain the

frequent deviations of the market price from the fundamental value in short-run but not in long-

run. A value ofγ = 1.978 indicates that trend followers extrapolate the price trend, measured

22For HAMs, model comparison have been discussed in Liet al. (2010) and Franke and Westhoff (2012). Franke
and Westhoff (2012) suggest measures of model comparison if the models can be successfully estimated by the
methods of simulated moments. Developing measures using (approximated) stochastic discount factor would
provide better insight into HAMs, however, this seems not feasible for the paper at the moment. Behavioral
finance literature often finds limits of arbitrage (see, e.g., Shleifer and Vishny, 1997; Froot and Dabora, 1999;
Lamont and Thaler, 2003; and Gromb and Vayanos, 2010), verification of existence of stochastic discount factor
is not trivial, we plan to explore it further in future research.
23Note that for simplicity, we assume that agents’ risk preferences switch when their strategies switch. Comparing
to the trend followers who invest in short-run and are less risk averse, the fundamentalists invest in long-run and
are more risk averse in general. We see from Footnote 11 that trend followers have a systematically higher variance
estimate relative to the fundamentalists (bybvtσ

2
1). When the additional term is much larger than(1 + r2)σ2

1 , the
trend followers have much higher risk perception which also justifies the relative lower risk aversion of the trend
followers than the fundamentalists.
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by the difference between the current price and the geometric moving average of the history

prices, actively. Also note thatγ = 1.978 > 1 does not lead to explosive expectations by trend

followers because of the quadratic volatility function in the denominator of the demand func-

tion. The geometric decay rateδ = 0.983 indicates a slow decaying weight. The parameter

b2 = bσ2
1 measures the influence of the sample variancevt, in addition to the common belief

on the price volatilityσ2
1, to the estimated price volatility for trend followers. The value of

b = 3.537 implies that trend followers are cautious when estimating the price volatility, though

they are less risk averse. The annual return volatility ofσ = 23.1% is close to the annual return

volatility of 19.67%(=
√
250 × 0.01244) for the DAX 30. A value ofµ = 1.866 indicates

that the market maker actively adjusts the market price to the excess demand of the traders. A

positiveσδ indicates that the noise traders are active in the market. In summary, the market is

dominated by traders who switch between the two strategies based on their performance over

the time, although there are some traders who do not change their strategies over the time. Due

to the switching, the market becomes more volatile, which supports the theoretical predica-

tion in Brock and Hommes (1998), but in contrast to the finding in Amilon (2008) who find

insignificant switching effect when estimating a structure HAM.
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FIGURE 3.3. (a) Autocorrelations ofrt, r2t and|rt| for the model. (b) The ACs
of the returns, the squared returns and the absolute returns for the calibrated
model and the DAX 30. The smooth lines refer to the model while the 95%
confidence intervals are those for the DAX 30.
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3.3. The Autocorrelation Patterns of the Calibrated Model and Out-of-Sample Test. It is

interesting to verify that our calibrated model is able to replicate the power-law behavior of the

DAX 30 described in Fig. 3.2. Using the parameters in Table 3.2, we run 1,000 independent

simulations for the model. For each run, we estimate the ACs for returns, squared returns and

absolute returns. We then take the average over the 1,000 runs and plot the ACs in Fig. 3.3(a).

It shows that for the model, the ACs are insignificant for the returns, but significantly positive

over long lags forr2t and|rt|. Further, the sample autocorrelations for the absolute returns are

greater than that for the squared returns at all lags up to at least 100 lags. Comparing with Fig.

3.2 for the DAX 30, we see that the patterns of decay of the autocorrelation functions of return,

the squared return and the absolute return are very similar. To see how well the calibrated model

is able to match the autocorrelations ofrt, r2t and|rt| for the DAX 30, Fig. 3.3(b) plots the ACs

of returns, the squared returns and the absolute returns for the model together with the DAX 30

respectively. For comparison purposes, we use the Newey-West corrected standard error and

plot the corresponding 95% confidence intervals of the ACs of the DAX 30. It clearly indicates

that all of the ACs of the model lie inside the confidence intervals of the DAX 30.24

We also perform an out-of-sample test for performance of the model,25 Recall that we cali-

brate the model using the DAX 30 daily price index from 11 August 1975 to 29 June 2007, we

now use data from 02 July 2007 to 02 April 2015 and plot ACs for returns, squared returns and

absolute returns of the DAX 30 together with their 95% confidence intervals in Fig. 3.4, and

to see if the ACs from the calibrated model fit in these intervals. We see from Fig. 3.4 that the

ACs of returns and squared returns of the calibrated model fit in the 95% confidence intervals of

the DAX 30 reasonably well, but the ACs of absolute returns of the calibrated model lie outside

of the corresponding confidence intervals of the DAX 30 after lag 30, which indicate that the

persistence in volatility of the DAX 30 is not as strong as before since the global financial crisis.

Overall, the out-of-sample result indicates that the model performs reasonably well out of the

sample and the calibration method effectively captures the ACs patterns of the DAX 30.

3.4. Effectiveness of the Calibration. Based on the calibrated parameters for the model, we

use Monte Carlo simulations to further examine the effectiveness of the calibration in estimating

the decay indices of the power-law behavior of ACs and in volatility clustering, comparing with

24Here we report the averages of the ACs based on 1,000 simulations and some of the ACs from a single simulation
may lie outside the confidence band.
25We thank an anonymous referee for the suggestion.
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turns for the calibrated model and the DAX 30. The smooth lines refer to the
model while the 95% confidence intervals are those for the DAX 30 from 02
July 2007 to 02 April 2015.

those of the DAX 30. We also used the calibration result to examine the power-law tail behavior

of the model comparing with the DAX 30. We show that the calibrated model closely generates

the characterization of the power-law behavior of the DAX 30 in the return autocorrelation,

volatility clustering and tails.

3.4.1. Estimates of Power-law Decay Index.Besides the visual inspection of ACs ofrt, r2t and

|rt|, one can also construct models to estimate the decay rate of the ACs ofrt, r2t and|rt|. For

instance, we can semiparametrically model long memory in a covariance stationary seriesxt,

t = 0, ±1, ..., by s(ω) ≈ c1ω
−2d asω → 0+, where0 < c1 < ∞, s(ω) is the spectral density

of xt, andω is the frequency. Note thats(ω) has a pole atω = 0 for 0 < d < 1/2 (when there

is a long memory inxt). For d ≥ 1/2, the process is not covariance stationary. Ford = 0,

s(ω) is positive and finite. For−1/2 < d < 0, we have short memory, negative dependence,

or antipersistence. The ACs can be described byρk ≈ c2k
2d−1, wherec2 is a constant and

µ ≡ 2d − 1 corresponds to the hyperbolic decay index. In the literature, there are two most

often used estimators ofd, namely the Geweke and Poter-Hudak (1983), henceforth GPH, and

Robinson and Henry (1999), henceforth RH. We describe the estimators and report the results

in Appendix A.

For the DAX 30, we see from Table A.1 in Appendix A that the estimatedd for the returns

are not significant at any conventional significance levels but significant for the squared and the
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absolute returns. Thus the DAX 30 displays clear evidence of power-law for the squared and the

absolute returns whered is positive, and the persistence in the absolute returns is much stronger

than that in the squared returns. These results coincide with the well-established findings in

the empirical finance literature. For the estimated model, the estimates of the decay rated are

reported in Table A.2 in Appendix A, where the column ‘Sig%’ indicates the percentage of

simulations for which the corresponding estimates are significant at the 5% level over 1,000 in-

dependent simulations. We find that on average the estimates ofd are negative and significantly

different from those of the DAX 30 for returns at the 5% level (and insignificant at the 10%

level), but significantly positive for the squared returns and the absolute returns. This verifies

that there is a clear evidence of power-law for the squared returns and the absolute returns. It

also shows that the patterns of the estimates ofd for the squared returns and the absolute returns

are comparable to those of the DAX 30 in Table A.1.

The above analysis clearly demonstrates that our calibration is effective in matching the auto-

correlation patterns of the DAX 30. In the following discussion, we want to see if the calibrated

model can be used to characterize the volatility clustering and power-law tail behavior, for

which our calibration procedure is not designed.

3.4.2. Volatility Clustering, Power-law and (FI)GARCH Estimates.Another striking feature of

the return series in market indices isvolatility clustering. A number of econometric models

of changing conditional variance have been developed to test and measure volatility clustering.

The most widely used one is the one introduced by Engle (1982) and its generalization, the

GARCH model, introduced by Bollerslev (1986). The GARCH implies that shocks to the

conditional variance decay exponentially. In response to the finding that most of the financial

time series are long memory volatility processes, Baillieet al. (1996) consider the Fractional

Integrated GARCH (FIGARCH) process, where a shock to the conditional variance dies out at

a slow hyperbolic rate. For convenience, in Appendix A, we describe the models and report the

results.

Table A.3 in Appendix A reports the estimates of the GARCH(1, 1) model for the DAX

30, where the mean process follows an AR(1) structure. Based on estimates, one can see that

a small influence of the most recent innovation (smallα1) is accompanied by a strong persis-

tence of the variance coefficient (largeβ1). It is also interesting to observe that the sum of the
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coefficientsα1 + β1 is close to one, which indicates that the process is close to an integrated

GARCH (IGARCH) process. Such parameter estimates are rather common when consider-

ing returns from daily financial data of both stock and foreign exchange markets (see, Pagan

(1996)). However the IGARCH implies that the shocks to the conditional variance persist in-

definitely. Table A.4 in Appendix A reports the estimates of the FIGARCH(1, d, 1) model for

the DAX 30, where the mean process follows an AR(1) model. The estimate for the fractional

differencing parameter̂d is statistically very different from both zero and one. This is consis-

tent with the well known finding that the shocks to the conditional variance die out at a slow

hyperbolic rate.

For the same specifications of the GARCH and FIGARCH models, we report resulting esti-

mates for the calibrated model in Tables A.5 and A.6 in Appendix A, respectively. Again, all

these estimates are the average of the estimations for each independent run of the calibrated

model. The results from the GARCH model are very similar to that from the DAX 30, that

is, a small influence of the most recent innovation is accompanied by strong persistence of the

variance coefficient and the sum of the coefficientsα1 + β1 is close to one. For the estimates

of the FIGARCH(1, d, 1), we see that the estimate ofd for the calibrated model is significantly

different from zero and one.

3.4.3. Power-law Tail behavior.Since the work of Mandelbrot (1963), power-law tail behavior

has been found in a wide range of financial time series, and it has become one of the salient

features in financial markets. In general, iffnormal is the probability density function of a

normal distribution with meanµ and varianceσ2, then we havelog fnormal(x) ∼ − 1
2σ2x

2 as

x → ±∞. A random variableX is said to follow a power-law or Pareto distribution with shape

parameterα > 0 and scale parameterβ > 0 if Pr[X > x] = (x/β)−α, for x ≥ β. In this

case,log fPareto(x) ∼ −(α + 1) log(x) asx → +∞. Hence the difference of the tail behavior

between the normal and Pareto distribution is significant.

The estimation of tail indices has been studied in great detail in extreme value theory. More

precisely, letX1, X2, ..., Xn be a sequence of observations from some distribution functionF ,

with its order statisticsX1,n ≤ X2,n ≤ ... ≤ Xn,n. As an analogue to the central limit theorem,

we know that, on average, if the maximumXn,n, suitably centered and scaled, converges to a

non-degenerate random variable, then there exist two sequences{an} (an > 0) and{bn} such
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that

lim
n→∞

Pr

(
Xn,n − bn

an
≤ x

)
= Gγ(x), (3.2)

whereGγ(x) := exp(−(1 + γx)−1/γ) for someγ ∈ R andx such that1 + γx > 0. Note that

for γ = 0, −(1 + γx)−1/γ = e−x. If (3.2) holds, thenγ is called the extreme value index. In

Pareto distribution, the tail indexγ := 1/α measures the thickness of the tail distribution; the

bigger theγ, the heavier the tail. The estimation ofγ has been thoroughly studied, see Beirlant

et al. (2004) for a detailed account. In Appendix A, we outline three major estimators ofγ, the

Hill estimator, the Pickands estimator, and the moment estimator in Dekkerset al. (1989) and

report the corresponding results.

The Hill index relies on the average distance between extreme observations and the tail cutoff

point to extrapolate the behavior of the tails into the broader part of the distribution. In practice,

the behavior of the Hill index depends heavily on the choice of cutoff pointk, which is also

true for the other two estimators. This choice involves a tradeoff between bias and variance,

which is well known in non-parametric econometrics. Ifk is chosen conservatively with few

order statistics in the tail, then the tail estimate is sensitive to outliers in the distribution and

has a high variance. On the other hand if the tail includes observations in the central part of

the distribution, the variance is reduced but the estimate is biased upward. So, we plot these

estimates index over a range of tail sizes. In the top panel of Fig. A.1 in Appendix A, we plot

the Hill index. We see that for the negative tail, the Hill index of the model fits in the 95%

confidence intervals of the DAX 30; for the positive tail, it fits well whenk is less than 500. The

Pickands estimates, plotted in the middle panel of Fig. A.1, show a larger variability. It seems

that on average the estimates from the model are not far away from those of the DAX 30. The

moment estimates, plotted in the bottom panel of Fig. A.1 for the model are slightly below the

confidence intervals for the DAX 30. To conclude, the model exhibits power-law tail behavior

which is very close to that of the DAX 30.

The overall analysis in this section shows that the calibration method is effective. The cal-

ibrated model is able to characterize successfully not only the power-law behavior in AC, but

also the volatility clustering and power-law tail behavior in the DAX 30 as well.
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4. EXPLANATION AND COMPARISON OF THECALIBRATION RESULTS

We have shown that the calibrated model closely matches the stylized facts of the DAX 30. In

this section, we provide an explanation on the generating mechanism of the power-law behavior

of the model. In addition, we conduct formal tests to see how well the calibrated model is able

to describe the characteristics of the DAX 30 and how the model fits better than a pure switching

model.
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FIGURE 4.1. The price of the deterministic model with the calibrated parameters.

4.1. Mechanism Analysis of the Power-Law Behavior. With the help of the underlying deter-

ministic dynamics, we now provide some insights into the mechanism of generating the power-

law behavior. For the corresponding deterministic model with the calibrated parameters, the

constant fundamental equilibrium becomes unstable,26 leading to (a)periodical oscillation of

the market price around the fundamental equilibrium, illustrated in Fig. 4.1. Such periodical

deviations of the price from the fundamental value in the deterministic model are inherited in

the stochastic model. Fig. 4.2(a) plots the time series of typical market price and fundamental

price of the stochastic model. It shows that the price deviates from the fundamental price from

26The fundamental price becomes unstable through a so-called Hopf bifurcation. This is different from the mecha-
nism provided in Gaunersdorferet al. (2008) that volatility clustering is characterized by the underlying determin-
istic dynamics with two co-existing attractors with different sizes. In fact, the model developed in this paper can
display such co-existence of locally stable fundamental price and periodic cycle, which has been demonstrated in
Fig 3 in Dieci et al. (2006). Whether the model developed in this paper is able to provide a supporting evidence on
the mechanism of Gaunersdorferet al. (2008) would be an interesting issue for future research. We would like to
thank Cars Hommes to bring our attention to this point.
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time to time, but in general, follows the fundamental price. In addition, the returns of the sto-

chastic model display the stylized facts of volatility clustering in Fig. 4.2(b) and non-normality

of return distribution in Fig. 4.2(c).
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(c) The density of the return
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0 20 40 60 80 100 120 140 160 180 200

−0.05

0

0.05

0.1

0.15

lag

ACF(|r|)

(e) The ACs of the absolute return

0 20 40 60 80 100 120 140 160 180 200

−0.05

0

0.05

0.1

0.15

0.2

lag

ACF(r2)

(f) The ACs of the squared return

FIGURE 4.2. The time series of (a) the price (red solid line) and the fundamental
price (blue dot line) and (b) the return; (c) the return density distribution; the ACs
of (d) the returns; (e) the absolute returns, and (f) the squared returns.

The calibrated result provides a strong support on the power-law behavior mechanism re-

ported in He and Li (2007). In He and Li (2007), a constant market fraction model is used

to examine the potential source of agent-based models with heterogeneous belief in generating

power-law behavior in return autocorrelation patterns. By examining the dynamics of the under-

lying deterministic model and simulating the impact of the fundamental noise and noise traders
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on the deterministic dynamics, He and Li (2007) find that the interaction of fundamentalists,

risk-adjusted trend chasing from the trend followers and the interplay of noisy fundamental and

demand processes and the underlying deterministic dynamics can be the source of power-law

behavior. The calibrated model in this paper shares the same spirit of He and Li (2007). In fact,

with the two noise processes, Fig. 4.2(d) demonstrates insignificant ACs for the returns, while

Figs 4.2(e) and (f) show significant and decaying ACs in the absolute and squared returns, re-

spectively. We also plot the times series of price, fundamental value, returns, return distribution,

the ACs of return, absolute and squared returns with one noise, either the fundamental noise in

Fig. C.1 or market noise in Fig. C.2, respectively, in Appendix C. They clearly demonstrate

that, for the calibrated model, noise traders play an important role in the generation of insignif-

icant ACs on the returns, while the significant decaying AC patterns of the absolute returns and

squared returns are more influenced by the noisy fundamental process. This shows that the po-

tential source of power-law generating mechanism obtained here shares the same spirit as He

and Li (2007) and Chiarella, He and Hommes (2006).

4.2. A Comparison Test. To see how well the model is able to describe the characteristics in

the DAX 30, we construct confidence intervals for the estimates based upon the DAX 30 to see

if the estimates based upon the calibrated model lie in these intervals or not. In the following,

we focus on the average estimates of the model rather than their accuracy since, by running the

model independently many times, the estimates converge much faster than those of the DAX 30.

Apart from checking the confidence intervals, we also construct the Wald test for this purpose.

For instance, for the decay indexd of the returns, the squared returns or the absolute returns,

we test whether the values of the parameterd estimated from both the DAX 30 and the model

are the same. In other words, we test hypothesis

H0 : dDAX = d.

Using the Wald test, this null hypothesis can be tested by assuming that both the number of

simulations and the number of time periods for each simulation go to infinity. In the construction

of the Wald test, the test statistic is given by

W = (d̂DAX − d̂)2/Σ̂,
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whereΣ̂ is simply the variance of̂dDAX
27. The resulting test statistics are summarized in Table

4.1. In the column ‘rt’, the first sub-row reports the test statistics corresponding tod̂GPH , and

the second sub-row corresponding tod̂RH , and so on. Notice that the critical values of the Wald

test at 5% and 1% significant levels are 3.842 and 6.635, respectively. For the returns, we see

that the estimatedd of the DAX 30 and the model are significantly different. However, for the

squared returns and the absolute returns, the differences between the estimatedd of the DAX

30 and the model are not statistically significant. This result shows that the calibrated model is

able to describe the ACs of the absolute and squared returns in the DAX 30.

TABLE 4.1. The Wald test ofd with m = 50, 100, 150, 200, 250

m 50 100 150 200 250

rt
19.41 45.62 61.94 65.86 76.35
35.41 92.24 126.0 117.5 129.4

r2t
0.071 1.309 0.282 0.036 0.023
0.037 1.246 0.050 0.767 0.276

|rt| 0.116 1.165 1.672 0.413 0.195
0.020 0.350 0.067 0.031 0.015

Another comparison test is to see if the model (denoted SM) in Section 2 performs better

than a pure switching model (denoted PSM) withn0 = 0 in line of Brock and Hommes (1998).

Intuitively, the calibration conducted for the SM should fit the data better than the PSM28. In

Appendix B, we provide the calibrated parameters in Tab. B.1, the ACs patterns in Fig. B.1, the

estimated decay indices in Tab. B.2, the GARCH and FIGARCH estimates in Tabs B.3 and B.4,

the tail index plots in Fig. B.2, and the Wald test for the PSM. Apart from sharing similar results

and implications to the SM, we calculate the distances of ACs, theDθ̂ in Eq. (3.1), between

the DAX 30 and the SM and PSM and obtain 4.56 and 4.59 respectively. The test statistics29

(β̂DAX − β̂)′Ω̂−1(β̂DAX − β̂), whereβ̂ is estimated from the simulation model andΩ̂−1 is the

generalized inverse (see, for example, Cameron and Trivedi, 2005) of corresponding covariance

matrix, for ACs up to 50 lags for the return, the squared return and the absolute return of the SM

and PSM are 106 and 108 respectively. Both results confirm that the SM performs better than

27We emphasize that the parameter uncertainty ind̂ has not been taken into account because the simulations of the
model are dependent on calibrated structural parameters.
28We notice that the main idea of this exercise is to show that the SM model can perform better than the PSW
model in terms of generating stylized facts, which justifies the existence of agents in the market with fixed trading
strategies in line with the model of He and Li (2007). So, we are not aiming to compare the SW model with various
restricted version of the model to draw inference on the empirical importance of the SW model, we leave this to
future research.
29The test statistics follows a Chi-square distribution with critical value 180 at the5% significant level.
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the PSM in terms of minimizing the distance in Eq. (3.1) and the weighted average distance by

taking into account thêΩ30.

It is possible to develop measures of goodness of fit. While the measures of goodness of fit are

very useful when comparing the performance of different HAMs (see, for example, Franke and

Westerhoff, 2012), the comparison results on various econometric characterizations between

HAM and the actual data seem to imply that it might be difficult to get meaningful test statistics.

In our approach the sampling error from the actual data is dealt with the confidence intervals

of the estimates and that from the simulation data is eliminated by running many independent

simulation. For a more general discussion on the comparison of the simulation models with the

real world data, see Liet al. (2006, 2010).

5. CONCLUSION

Theoretically oriented HAMs have provided many insights into market behavior such as mar-

ket booming and crashing, multiple market equilibrium, short-run deviation of market price

from the fundamental price and long-run convergence of the market price to the fundamental

price. Combined with numerical simulations, the HAMs are able to reproduce some stylized

fact, such as non-normality in return and volatility clustering. More recent developments in

HAMs have stimulated many interests in the generation mechanism of those stylized facts and in

particular, power-law behavior. However, estimation and calibration of HAMs to the power-law

behavior of financial data, together with some mechanism explanation and economic intuition,

are still a difficult and challenging task.

This paper calibrates an extended HAM to characterize the power-law behavior in the DAX

30. The model considers a market populated by heterogeneous traders who use either funda-

mental or chartist strategies. The market fractions of traders who use the two strategies have

both fixed and switching components. The calibration method is based on minimization of

the average distance between the autocorrelations (ACs) of the returns, the squared returns and

the absolute returns of the DAX 30 and the corresponding ACs generated from the MF model.

With the parameter values of the calibrated model, we show that the ACs of the market fraction

model share the same pattern as the DAX 30. By conducting econometric analysis via Monte

30We emphasize that the comparison is based upon the magnitudes of distances we use. In other words, this is
not to say that 4.56 (106) is significantly lower than 4.59 (108). A formal procedure such as that suggested by
Hnatkovskaet al., (2012) might be explored further.
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Carlo simulations, we estimate the decay indices, the (FI)GARCH parameters, Hill index and

related tests. We show that the calibrated model matches closely to the corresponding estimates

for the DAX 30. As a by-product, the calibrated model also generates non-normality return

distribution, volatility clustering, and fat tails. Therefore the calibrated model can fit most of

the stylized facts observed in the DAX 30.

The calibration results support the empirical evidence in financial markets that investors and

fund managers use combinations of fixed and switching strategies based on various fundamen-

tal and technical analysis when making complicated investment decisions. By calibrating the

model to the daily DAX 30 index from 1975 to 2007, we show that the market is dominated

by the adaptive investors who constantly switch between the fundamental and trend following

strategies, though there are some investors who never change their strategies over the time. In

addition, the calibrated model also provides a consistent explanation on the generating mecha-

nism of the power-law behavior in the literature. In conclusion, the calibration results provide

strong support to the explanatory power of heterogeneous agent models and the empirical evi-

dence of heterogeneity and bounded rationality.
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APPENDIX A. ESTIMATES OF POWER-LAW DECAY INDEX , (FI)GARCH, AND

POWER-LAW TAIL BEHAVIOR

This appendix provides the details of estimates of power-law decay index, (FI)GARCH, and
power-law tail behavior.

A.1. Power-law decay index. Geweke and Poter-Hudak (1983) suggest a semiparametric es-
timator of the fractional differencing parameterd based on a regression of the ordinates of the
log spectral density. Given spectral ordinatesωj = 2πj/T (j = 1, 2, ..., m), GPH suggest to
estimated from

log I(ωj) = c− d log(4 sin2(ωj/2)) + vj, (A.1)
wherevj are assumed to bei.i.d. with zero mean and varianceπ2/6. If the number of ordinates
m is chosen such thatm = g(T ) and satisfylimT→∞ g(T ) = ∞, limT→∞ g(T )/T = 0 and
limT→∞(log(T )2)/g(T ) = 0, then the OLS estimator ofd based on (A.1) has the limiting
distribution

√
m(d̂GPH − d)

d→ N (0,
π2

24
). (A.2)

Robinson (1995) provides a formal proof for−1/2 < d < 1/2, Velasco (1999) proves the
consistency of̂dGPH in the case1/2 ≤ d < 1 and its asymptotic normality in the case1/2 ≤
d < 3/4. It is clear from this result that the GPH estimator is not

√
T -consistent and in fact

converges at a slower rate.
Another most often used estimator ofd has been developed by Robinson and Henry (1999),

they suggest a semiparametric Gaussian estimate of the memory parameterd, by considering

d̂RH = argmin
d

R(d), R(d) = log

{
1

m

m∑

j=1

ω2d
j I(ωj)

}
− 2

d

m

m∑

j=1

log ωj, (A.3)

in whichm ∈ (0, [T/2]). They prove that, under some conditions,
√
m(d̂RH − d)

d→ N (0,
1

4
) (A.4)

whenm < [T/2] such that1/m+m/T → 0 asT → ∞.
A major issue in the application of the GPH and the RH estimators is the choice ofm, due to

the fact that there is limited knowledge available concerning this issue, see Geweke (1998) for
instance. Hence it is a wise precaution to report the estimated results for a range of bandwidths.
In our study, for both the GPH and the RH estimates ofd, we report the corresponding estimates
form = 50, 100, 150, 200and250, respectively. For instance, for the DAX 30, Table A.1 reports
the GPH and the RH estimates ofd for returns, the squared returns, and the absolute returns,
respectively. In each panel of Table A.1, the first row reports the results from the GPH and the
RH estimates withm = 50, the second row reports the results of the GPH and the RH estimates
with m = 100, and so on. Table A.2 is arranged similarly.

A.2. (FI)GARCH. Following the specification of Bollerslev (1986), if we model the returns
as an AR(1) process, then a GARCH(p, q) model is defined by:

{
rt =a + brt−1 + εt, εt = σtzt,

σ2
t =α0 + α(L)ε2t + β(L)σ2

t , zt ∼ N(0, 1),
(A.5)

whereL is the lag operator,α(L) =
∑q

i=1 αiL
i andβ(L) =

∑p
j=1 βjL

j . Definingvt = ε2t −σ2
t ,

the process can be rewritten as an ARMA(s, p) process

[1− α(L)− β(L)]ε2t = α0 + [1− β(L)]vt (A.6)

with s = max{p, q}. Table A.3 reports the estimates of the GARCH(1, 1) model for the DAX
30, where the mean process follows an AR(1) structure.
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TABLE A.1. The estimates ofd for the DAX 30 withm = 50, 100, 150, 200, 250

d̂GPH t p-value 95% CI d̂RH t p-value 95% CI
rt 0.0014 0.014 0.989 [-0.2005, 0.2034]-0.0179 -0.253 0.801 [-0.1565, 0.1207]

0.0407 0.587 0.557 [-0.0954, 0.1769]0.0615 1.229 0.219 [-0.0365, 0.1595]
0.0548 0.985 0.325 [-0.0542, 0.1638]0.0829 2.031 0.042 [0.0029, 0.1629]
0.0406 0.852 0.394 [-0.0528, 0.1340]0.0482 1.362 0.173 [-0.0211, 0.1175]
0.0543 1.283 0.199 [-0.0286, 0.1372]0.0571 1.807 0.071 [-0.0048, 0.1191]

r2t 0.4111 3.990 0.000 [0.2091, 0.6130] 0.3785 5.353 0.000 [0.2399, 0.5171]
0.4527 6.518 0.000 [0.3165, 0.5888] 0.4365 8.731 0.000 [0.3385, 0.5345]
0.4053 7.288 0.000 [0.2963, 0.5143] 0.3735 9.149 0.000 [0.2935, 0.4535]
0.3666 7.696 0.000 [0.2733, 0.4600] 0.3508 9.923 0.000 [0.2816, 0.4201]
0.3785 8.946 0.000 [0.2956, 0.4614] 0.3605 11.40 0.000 [0.2985, 0.4225]

|rt| 0.5242 5.087 0.000 [0.3222, 0.7261] 0.4801 6.790 0.000 [0.3415, 0.6187]
0.5495 7.911 0.000 [0.4133, 0.6856] 0.5167 10.33 0.000 [0.4187, 0.6147]
0.5442 9.785 0.000 [0.4352, 0.6532] 0.4914 12.04 0.000 [0.4114, 0.5714]
0.4993 10.48 0.000 [0.4059, 0.5927] 0.4818 13.63 0.000 [0.4125, 0.5511]
0.4797 11.34 0.000 [0.3968, 0.5626] 0.4708 14.89 0.000 [0.4088, 0.5327]

TABLE A.2. The estimates ofd for the model withm = 50, 100, 150, 200, 250

d̂GPH t p-value 95% CI Sig% d̂RH t p-value 95% CI Sig%
rt -0.4524 -4.390 0.060 [-0.4588, -0.4460] 83.9-0.4386 -6.203 0.038 [-0.4430, -0.4342] 90.4

-0.4287 -6.173 0.034 [-0.4330, -0.4244] 91.2-0.4187 -8.374 0.026 [-0.4218, -0.4156] 94.0
-0.3828 -6.883 0.030 [-0.3863, -0.3794] 92.6-0.3750 -9.187 0.022 [-0.3776, -0.3725] 94.7
-0.3457 -7.257 0.025 [-0.3487, -0.3428] 93.1-0.3355 -9.488 0.016 [-0.3376, -0.3333] 95.3
-0.3153 -7.453 0.024 [-0.3179, -0.3127] 93.1-0.3023 -9.559 0.019 [-0.3043, -0.3003] 95.3

r2t 0.3836 3.723 0.022 [0.3772, 0.3900] 90.4 0.3920 5.544 0.002 [0.3876, 0.3964] 99.2
0.3732 5.374 0.002 [0.3689, 0.3775] 99.2 0.3807 7.615 0.000 [0.3776, 0.3838] 100
0.3758 6.758 0.000 [0.3724, 0.3793] 99.9 0.3826 9.372 0.000 [0.3801, 0.3851] 100
0.3756 7.884 0.000 [0.3726, 0.3785] 100 0.3818 10.80 0.000 [0.3796, 0.3840] 100
0.3721 8.795 0.000 [0.3695, 0.3747] 100 0.3771 11.92 0.000 [0.3751, 0.3790] 100

|rt| 0.4891 4.747 0.003 [0.4827, 0.4954] 98.2 0.4902 6.932 0.000 [0.4858, 0.4946] 99.9
0.4745 6.831 0.000 [0.4702, 0.4788] 100 0.4749 9.497 0.000 [0.4718, 0.4780] 100
0.4723 8.493 0.000 [0.4689, 0.4758] 100 0.4731 11.59 0.000 [0.4706, 0.4757] 100
0.4687 9.839 0.000 [0.4658, 0.4717] 100 0.4693 13.28 0.000 [0.4672, 0.4715] 100
0.4610 10.90 0.000 [0.4584, 0.4637] 100 0.4621 14.61 0.000 [0.4601, 0.4640] 100

TABLE A.3. GARCH(1, 1) Estimates for the DAX 30

a× 103 b α0 × 104 α1 β1

0.4827 0.0539 0.0218 0.1056 0.8831
(0.1136 ) (0.0127) (0.0073) (0.0232) (0.0216)
Note: The numbers in parentheses are standard errors.

TABLE A.4. FIGARCH(1, d, 1) Estimates for the DAX 30

a b α0 × 104 d φ1 β1

-0.0019 0.0012 0.0699 0.3259 0.2286 0.7716
(0.0003 ) (0.0092) (0.0248) (0.0078) (0.0148) (0.0034)

Note: The numbers in parentheses are standard errors.

In response to the finding that most of the financial time series are long memory volatility
processes, Baillieet al.(1996) consider the Fractional Integrated GARCH (FIGARCH) process,
where a shock to the conditional variance dies out at a slow hyperbolic rate. Chung (1999)
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suggests a slightly different parameterization of the model:

φ(L)(1− L)d(ε2t − σ2) = α0 + [1− β(L)]vt, (A.7)

whereφ(L) = 1−∑q
i=1 φiL

i, α0 = φ(L)(1−L)dσ2, andσ2 is the unconditional variance of the
corresponding GARCH model. Table A.4 reports the estimates of the FIGARCH(1, d, 1)model
for the DAX 30, where the mean process follows an AR(1) model. For the same specifications
of the GARCH and FIGARCH models, we report resulting estimates for the estimated model
in Tables A.5 and A.6, respectively.

TABLE A.5. GARCH(1, 1) Estimates for the Model

a× 103 b α0 × 104 α1 β1

-0.0754 0.0292 0.3084 0.0963 0.9084
(0.5974) (0.0121) (0.0886) (0.0087) (0.0076)

0.5 64.7 87.7 100 100
Note: The numbers in parentheses are the standard errors, andthe numbers in the last
row are the percentages that the test statistics are significant at5% level over 1000
independent simulations. This also holds for Table A.6.

TABLE A.6. FIGARCH(1, d, 1) Estimates for the Model

a b α0 × 104 d φ1 β1

0.0325 0.0358 0.1314 0.4234 0.2108 0.7446
(0.0871) (0.0296) (0.1217) (0.0642) (0.0426) (0.0413)

71.8 67.8 4.5 87.3 91.0 94.9

A.3. Power-law tail behavior. We outline three major estimators ofγ, the Hill estimator, the
Pickands estimator, and the moment estimator in Dekkerset al. (1989). The Hill index is
defined by

Hk,n =

(
1

k

k∑

j=1

logXn−j+1,n

)
− logXn−k,n.

This estimator is consistent fork → ∞, k/n → 0 asn → ∞, and under extra conditions,√
k(Hk,n − γ) is asymptotically normal with mean0 and varianceγ2. The Pickands estimator

is defined as

γ̂P,k =
1

log 2
log

(
Xn−⌈k/4⌉+1,n −Xn−⌈k/2⌉+1,n

Xn−⌈k/2⌉+1,n −Xn−k+1,n

)
.

The simplicity of the Pickands estimator is appealing but offset by large asymptotic variance,
equal toγ2(22γ+1 + 1){(2γ − 1) log 2}−2. Dekkerset al. (1989) introduce a moment estimator,
which is a direct extension of Hill index,

Mk,n = Hk,n + 1− 1

2

(
1− H2

k,n

H
(2)
k,n

)−1

,

where

H
(2)
k,n =

1

k

k∑

j=1

(logXn−j+1,n − logXn−k,n)
2.

They also prove the consistency and asymptotic normality. In Fig. A.1, we plot the estimates of
the three tail estimators.
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FIGURE A.1. The tail index plots(k,Hk,n), (k, γ̂P,k), and(k,Mk,n) of the neg-
ative tails (a1), (b1), (c1) and the positive tails (a2), (b2), (c2) for the SMF model
and the DAX 30, respectively. The smooth lines refer to the model while the
95% confidence intervals are those for the actual data.
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APPENDIX B. ECONOMETRIC ANALYSIS OF THEPURE SWITCHING MODEL

This Appendix provides calibration results of the pure switching model (2.7)-(2.12) with
no = 0 to characterize the power-law behavior of the DAX 30.

TABLE B.1. The calibrated parameters of the SW models

α γ a1 a2 µ δ b σ σδ β
0.513 0.764 7.972 0.231 2.004 0.983 3.692 0.231 3.268 0.745
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FIGURE B.1. (a) Autocorrelations ofrt, r2t and|rt| for the SW model. (b) The
ACs of the returns, the squared returns and the absolute returns for the calibrated
SW model and the DAX 30. The smooth lines refer to the SW model while the
95% confidence intervals are those for the DAX 30.

TABLE B.2. The estimates ofd for the SW model withm = 50, 100, 150, 200, 250

d̂GPH t p-value 95% CI Sig% d̂RH t p-value 95% CI Sig%
rt -0.4466 -4.334 0.059 [-0.4530, -0.4402] 84.1-0.4361 -6.168 0.037 [-0.4405, -0.4318] 90.6

-0.4241 -6.106 0.033 [-0.4284, -0.4198] 91.9-0.4159 -8.317 0.025 [-0.4190, -0.4128] 94.2
-0.3816 -6.861 0.028 [-0.3850, -0.3781] 92.6-0.3746 -9.175 0.021 [-0.3771, -0.3720] 95.1
-0.3466 -7.277 0.024 [-0.3496, -0.3437] 94.1-0.3373 -9.539 0.015 [-0.3395, -0.3351] 96.1
-0.3176 -7.506 0.023 [-0.3202, -0.3149] 94.2-0.3059 -9.673 0.016 [-0.3078, -0.3039] 95.6

r2t 0.3843 3.730 0.021 [0.3779, 0.3907] 90.1 0.3918 5.540 0.002 [0.3874, 0.3961] 99.2
0.3751 5.400 0.001 [0.3708, 0.3794] 99.6 0.3801 7.603 0.000 [0.3770, 0.3832] 100
0.3768 6.776 0.000 [0.3734, 0.3803] 99.9 0.3815 9.345 0.000 [0.3790, 0.3840] 100
0.3754 7.879 0.000 [0.3724, 0.3783] 100 0.3803 10.76 0.000 [0.3781, 0.3825] 100
0.3717 8.786 0.000 [0.3691, 0.3743] 100 0.3758 11.88 0.000 [0.3738, 0.3778] 100

|rt| 0.4909 4.765 0.003 [0.4845, 0.4973] 98.6 0.4910 6.943 0.000 [0.4866, 0.4954] 100
0.4771 6.869 0.000 [0.4728, 0.4814] 100 0.4760 9.520 0.000 [0.4729, 0.4791] 100
0.4738 8.519 0.000 [0.4703, 0.4772] 100 0.4735 11.60 0.000 [0.4710, 0.4761] 100
0.4687 9.839 0.000 [0.4658, 0.4717] 100 0.4693 13.27 0.000 [0.4671, 0.4715] 100
0.4609 10.89 0.000 [0.4583, 0.4636] 100 0.4618 14.60 0.000 [0.4598, 0.4637] 100
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TABLE B.3. GARCH(1, 1) Estimates for the SW Model

a× 103 b α0 × 104 α1 β1

-0.0660 0.0351 0.3141 0.0971 0.9078
(0.6081) (0.0121) (0.0905) (0.0089) (0.0078)

0.5 68.2 87.8 99.8 100
Note: The numbers in parentheses are the standard errors, andthe numbers in the last
row are the percentages that the test statistics are significant at5% level over 1000
independent simulations. This also holds for Table B.4.

TABLE B.4. FIGARCH(1, d, 1) Estimates for the SW Model

a b α0 × 104 d φ1 β1

0.0410 0.0244 0.1229 0.4282 0.1981 0.7578
(0.2272) (0.0694) (0.1311) (0.0899) (0.1519) (0.0578)

72.6 66.2 4.2 88.3 90.7 96.1
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FIGURE B.2. The tail index plots(k,Hk,n), (k, γ̂P,k), and(k,Mk,n) of the neg-
ative tails (a1), (b1), (c1) and the positive tails (a2), (b2), (c2) for the SW model
and the DAX 30, respectively. The smooth lines refer to the SW model while the
95% confidence intervals are those for the actual data.

TABLE B.5. The Wald test ofd with m = 50, 100, 150, 200, 250

m 50 100 150 200 250

rt
18.92 44.73 61.61 66.17 77.30
34.99 91.16 125.7 118.6 132.0

r2t
0.068 1.247 0.263 0.034 0.026
0.035 1.272 0.038 0.694 0.234

|rt| 0.105 1.085 1.603 0.413 0.198
0.024 0.331 0.064 0.031 0.016
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APPENDIX C. THE EFFECT OFONE NOISE

This appendix demonstrates the impact of single noise in the model (2.7)-(2.12) on the AC
patterns of the return, absolute returns and squared returns.
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FIGURE C.1. The time series of (a) the price (red solid line) and the funda-
mental price (blue dot line) and (b) the return; (c) the density distribution of the
returns; the ACs of (d) the returns; (e) the absolute returns, and (f) the squared
returns, with the fundamental noise only (σδ = 0).
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returns, with the market noise only (σǫ = 0).
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