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0. Introduction

Classical mathematical finance has been built on pillars of absence of arbitrage; this is epit-

omised by the celebrated fundamental theorem of asset pricing (FTAP), due in its most

general form to F. Delbaen and W. Schachermayer. However, several recent directions of re-

search have brought up the question whether one should not also study more general models

that do not satisfy all the stringent requirements of the FTAP; see also Loewenstein/Willard

(2000) for an early contribution in that spirit. One such line of research is the recent work of

R. Fernholz and I. Karatzas on diverse markets , of which an overview is given in Karatzas/

Fernholz (2009). Another is the benchmark approach and the idea of minimal market models

proposed and propagated by E. Platen and co-authors in several recent publications; see

Platen/Heath (2006) for a textbook account. Finally, also some approaches to bubbles go in

a similar direction.

Our goal in this paper is twofold. We first give a neutral overview of several equivalent

formulations of an L0-boundedness property, called NUPBR, that makes up a part, but not

all of the conditions for the FTAP. For continuous asset prices, we then show that the min-

imal market model of E. Platen is very directly linked to the minimal martingale measure

introduced by H. Föllmer and M. Schweizer. As a consequence, we exhibit a very specific

probabilistic structure for minimal market models: We show that they are time changes of a

squared Bessel process of dimension 4 (a BESQ 4), under very weak assumptions. This ex-

tends earlier work in Platen (2004) to the most general case of a continuous (semimartingale)

financial market.

The paper is structured as follows. Section 1 considers general semimartingale models,

introduces basic notations, and recalls that the well-known condition NFLVR underlying

the FTAP consists of two parts: no arbitrage NA, and a certain boundedness condition

in L0, made more prominent through its recent labelling as NUPBR by C. Kardaras and

co-authors. We collect from the literature several equivalent formulations of this property,

the most important for subsequent purposes being the existence of a growth-optimal portfolio.

Section 2 continues this overview under the additional assumption that the basic price process

S is continuous; the main addition is that NUPBR is then also equivalent to the structure

condition (SC) introduced by M. Schweizer, and that it entails the existence of the minimal

martingale density for S.

Both Sections 1 and 2 contain only known results from the literature; their main contri-

bution is the effort made to present these results in a clear, concise and comprehensive form.

The main probabilistic result in Section 3 shows that reciprocals of stochastic exponentials

of continuous local martingales are automatically time changes of BESQ4 processes. Com-

bining this with Section 2 then immediately yields the above announced structural result for

minimal market models.
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1. General financial market models

This section introduces basic notations and concepts and recalls a number of general known

results. Loosely speaking, the main goal is to present an overview of the relations between

absence of arbitrage and existence of a log-optimal portfolio strategy, in a frictionless financial

market where asset prices can be general semimartingales. The only potential novelty in all

of this section is that the presentation is hopefully clear and concise. We deliberately only

give references to the literature instead of repeating proofs, in order not to clutter up the

presentation.

We start with a probability space (Ω,F , P ) and a filtration IF = (Ft)0≤t≤T satisfying

the usual conditions of right-continuity and P -completeness. To keep notations simple, we

assume that the time horizon T ∈ (0,∞) is nonrandom and finite. All our basic processes will

be defined on [0, T ] which frees us from worrying about their behaviour at “infinity” or “the

end of time”. Results from the literature on processes living on [0,∞) are used by applying

them to the relevant processes stopped at T .

We consider a financial market with d + 1 assets. One of these is chosen as numeraire

or unit of account, labelled with the number 0, and all subsequent quantities are expressed

in terms of that. So we have an asset S0 ≡ 1 and d “risky” assets whose price evolution is

modelled by an IRd-valued semimartingale S = (St)0≤t≤T , where Sit is the price at time t of

asset i ∈ {1, . . . , d}, expressed in units of asset 0. To be able to use stochastic integration,

we assume that S is a semimartingale.

Trading in our financial market is frictionless and must be done in a self-financing way.

Strategies are then described by pairs (x, ϑ), where x ∈ IR is the initial capital or initial

wealth at time 0 and ϑ = (ϑt)0≤t≤T is an IRd-valued predictable S-integrable process; we

write ϑ ∈ L(S) for short. The latter means that the (real-valued) stochastic integral process

ϑ.S :=
∫
ϑ dS is well defined and then again a semimartingale. We remark in passing that

ϑ.S must be understood as a vector stochastic integral, which may be different from the

sum of the componentwise stochastic integrals; see Jacod (1980) for the general theory and

Chatelain/Stricker (1994) for an amplification of the latter point. In financial terms, ϑit is

the number of units of asset i that we hold in our dynamically varying portfolio at time t,

and the self-financing condition means that our wealth at time t is given by

Xx,ϑ
t := x+ ϑ.St = x+

t∫

0

ϑu dSu, 0 ≤ t ≤ T.

Not every ϑ ∈ L(S) yields a decent trading strategy. To exclude unpleasant phenomena

resulting from doubling-type strategies, one has to impose some lower bound on the trading

gains/losses ϑ.S. We call ϑ ∈ L(S) a-admissible if ϑ.S ≥ −a, where a ≥ 0, and admissible if
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it is a-admissible for some a ≥ 0. We then introduce for x > 0 the sets

X x :=
{
Xx,ϑ

∣∣ϑ ∈ L(S) and Xx,ϑ ≥ 0
}

= {x+ ϑ.S | ϑ ∈ L(S) is x-admissible},

X x,++ :=
{
Xx,ϑ

∣∣ϑ ∈ L(S) and Xx,ϑ > 0 as well as Xx,ϑ
− > 0

}
,

and we set X xT :=
{
Xx,ϑ
T

∣∣Xx,ϑ ∈ X x
}

, with X x,++

T defined analogously. So every f ∈ X xT
represents a terminal wealth position that one can generate out of initial wealth x by self-

financing trading while keeping current wealth always nonnegative (and even strictly positive,

if f is in X x,++

T ). We remark that Xx,ϑ
− > 0 does not follow from Xx,ϑ > 0 since we only know

that Xx,ϑ is a semimartingale; we have no local martingale or supermartingale property at

this point. Note that all the ϑ appearing in the definition of X xT have the same uniform lower

bound for ϑ.S, namely −x. Finally, we need the set

C :=
{
X0,ϑ
T −B

∣∣ϑ ∈ L(S) is admissible, B ∈ L0
+(FT )

}
∩ L∞

of all bounded time T positions that one can dominate by self-financing admissible trading

even from initial wealth 0.

With the above notations, we can now recall from Delbaen/Schachermayer (2006) and

Karatzas/Kardaras (2007) the following concepts.

Definition. Let S be a semimartingale. We say that S satisfies NA, no arbitrage, if

C ∩ L∞+ = {0}; in other words, C contains no nonnegative positions except 0. We say that

S satisfies NFLVR, no free lunch with vanishing risk , if C∞ ∩ L∞+ = {0}, where C∞ denotes

the closure of C in the norm topology of L∞. Finally, we say that S satisfies NUPBR, no

unbounded profit with bounded risk , if X xT is bounded in L0 for some x > 0 (or, equivalently,

for all x > 0 or for x = 1, because X xT = xX 1
T ).

The condition NFLVR is a precise mathematical formulation of the natural economic

idea that it should be impossible in a financial market to generate something out of nothing

without risk. The meta-theorem that “absence of arbitrage is tantamount to the existence

of an equivalent martingale measure” then takes the precise form that S satisfies NFLVR if

and only if there exists a probability measure Q equivalent to P such that S is under Q a

so-called σ-martingale. This is the celebrated fundamental theorem of asset pricing (FTAP)

in the form due to F. Delbaen and W. Schachermayer; see Delbaen/Schachermayer (1994,

1998).

In the sequel, our interest is neither in the FTAP nor in equivalent σ-martingale measures

Q as above; hence we do not explain these in more detail. Our focus is on the condition

NUPBR and its ramifications. The connection to NFLVR is very simple and direct:

S satisfies NFLVR if and only if it satisfies both NA and NUPBR.
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This result can be found either in Section 3 of Delbaen/Schachermayer (1994) or more con-

cisely in Lemma 2.2 of Kabanov (1997). Moreover, neither of the conditions NA and NUPBR

implies the other, nor of course NFLVR; see Chapter 1 of Hulley (2009) for explicit coun-

terexamples.

The next series of definitions introduce strategies with certain optimality properties.

Definition. An element Xnp = X1,ϑnp

of X 1,++ is called numeraire portfolio if the ratio

X1,ϑ/Xnp is a P -supermartingale for every X1,ϑ ∈ X 1,++. An element Xgo = X1,ϑgo

of

X 1,++ is called growth-optimal portfolio or relatively log-optimal portfolio if

E
[

log
(
X1,ϑ
T /Xgo

T

)]
≤ 0

for all X1,ϑ ∈ X 1,++ such that the above expectation is not ∞ −∞. Finally, an element

X lo = X1,ϑlo

of X 1,++ with E
[

logX lo
T

]
<∞ is called log-utility-optimal portfolio if

E
[

logX1,ϑ
T

]
≤ E

[
logX lo

T

]

for all X1,ϑ ∈ X 1,++ such that E
[(

logX1,ϑ
T

)−]
<∞.

For all the above concepts, we start with initial wealth 1 and look at self-financing strate-

gies whose wealth processes (together with their left limits) must remain strictly positive. In

all cases, we also commit a slight abuse of terminology by calling “portfolio” what is actually

the wealth process of a self-financing strategy. In words, the above three concepts can then

be described as follows:

– The numeraire portfolio has the property that, when used for discounting, it turns every

wealth process in X 1,++ into a supermartingale. Loosely speaking, this means that it

has the best “performance” in the class X 1,++.

– The growth-optimal portfolio has, in relative terms, a higher expected growth rate (mea-

sured on a logarithmic scale) than any other wealth process in X 1,++.

– The log-utility-optimal portfolio maximises the expected logarithmic utility of terminal

wealth essentially over all wealth processes in X 1,++.

The next result gives the first main connection between the notions introduced so far.

Proposition 1.1. 1) Xnp, Xgo and X lo are all unique.

2) Xnp, Xgo and X lo coincide whenever they exist.

3) Xnp exists if and only if Xgo exists. This is also equivalent to existence of X lo if in

addition sup
{
E[logXT ]

∣∣X ∈ X 1,++ with E[(logXT )−] <∞
}
<∞.

4) Xnp (or equivalently Xgo) exists if and only if S satisfies NUPBR.
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Proof. This is a collection of well-known results; see Becherer (2001), Propositions 3.3 and

3.5, Christensen/Larsen (2007), Theorem 4.1, and Karatzas/Kardaras (2007), Proposition

3.19 and Theorem 4.12. q.e.d.

Our next definition brings us closer again to equivalent σ-martingale measures for S.

Definition. An equivalent supermartingale deflator (for X 1,++) is an adapted RCLL process

Y = (Yt)0≤t≤T with Y0 = 1, Y ≥ 0, YT > 0 P -a.s. and the property that Y X1,ϑ is a

P -supermartingale for all X1,ϑ ∈ X 1,++. The set of all equivalent supermartingale deflators

is denoted by Y.

Because X 1,++ contains the constant process 1, we immediately see that each Y ∈ Y is

itself a supermartingale; and YT > 0 implies by the minimum principle for supermartingales

that then also Y > 0 and Y− > 0. To facilitate comparisons, we mention that the class X 1,++

is called N in Becherer (2001), and Y is called SM there.

Definition. A σ-martingale density (or local martingale density) for S is a local P -mar-

tingale Z = (Zt)0≤t≤T with Z0 = 1, Z ≥ 0 and the property that ZSi is a P -σ-martingale(
or P -local martingale, respectively

)
for each i = 1, . . . , d. If Z > 0, we call Z in addition

strictly positive. For later use, we denote by D++

loc(S, P ) the set of all strictly positive local

P -martingale densities Z for S.

From the well-known Ansel–Stricker result
(
see Corollaire 3.5 of Ansel/Stricker (1994)

)
,

it is clear that ZX1,ϑ is a P -supermartingale for all X1,ϑ ∈ X 1,++ whenever Z is a σ- or

local martingale density for S. Hence Y contains all strictly positive σ- and local martingale

densities for S. On the other hand, if Q is an equivalent σ- or local martingale measure

for S (as in the FTAP, in the sense that each Si is a Q-σ-martingale or local Q-martingale,

respectively), then the density process ZQ of Q with respect to P is by the Bayes rule a

strictly positive σ- or local martingale density for S, if it has ZQ0 = 1 (which means that

Q = P on F0). In that sense, supermartingale deflators can be viewed as a generalisation of

equivalent σ- or local martingale measures for S. This important idea goes back to Kramkov/

Schachermayer (1999).

The second main connection is provided by

Proposition 1.2. The IRd-valued semimartingale S satisfies NUPBR if and only if there

exists an equivalent supermartingale deflator for X 1,++. In short:

NUPBR⇐⇒ Y 6= ∅.
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Proof. This is part of Karatzas/Kardaras (2007), Theorem 4.12. q.e.d.

Combining what we have seen so far, we directly obtain the main result of this section.

Theorem 1.3. For an IRd-valued semimartingale S, the following are equivalent:

1) S satisfies NUPBR.

2) The numeraire portfolio Xnp exists.

3) The growth-optimal portfolio Xgo exists.

4) There exists an equivalent supermartingale deflator for X 1,++, i.e. Y 6= ∅.
In each of these cases, Xnp and Xgo are unique, and Xnp = Xgo. If we have in addition

sup
{
E[logXT ]

∣∣X ∈ X 1,++ with E[(logXT )−] <∞
}
<∞, then 1)–4) are also equivalent to

5) The log-utility-optimal portfolio X lo exists.

In that case, also X lo is unique, and X lo = Xnp = Xgo.

Remarks. 1) We emphasise once again that all these results are known. In the above most

general form, they are due to Karatzas/Kardaras (2007), but variants and precursors can

already be found in Loewenstein/Willard (2000), Becherer (2001) and Christensen/Larsen

(2007). In particular, Theorem 5.1 in Christensen/Larsen (2007) shows that under the as-

sumption NA, the existence of the growth-optimal portfolio Xgo is equivalent to the existence

of a strictly positive σ-martingale density for S.

2) It seems that the key importance of the condition NUPBR, albeit not under that

name and in the more specialised setting of a complete Itô process model, has first been

recognised in Loewenstein/Willard (2000), who relate NUPBR to the absence of so-called

free snacks or cheap thrills; see Theorem 2 in Loewenstein/Willard (2000).

3) If the numeraire portfolio Xnp exists, then it lies in X 1,++ and at the same time,

1/Xnp lies in Y, by the definitions of Xnp and Y. So another property equivalent to 1)–4) in

Theorem 1.3 would be that X 1,++ ∩ (1/Y) 6= ∅ or Y ∩ (1/X 1,++) 6= ∅.
4) Since we work on the closed interval [0, T ], all our processes so far are defined up to

and including T . Hence we need not worry about finiteness of Xnp
T , which is in contrast to

Karatzas/Kardaras (2007).

5) In view of the link to log-utility maximisation, it is no surprise that there are also

dual aspects and results for the above connections. This is for instance presented in Becherer

(2001) and Karatzas/Kardaras (2007), but is not our main focus here.

6) For yet another property equivalent to NUPBR, see the recent work of Kardaras

(2009). ¦

The third important result in this section would be a more explicit description of the

numeraire portfolio Xnp or, more precisely, its generating strategy ϑnp. Such a description
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can be found in Karatzas/Kardaras (2007), Theorem 3.15, or more generally in Goll/Kallsen

(2003), Theorem 3.1 and Corollary 3.2. In both cases, ϑnp can be obtained (in principle) by

pointwise maximisation of a function (called g or Λ, respectively, in the above references) that

is given explicitly in terms of certain semimartingale characteristics. In Karatzas/Kardaras

(2007), this involves the characteristics of the returns process R, where each Si = Si0 E(Ri) is

assumed to be a stochastic exponential. Goll/Kallsen (2003) take a general semimartingale

S and allow in addition to trading also consumption with a possibly stochastic clock; they

then need the (joint) characteristics of (S,M), where M is a certain process defined via the

stochastic clock. In the general case where S can have jumps, neither of these descriptions

unfortunately gives very explicit expressions for ϑnp since the above pointwise maximiser is

only defined implicitly. For this reason, we do not go into more detail here, and focus in the

next section on the much simpler case where S is continuous.

2. Continuous financial market models

In this section, we specialise to the case where the IRd-valued semimartingale S = (St)0≤t≤T
on (Ω,F , IF, P ) from Section 1 is continuous . We introduce some more concepts and link them

to those of Section 1. Again, all the results given here are well known from the literature,

and we at most claim credit for a hopefully clear and concise overview.

So let S = (St)0≤t≤T be an IRd-valued continuous semimartingale and write its canonical

decomposition as S = S0 + M + A. The processes M = (Mt)0≤t≤T and A = (At)0≤t≤T are

both IRd-valued, continuous and null at 0. Moreover, M is a local P -martingale and A is

adapted and of finite variation. The bracket process 〈M〉 of M is the adapted, continuous,

d × d-matrix-valued process with components 〈M〉ij = 〈M i,M j〉 for i, j = 1, . . . , d; it exists

because M is continuous, hence locally square-integrable.

Definition. We say that S satisfies the weak structure condition (SC ′) if A is absolutely

continuous with respect to 〈M〉 in the sense that there exists an IRd-valued predictable process

λ̂ = (λ̂t)0≤t≤T such that A =
∫
d〈M〉 λ̂, i.e.

Ait =

d∑

j=1

t∫

0

λ̂ju d〈M〉iju =

d∑

j=1

t∫

0

λ̂ju d〈M i,M j〉u for i = 1, . . . , d and 0 ≤ t ≤ T .

We then call λ̂ the (instantaneous) market price of risk for S and sometimes informally write

λ̂ = dA/d〈M〉.
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Definition. If S satisfies the weak structure condition (SC ′), we define

K̂t :=

t∫

0

λ̂tr
u d〈M〉 λ̂u =

d∑

i,j=1

t∫

0

λ̂iuλ̂
j
u d〈M i,M j〉u, 0 ≤ t ≤ T

and call K̂ = (K̂t)0≤t≤T the mean-variance tradeoff process of S. Because 〈M〉 is positive

semidefinite, the process K̂ is increasing and null at 0; but note that it may take the value

+∞ in general. We say that S satisfies the structure condition (SC) if S satisfies (SC ′) and

K̂T <∞ P -a.s.

Remarks. 1) There is some variability in the literature concerning the structure condition;

some authors call (SC) what we label (SC ′) here. The terminology we have chosen is con-

sistent with Schweizer (1995). For discussions of the difference between (SC ′) and (SC), we

refer to Delbaen/Schachermayer (1995) and Kabanov/Stricker (2005).

2) The weak structure condition (SC ′) comes up very naturally via Girsanov’s theorem.

In fact, suppose S is a local Q-martingale under some Q equivalent to P and 1/Z is the density

process of P with respect to Q. Then M := S−S0−
∫
Z− d

〈
S, 1

Z

〉
is by Girsanov’s theorem a

local P -martingale null at 0 and continuous like S, and A :=
∫
Z− d

〈
S, 1

Z

〉
=
∫
Z− d

〈
M, 1

Z

〉
is

absolutely continuous with respect to 〈M〉 by the Kunita–Watanabe inequality. These results

are of course well known from stochastic calculus; but their relevance for mathematical finance

was only discovered later around the time when the importance of equivalent local martingale

measures was highlighted by the FTAP. ¦

If S satisfies (SC), the condition K̂T < ∞ P -a.s. can equivalently be formulated as

λ̂ ∈ L2
loc(M) (on [0, T ], to be accurate). This means that the stochastic integral process

λ̂.M =
∫
λ̂ dM is well defined and a real-valued continuous local P -martingale null at 0, and

we have K̂ =
〈
λ̂.M

〉
. The stochastic exponential

Ẑt := E(−λ̂.M)t = exp
(
− λ̂.Mt −

1

2
K̂t

)
, 0 ≤ t ≤ T

is then also well defined and a strictly positive local P -martingale with Ẑ0 = 1. For reasons

that will become clear presently, Ẑ is called the minimal martingale density for S.

Proposition 2.1. Suppose S is an IRd-valued continuous semimartingale. Then S satisfies

the structure condition (SC) if and only if there exists a strictly positive local martingale

density Z for S. In short:

(SC)⇐⇒ D++

loc(S, P ) 6= ∅.
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Proof. If S satisfies (SC), we have seen above that Ẑ = E(−λ̂.M) is a strictly positive local

P -martingale with Ẑ0 = 1. Moreover, using (SC), it is a straightforward computation via the

product rule to check that each ẐSi is a local P -martingale. Hence we can take Z = Ẑ.

Conversely, suppose that ZS and Z > 0 are both local P -martingales. If Z is a true

P -martingale on [0, T ], it can be viewed as the density process of some Q equivalent to P such

that, by the Bayes rule, S is a local Q-martingale. Then the Girsanov argument in Remark

2) above gives (SC ′). In general, applying the product rule shows that ZS has the finite

variation part
∫
Z− dA+ 〈Z, S〉, which must vanish because ZS is a local P -martingale. This

gives A = −
∫

1
Z−

d〈S,Z〉 = −
∫

1
Z−

d〈M,Z〉, hence again (SC ′), and with some more work,

one shows that even (SC) is satisfied. For the details, we refer to Theorem 1 of Schweizer

(1995). q.e.d.

Since S is continuous, Theorem 1 of Schweizer (1995) also shows, by an application of

the Kunita–Watanabe decomposition with respect to M to the stochastic logarithm N of

Z = E(N), that every strictly positive local martingale density Z for S can be written as

Z = Ẑ E(L) for some local P -martingale L null at 0 which is strongly P -orthogonal to M .

From that perspective, Ẑ is minimal in that it is obtained for the simplest choice L ≡ 0. One

can also exhibit other minimality properties of Ẑ, but this is not our main focus here.

Remark. While Ẑ is (for continuous S) always strictly positive, it is in general only a

local, but not a true P -martingale. But if Ẑ happens to be a true P -martingale (on [0, T ]),

or equivalently if EP [ẐT ] = 1, we can define a probability measure P̂ equivalent to P via

dP̂ := ẐT dP . The local P -martingale property of ẐS is by the Bayes rule then equivalent to

saying that S is a local P̂ -martingale. This P̂ , if it exists, is called the minimal martingale

measure; see Föllmer/Schweizer (1991). ¦

As we have already seen in Section 1, the family Y of all equivalent supermartingale

deflators for X 1,++ contains the family D++

loc(S, P ) of all strictly positive local martingale

densities for S. Therefore D++

loc(S, P ) 6= ∅ implies that Y 6= ∅, and this already provides a

strong first link between the results in this section and those in Section 1. A second link

is given by the following connection between the minimal martingale density Ẑ and the

numeraire portfolio Xnp.

Lemma 2.2. Suppose S is an IRd-valued continuous semimartingale. If S satisfies (SC),

then Xnp exists and is given by Xnp = 1/Ẑ.
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Proof. Since S satisfies (SC), Ẑ = E(−λ̂.M) exists and

1/Ẑ = exp
(

+ λ̂.M +
1

2
K̂
)

= exp
(
λ̂.S − 1

2
K̂
)

= E(λ̂.S),

because S = S0 +M +
∫
d〈M〉 λ̂. This shows that 1/Ẑ = X1,ϑ̂ lies in X 1,++ with ϑ̂ = λ̂/Ẑ.

Moreover, ẐS is a local P -martingale by (the proof of) Proposition 2.1. A straightforward

application of the product rule then shows that also ẐX1,ϑ is a local P -martingale, for every

X1,ϑ ∈ X 1,++, and so this product is also a P -supermartingale since it is nonnegative. Thus

1/Ẑ satisfies the requirements for the numeraire portfolio and therefore agrees with Xnp by

uniqueness. q.e.d.

Of course, also Lemma 2.2 is not really new; the result can essentially already be found in

Becherer (2001), Corollary 4.10. If one admits that the numeraire portfolio Xnp coincides with

the growth-optimal portfolio Xgo, one can also quote Christensen/Larsen (2007), Corollary

7.4. And finally, one could even use the description of Xnp in Karatzas/Kardaras (2007),

Theorem 3.15, because this becomes explicit when S is continuous.

For a complete and detailed connection between Sections 1 and 2, the next result provides

the last link in the chain. In the present formulation, it seems due to Hulley (2009), Theorem

1.25; the proof we give here is perhaps a little bit more compact.

Proposition 2.3. Suppose S is an IRd-valued continuous semimartingale. If the numeraire

portfolio Xnp exists, then S satisfies the structure condition (SC).

Proof. For every X1,ϑ ∈ X 1,++, we can write X1,ϑ = E(π.S) with π := ϑ/X1,ϑ. Moreover,

both ϑ and π are S-integrable and hence also in L2
loc(M), since the processes X1,ϑ > 0, S

and M are all continuous. Using the explicit expression E(π.S) = exp
(
π.S− 1

2

∫
πtr d〈M〉π

)

for the stochastic exponential then gives for every X1,ϑ ∈ X 1,++ that

X1,ϑ

Xnp
=
E(π.S)

E(πnp .S)

= exp

(
(π − πnp).S − 1

2

∫
πtr d〈M〉π +

1

2

∫
(πnp)tr d〈M〉πnp

)

= exp

(
(π − πnp).M − 1

2

∫
(π − πnp)tr d〈M〉 (π − πnp)

)

× exp

(∫
(π − πnp)tr

(
dA− d〈M〉πnp

))
,

where the last equality is readily verified by multiplying out and collecting terms. But this

means that

(2.1)
X1,ϑ

Xnp
= E(L) exp(B),
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where L := (π − πnp).M
(
and hence also E(L)

)
is a continuous local P -martingale and

B := B(π) :=

∫
(π − πnp)tr

(
dA− d〈M〉πnp

)

is a continuous adapted process of finite variation. Because Xnp is the numeraire portfo-

lio, the left-hand side of (2.1) is a P -supermartingale for every ϑ, and the right-hand side

gives a multiplicative decomposition of that P -special semimartingale as the product of a

local martingale and a process of finite variation; see Théorème 6.17 in Jacod (1979). But

now the uniqueness of the multiplicative decomposition and the fact that E(L) exp(B) is a

P -supermartingale together imply that B = B(π) must be a decreasing process, for every π

(coming from a ϑ such that X1,ϑ lies in X 1,++). By a standard variational argument, this is

only possible if A =
∫
d〈M〉πnp, and because πnp is in L2

loc(M), we see that (SC) is satisfied

with λ̂ = πnp. q.e.d.

Putting everything together, we now obtain the main result of this section.

Theorem 2.4. For an IRd-valued continuous semimartingale S, the following are equivalent:

1) S satisfies NUPBR.

2) The numeraire portfolio Xnp exists.

3) The growth-optimal portfolio Xgo exists.

4) There exists an equivalent supermartingale deflator for X 1,++, i.e. Y 6= ∅.
5) There exists a strictly positive local P -martingale density for S, i.e. D++

loc(S, P ) 6= ∅.
6) S satisfies the structure condition (SC).

7) S satisfies the weak structure condition (SC ′) and λ̂ ∈ L2
loc(M).

8) S satisfies the weak structure condition (SC ′) and K̂T <∞ P -a.s.

9) S satisfies the weak structure condition (SC ′) and the minimal martingale density Ẑ

exists in D++

loc(S, P ).

In each of these cases, we then have Xnp = Xgo = 1/Ẑ.

Proof. The equivalence of 1)–4) is the statement of Theorem 1.3. The equivalence of 5)–9)

comes from Proposition 2.1 and directly from the definitions. Lemma 2.2 shows that 6)

implies 2), and Proposition 2.3 conversely shows that 2) implies 6). The final statement is

due to Theorem 1.3 and Lemma 2.2. q.e.d.

We emphasise once again that all the individual results in this section are known. How-

ever, we have not seen anywhere so far the full list of equivalences compiled in Theorem 2.4,

and so we hope that the result may be viewed as useful.
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Remarks. 1) Because our main interest here lies on the numeraire or growth-optimal

portfolio, we have focussed exclusively on the (equivalent) condition NUPBR. There is in fact

a whole zoo of absence-of-arbitrage conditions, and an extensive discussion and comparison

of these in the framework of a continuous financial market can be found in Chapter 1 of

Hulley (2009). That work also contains many more details as well as explicit examples and

counterexamples.

2) We already know from Proposition 1.1 that there is a close connection between the

log-utility-optimal portfolio and the numeraire portfolio. If S is continuous, this turns out to

be rather transparent. Indeed, if S satisfies (SC), then 1/Ẑ maximises E
[

logX1,ϑ
T

]
over all

X1,ϑ ∈ X 1,++, and the maximal expected utility is

E
[

log(1/ẐT )
]

=
1

2
E
[
K̂T

]
∈ [0,∞].

So existence of the log-utility-optimal portfolio with finite maximal expected utility is equiv-

alent to the structure condition (SC) plus the extra requirement that E
[
K̂T

]
<∞. For more

details, we refer to part 1) of Theorem 3.5 in Amendinger/Imkeller/Schweizer (1998).

3) We have already seen in Section 1 that the condition NFLVR is equivalent to the

combination of the conditions NUPBR and NA. The latter can be formulated as saying that

whenever ϑ is admissible, i.e. a-admissible for some a ≥ 0, X0,ϑ
T ≥ 0 P -a.s. implies that

X0,ϑ
T = 0 P -a.s. A slightly different condition is (NA+) which stipulates that whenever ϑ

is 0-admissible, X0,ϑ
T ≥ 0 P -a.s. implies that X0,ϑ ≡ 0 P -a.s. We mention this condition

because it is just a little weaker than NUPBR. In fact, if S is continuous, Theorem 3.5 of

Strasser (2005) shows that S satisfies (NA+) if and only if S satisfies the weak structure

condition (SC ′) and the mean-variance tradeoff process K̂ does not jump to +∞, i.e.

inf

{
t > 0

∣∣∣∣∣

t+δ∫

t

λ̂tr
u d〈M〉u λ̂u = +∞ for all δ ∈ (0, T − t]

}
=∞.

The second condition follows from, but does not imply, K̂T < ∞ P -a.s., so that (NA+) is a

little weaker than (SC), or equivalently NUPBR. ¦

3. Minimal market models

The notion of a minimal market model is due to E. Platen and has been introduced in a

series of papers with various co-authors; see Chapter 13 of Platen/Heath (2006) for a recent

textbook account. Our goal in this section is to link that concept to the notions introduced in

Sections 1 and 2 and to exhibit a fundamental probabilistic structure result for such models.
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The presentation here is strongly inspired by Chapter 5 of Hulley (2009), but extends and

simplifies the analysis and results given there. The latter Chapter 5 is in turn based on

Chapters 10 and 13 from Platen/Heath (2006), although the presentation is a bit different.

The key idea behind the formulation of a minimal market model is an asymptotic di-

versification result due to E. Platen. Theorem 3.6 of Platen (2005) states that under fairly

weak assumptions, a sequence of well-diversified portfolios converges in a suitable sense to the

growth-optimal portfolio. It is therefore natural to model a broadly based (hence diversified)

index by the same structure as the growth-optimal portfolio, and to call such a model for an

index a minimal market model . To study this, we therefore have to take a closer look at the

probabilistic behaviour of the growth-optimal portfolio.

We start with a continuous financial market model almost as in Section 2. More precisely,

let S = (St)t≥0 be a continuous IRd-valued semimartingale on (Ω,F , IF, P ) with IF = (Ft)t≥0.

We assume that S satisfies NUPBR on [0, T ] for every T ∈ (0,∞) so that we can use Theorem

2.4 for every fixed finite T . Thus we obtain S = S0 +M +
∫
d〈M〉 λ̂ with λ̂ ∈ L2

loc(M), the

minimal martingale density Ẑ = E(−λ̂.M) exists, and so does the growth-optimal portfolio

Xgo, which coincides with 1/Ẑ. All this is true on [0,∞) since it holds on every interval [0, T ]

and we can simply paste things together.

The minimal market model for the index I = (It)t≥0 is now defined by

(3.1) I := Xgo = 1/Ẑ = 1/E(−λ̂.M).

In view of the remark after Proposition 2.1, this shows that the minimal market model (MMM)

is directly connected to the minimal martingale measure (MMM), or more precisely to the

minimal martingale density Ẑ. It also explains why we have deliberately avoided the use of

the abbreviation MMM and gives a clear hint where the title of this paper comes from.

The next result is the key for understanding the probabilistic structure of the process I

in (3.1). Recall the notation . for stochastic integrals.

Proposition 3.1. Suppose N = (Nt)t≥0 is a real-valued continuous local martingale null at

0, and V = (Vt)t≥0 is defined by V := 1/E(−N) = E(N + 〈N〉). Then:

1)
{
V .〈N〉∞ = +∞

}
=
{
〈N〉∞ = +∞

}
P -a.s.

2) If 〈N〉∞ = +∞ P -a.s., then

Vt = C%t , t ≥ 0,

where C = (Ct)t≥0 is a squared Bessel process of dimension 4 (a BESQ4, for short) and the

time change t 7→ %t is explicitly given by the increasing process

%t =
1

4

t∫

0

1

E(−N)s
d〈N〉s =

1

4

t∫

0

Vs d〈N〉s, t ≥ 0.
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3) The result in 2) is also valid without the assumption that 〈N〉∞ = +∞ P -a.s. if we

are allowed to enlarge the underlying probability space in a suitable way.

Proof. The second expression for V follows directly from the explicit formula for the stochas-

tic exponential E(−N).

1) This is fairly easy, but for completeness we give details. By Proposition V.1.8 of

Revuz/Yor (2005), the sets
{
N∞ := lim

t→∞
Nt exists in IR

}
and

{
〈N〉∞ < ∞

}
are equal with

probability 1. So on
{
〈N〉∞ <∞

}
, the process E(−N)s = exp

(
−Ns − 1

2 〈N〉s
)

converges to

exp
(
−N∞ − 1

2 〈N〉∞
)
> 0 P -a.s. which implies that s 7→ Vs = 1/E(−N)s remains bounded

P -a.s. as s→∞. Hence

(V .〈N〉∞)(ω) ≤ const. (ω)〈N〉∞(ω) <∞ P -a.s. on
{
〈N〉∞ <∞

}
.

On the other hand, N ∈Mc
0,loc implies by Fatou’s lemma that s 7→ E(−N)s is a nonnegative

supermartingale and therefore converges P -a.s. to a finite limit (which might be 0) as s→∞.

So s 7→ 1
Vs

= E(−N)s is bounded P -a.s. and thus

(V .〈N〉∞)(ω) ≥ 1

const. (ω)
〈N〉∞(ω) = +∞ P -a.s. on

{
〈N〉∞ = +∞

}
.

This proves the assertion.

2) Because V = E(N + 〈N〉) satisfies dV = V dN + V d〈N〉, defining L ∈ Mc
0,loc by

dL = 1
2

√
V dN yields d〈L〉 = 1

4V d〈N〉 and

dV = 2
√
V dL+ 4 d〈L〉.

By 1), 〈N〉∞ = +∞ P -a.s. implies that 〈L〉∞ = 1
4V

.〈N〉∞ = +∞ P -a.s., and so the Dambis–

Dubins–Schwarz theorem
(
see Theorem V.1.6 in Revuz/Yor (2005)

)
yields the existence of

some Brownian motion B = (Bt)t≥0 such that Lt = B〈L〉t for t ≥ 0. Hence

dVt = 2
√
Vt dB〈L〉t + 4 d〈L〉t,

and if t 7→ τt denotes the inverse of t 7→ 〈L〉t, we see that Ct := Vτt , t ≥ 0, satisfies

dCt = 2
√
Ct dBt + 4 dt,

so that C is a BESQ4 process; see Chapter XI of Revuz/Yor (2005). Finally, since τ and 〈L〉
are inverse to each other, Vt = C〈L〉t and as claimed, the time change t 7→ %t is given by

%t = 〈L〉t =
1

4
V .〈N〉t, t ≥ 0.
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3) If we may enlarge the probability space to guarantee the existence of an independent

Brownian motion, we can still use the Dambis–Dubins–Schwarz theorem; see Theorem V.1.7

in Revuz/Yor (2005). Hence the same argument as for 2) still works. q.e.d.

In view of Theorem 2.4, applying Proposition 3.1 with N = λ̂.M and noting that

〈N〉 = K̂ now immediately gives the main result of this section.

Theorem 3.2. Let S = (St)t≥0 be an IRd-valued continuous semimartingale and suppose

that S satisfies NUPBR on [0, T ] for every T ∈ (0,∞) (or equivalently that the growth-

optimal portfolio Xgo exists for every finite time horizon T ). Denote by Ẑ = E(−λ̂.M) the

minimal martingale density for S and model the index I = (It)t≥0 by I := Xgo = 1/Ẑ. Then

It = C%t , t ≥ 0, is a time change of a squared Bessel process C of dimension 4, with the time

change given by

(3.2) %t =
1

4

t∫

0

1

Ẑs
dK̂s, t ≥ 0.

Theorem 3.2 is a generalisation of Proposition 5.8 in Hulley (2009), where the same

conclusion is obtained under the more restrictive assumption that S is given by a multidi-

mensional Itô process model which is complete. But most of the key ideas for the above proof

can already be seen in that result of Hulley (2009). Even considerably earlier, the same result

as in Hulley (2009) can be found in Section 3.1 of Platen (2004), although it is not stated as

a theorem. The main contribution of Theorem 3.2 is to show that neither completeness nor

the Itô process structure are needed.

Example 3.3. To illustrate the theory developed so far, we briefly consider the standard,

but incomplete multidimensional Itô process model for S. Suppose discounted asset prices

are given by the stochastic differential equations

dSit
Sit

= (µit − rt) dt+
m∑

k=1

σikt dW k
t for i = 1, . . . , d and 0 ≤ t ≤ T .

Here W = (W 1, . . . ,Wm)tr is an IRm-valued standard Brownian motion on (Ω,F , P ) with

respect to IF ; there is no assumption that IF is generated by W , and we only suppose that

m ≥ d so that we have at least as many sources of uncertainty as risky assets available for

trade. The processes r = (rt)t≥0 (the instantaneous short rate), µi = (µit)t≥0 (the instanta-

neous drift rate of asset i) for i = 1, . . . , d and σik = (σikt )t≥0 for i = 1, . . . , d and k = 1, . . . ,m

(the instantaneous volatilities) are predictable (or even progressively measurable) and satisfy

T∫

0

|ru| du+
d∑

i=1

T∫

0

|µiu| du+
d∑

i=1

m∑

k=1

T∫

0

(σiku )2 du <∞ P -a.s. for each T ∈ (0,∞).
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Moreover, to avoid redundant assets (locally in time), we assume that for each t ≥ 0,

the d×m-matrix σt has P -a.s. full rank d.

Then σtσ
tr
t is P -a.s. invertible and we can define the predictable (or progressively measurable)

IRm-valued process λ = (λt)t≥0 by

λt := σtr
t (σtσ

tr
t )−1(µt − rt1), t ≥ 0

with 1 = (1, . . . , 1)tr ∈ IRd. Our final assumption is that λ ∈ L2
loc(W ) or equivalently that

(3.3)

T∫

0

|λu|2 du <∞ P -a.s. for each T ∈ (0,∞).

Sometimes λ (instead of λ̂ below) is called the (instantaneous) market price of risk for S.

It is straightforward to verify that the canonical decomposition of the continuous semi-

martingale Si is given by

dM i
t = Sit

m∑

k=1

σikt dW k
t ,

dAit = Sit(µ
i
t − rt) dt

so that

d〈M i,M j〉t = SitS
j
t

m∑

k=1

σikt σ
jk
t dt = SitS

j
t (σtσ

tr
t )ij dt.

The weak structure condition (SC ′) is thus satisfied with the IRd-valued process λ̂ = (λ̂t)t≥0

given by

λ̂it =
1

Sit

(
(σtσ

tr
t )−1(µt − rt1)

)i
for i = 1, . . . , d and t ≥ 0.

This gives
∫
λ̂ dM =

∫
λ dW and therefore the mean-variance tradeoff process as

K̂t =
〈
λ̂.M

〉
t

= 〈λ.W 〉t =

t∫

0

|λu|2 du for t ≥ 0,

and so (3.3) immediately implies that S satisfies (SC) on [0, T ] for each T ∈ (0,∞). Therefore

this model directly falls into the scope of Theorem 2.4 (for each fixed T ) and of Theorem

3.2. In particular, we of course recover Proposition 5.8 of Hulley (2009) or the result from

Section 13.1 of Platen/Heath (2006) as a special case (for m = d, even without the stronger

assumptions imposed there).
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Remark. To obtain a more concrete model just for the index I, Theorem 3.2 makes it very

tempting to start with a BESQ4 process C and choose some time change t 7→ %t to then

define the index by

(3.4) It := C%t t ≥ 0.

Depending on the choice of %, this may provide a good fit to observed data and hence yield a

plausible and useful model; see Section 13.2 of Platen/Heath (2006) on the stylized minimal

market model. However, a word of caution seems indicated here. In fact, if we accept (as in

this section) the basic modelling of the index I by the growth-optimal portfolio Xgo, then

the approach (3.4) raises the following inverse problem:

Given a time change t 7→ %t, when does there exist an IRd-valued continuous

semimartingale S = (St)t≥0 which satisfies the structure condition (SC) and

whose growth-optimal portfolio is given by the process I defined by (3.4)?

We do not have an answer to this question, but we suspect that the problem is nontrivial.

One first indication for this is the observation that the explicit form (3.2) of the time change

in Theorem 3.2 implies that

(3.5)
dK̂t

d%t
= 4Ẑt, t ≥ 0.

Since the right-hand side of (3.5) is a local martingale, the processes K̂ and % cannot be chosen

with an arbitrarily simple structure — for example they cannot both be deterministic. ¦
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