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ABSTRACT. By taking into account conditional expectations and the dependence of

the systematic risk of asset returns on micro- and macro-economic factors, the con-

ditional CAPM with time-varying betas displays superiority in explaining the cross-

section of returns and anomalies in a number of empirical studies. Most of the litera-

ture on time-varying beta is motivated by econometric estimation rather than explicit

modelling of the stochastic behaviour of betas through agents’ behaviour. Within the

mean-variance framework of repeated one-period optimisation, we set up a bound-

edly rational dynamic equilibrium model of a financial market with heterogeneous

agents and obtain an explicit dynamic CAPM relation betweenthe expected equilib-

rium returns and time-varying betas. By incorporating the three most popular types of

investors, fundamentalists, chartists and noise traders,into the model, we show that,

independent of the fundamentals, there is a systematic change in the market port-

folio, risk-return relationships, and time varying betas when investors change their

behaviour, such as the chartists acting as momentum traders. In particular, we demon-

strate the stochastic nature of time-varying betas and showthat the commonly used

rolling window estimates of time-varying betas may not be consistent with the ex-ante

betas implied by the equilibrium model. The results providea number of insights into

an understanding of time-varying beta.
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2 CHIARELLA, DIECI AND HE

1. INTRODUCTION

Despite the propagation of multifactor models, including Fama-French type factors,

and various market anomalies, the Capital Asset Pricing Model (CAPM) remains very

popular. The CAPM assumes that all investors have the same expectations about the

means, variances and covariances of future returns, and hence the beta of the CAPM

is assumed to be constant over time and is estimated via ordinary least squares (OLS).

However, according to Bollerslev, Engle, and Wooldridge (1988), economic agents

take conditional expectations of the moments of future returns and therefore these are

random variables rather than constant. Due to the dependence of the systematic risk

of an asset return on micro- and macro-economic factors, theassumption of beta sta-

bility has been rejected by various empirical studies over the last three decades. In

fact there is strong evidence that the conditional betas aretime-varying. For example,

for book-to-market portfolios1, betas of the highest decile of book-to-market stocks

reached over 2.5 during the 1940s and fell to -0.5 at the end of2001 (see for example

Kothari, Shanken and Sloan (1995); Campbell and Vuolteenaho (2004) and Adrian and

Franzoni (2005)). Consequently, according to Jagannathanand Wang (1996), a con-

ditional CAPM that takes conditional expectations into account provides a convenient

way to incorporate time-varying beta and displays empirical superiority in explaining

the cross-section of returns and anomalies.

There exists a large literature on time-varying beta models, most of which is moti-

vated by econometric estimation. Introduced by Engle (1982) and Bollerslev (1986),

the class of GARCH models, including M-GARCH (multivariategeneralized autore-

gressive conditional heteroskedasticity) model proposedby Bollerslev (1990), were

the first to estimate time-varying betas. To model the asymmetric and nonlinear ef-

fects of beta on conditional volatility of positive and negative shocks, Braun, Nel-

son, and Sunier (1990) extended the basic GARCH model to an exponential GARCH

(EGARCH) model. Other models include the random walk model (see, for example,

Fabozzi and Francis (1978) and Collins, Ledolter, and Rayburn (1987)), the mean-

reverting model (see for example Bos and Newbold (1984)), and the Markov switching

models introduced in the seminal works of Hamilton ((1989),(1990)). More recently,

Harvey (2001) used instrumental variables to estimate betas and showed that the esti-

mates are very sensitive to the choice of instruments used toproxy for time-variation

in the conditional betas. Among others, Campbell and Vuolteenaho (2004), Fama and

French (2006), and Lewellen and Nagel (2006) assume discrete changes in betas across

subsamples but constant betas within subsamples. In contrast, Ang and Chen (2007)

treat betas as endogenous variables that vary slowly and continuously over time. By

1The book-to-market portfolios are constructed based on a book-to-market trading strategy that goes
long the highest decile portfolio of stocks sorted on book-to-market ratios (value stocks) and short the
lowest decile portfolio of book-to-market ratio stocks (growth stocks).
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questioning the conventional wisdom that there exists strong evidence of a book-to

market effect2, Ang and Chen (2007) developed a methodology for consistently esti-

mating time-varying betas in a conditional CAPM and found that a single-factor model

performs substantially better in explaining the book-to-market premium. They demon-

strated that, when betas vary over time, the standard OLS inference is misspecified and

cannot be used to assess the fit of a conditional CAPM.

Economically, most models of time-varying beta are based onthe representative

economic agent assumption that all investors have the same subjective expectations of

the means, variances and covariances of future returns. Also, most of the econometric

models of time-varying beta lack any economic explanation and intuition. In the litera-

ture, the conditional CAPM with time-varying betas takes into account the conditional

expectations and the dependence of the systematic risk of asset returns on micro- and

macro-economic factors, but not agents’ behaviour. The standard justifications for the

assumption of unbounded rationality have recently been criticised and economists are

giving more attention to the role of heterogeneity and bounded rationality in explain-

ing economic phenomena. In the real world, agents can have heterogeneous subjective

expectations of the means, variances and covariances of returns. Further more they

are boundedly rational rather than perfectly rational. Thefinancial markets represent

the aggregation of the interaction of the boundedly rational behaviour among hetero-

geneous agents. Accordingly, the time-varying betas in theconditional CAPM should

reflect the interaction of heterogeneous and boundedly rational agents and heterogene-

ity can have profound consequences for the interpretation of empirical evidence. The

aim of this paper is to model explicitly the stochastic behaviour of beta by focusing

on agents’ heterogeneity and the resulting boundedly rational equilibrium. Different

from the most of econometric models, the results in this paper provide some economic

explanation and intuition of the mechanism underlying the time variation of beta.

The impact of heterogeneous beliefs among investors on the market equilibrium

price has been an important focus in the literature. A numberof models with in-

vestors who have heterogeneous beliefs and follow some learning processes have been

previously studied3. Recently, using ideas from the theory of nonlinear dynamical

systems, various heterogeneous agent models (HAMs) have been developed to charac-

terize the dynamics of financial asset prices resulting fromthe interaction of heteroge-

neous agents with different attitudes towards risk and different expectations about the

future evolution of asset prices. One of the key elements of this literature is the expec-

tations feedback mechanism, see Brock and Hommes ((1997), (1998)). This frame-

work can explain various types of market behaviour, such as the long-term swing of

2The book-to-market effect is that stocks with high book-to-market ratios have higher average returns
than what the CAPM predicts.
3See, for example, Lintner (1969), Williams (1977), Huang and Litzenberger (1988), Abel (2002),
Detemple and Murthy (1994), Zapatero (1998) and Basak (2000).
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market prices from the fundamental price, asset bubbles, market crashes, the stylized

facts and various kinds of power law behaviour4 observed in financial markets. We re-

fer the reader to Hommes (2006), LeBaron (2006) and Chiarella, Dieci and He (2009)

for surveys of recent literature on HAMs. However, most of the HAMs analysed in the

literature involve a financial market with only one risky asset and are not in the context

of the CAPM. More recently, some attempts have been made to develop HAMs with

many assets5. In particular, by introducing a concept ofconsensus belief, Chiarella,

Dieci and He (2010a, 2010b) show that the market equilibrium under heterogeneous

beliefs can be characterized by a consensus belief, which can be constructed explicitly

as a weighted average of the heterogeneous beliefs.

Within the mean-variance framework of a repeated one-period CAPM, Chiarella,

Dieci and He (2010b) set up a framework for the CAPM with heterogeneous beliefs

by considering a financial market with multiple risky assets, a riskless asset, and many

heterogeneous agents. Agents having heterogeneous beliefs in the mean and vari-

ance/covariance of asset returns choose their optimal portfolio based on their beliefs.

In market equilibrium, the heterogeneous beliefs are aggregated into a “consensus”

belief in each period and the CAPM relation between market equilibrium returns and

ex-ante aggregated beta coefficients are made explicit. This paper uses the framework

developed in Chiarella, Dieci and He (2010b) to explore the time varying behaviour

of beta. By incorporating the three most popular types of investors, fundamentalists,

chartists and noise traders, into the model, we characterize the betas through the in-

teraction of the three types of agents. It is found that the betas are time varying and

they are affected by agents’ behaviour. In particular, we illustrate that a change charac-

terised by the change of a key behavioral parameter, namely,the sensitivity of chartists’

predictions to recently observed returns, has a significantimpact on the time-variation

of betas, and hence the market portfolio and risk-return relationships between the risky

assets and the market. By using the common practice of rolling OLS estimates of be-

tas, we show that the realized betas are time-varying, but may not be consistent with

the ex-ante betas implied by the equilibrium CAPM, implyingthat the rolling window

4See, for example, Day and Huang (1990), Kirman (1992), Farmer et al. (2004), Lux (2004), Chiarella,
He and Hommes (2006), Alfaranoet al. (2005), Gaunersdorfer and Hommes (2007), and He and Li
(2007).
5Recent studies with many risky assets include Wenzelburger(2004), Westerhoff (2004), Böhm and
Chiarella (2005), Böhm and Wenzelburger (2005), Chiarella et al. (2005, 2007), Westerhoff and Dieci
(2006) and Horst and Wenzelburger (2008), showing that complex price dynamics may also result within
a multi-asset market framework with heterogeneous beliefs. Chiarella, Dieci and He (2007) show that
diversification does not always have a stabilizing role, butmay act as a further source of instability in
the financial market. Wenzelburger (2004) introduces a reference portfolio and Böhm and Wenzelburger
(2005) show that the returns realized with an efficient portfolio do not necessarily outperform those of
non-efficient portfolios. By allowing social interaction among consumers, Horst and Wenzelburger
(2008) show that asset prices may behave in a non-ergodic manner.
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estimates of time-varying betas can be misleading. The results provide some under-

standing of the economic factors underlying the time variation of beta.

The paper is organized as follows. Section 2 reviews the framework developed

in Chiarella, Dieci and He ((2010b)). Section 3 incorporates the three most popular

types of investors, fundamentalists, chartists and noise traders, into the framework

and examines the steady-state equilibrium of the corresponding deterministic model.

Using numerical simulation, Section 4 examines the impact of investors’ behaviour

on the market, including the equilibrium market prices, returns, the market portfolio,

and the betas. In addition, the stochastic behaviour of the betas and the consistency

of the realized betas estimated by the rolling OLS estimatesare analyzed. Section 5

concludes and suggests some directions for future research. The appendix contains a

result on the rescaling of the chartist parameter to different trading periods.

2. A CAPM FRAMEWORK WITH HETEROGENEOUSBELIEFS

Consider an economy withI agents, indexed byi = 1, 2, · · · , I, who invest in

portfolios consisting of a riskless asset andN risky assets, indexed byj = 1, 2, · · · , N ,

with N ≥ 1. Let rf be the (constant) risk free rate of the riskless asset6 andr̃j be the

rate of return of risky assetj (j = 1, 2, ..., N). Following the standard CAPM setup,

we assume that agents believe that the returns of the risky assets are conditionally

multivariate normally distributed. Assume that theI investors can be grouped into

H agent-types, indexed byh = 1, 2, · · · , H, where the agents within the same group

are homogeneous in their beliefs as well as risk aversion. The constant (absolute) risk

aversion coefficient of agents of typeh is denoted byθh. We also denote byIh the

number of investors in grouph and bynh := Ih/I the market fraction of agents of

typeh. In each period, agents update their beliefs about the first and second moment

of the joint distribution of risky asset returns, and formulate their portfolio decisions

in order to maximize one-period-ahead expected utility of wealth. TheN-dimensional

random vector of risky asset returns over the time interval from t to t + 1 is denoted

by r̃t+1, while Eh,t(r̃t+1) andΩh,t := [Covh,t(r̃j,t+1, r̃k,t+1)] indicate the conditional

expectation and the conditional variance-covariance matrix of r̃t+1 for type-h agents

at time t. When agents form their beliefs at timet, their information set includes

realized prices and returns up to timet − 1. Finally, let st = (s1,t, · · · , sN,t)
T be

theN-dimensional vector that collects the existing stock of shares at timet for each

risky asset, andSt :=diag[s1,t, s2,t, ..., sN,t]. Let alsoζh,t andζt be theN-dimensional

vectors collecting the dollar demands of type-h agents and the aggregate dollar demand

for each risky asset, respectively. The quantitiesst, ζh,t and ζt represent average

6Note that when the risk-free rate is given exogenously, the net supply of the riskless asset in the market
may not be zero, see Chiarella, Dieci and He (2010b) for the details.
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amountsper investor. The N-dimensional vector of market clearing asset prices at

time t is denoted bypt, while d̃t is the random vector of dividends in periodt.

2.1. The general model of boundedly rational equilibrium. We summarize below

the general form of the dynamical system which describes themarket fraction multi-

asset model with heterogeneous beliefs developed in Chiarella et al. (2010b). The

heterogeneous groups of agents form their beliefs about future returns based on agents’

information set at timet consisting of realized prices and returns up to timet−1. Such

beliefs determine agents’ demands, and the aggregation of such demands produces

temporary equilibrium prices at timet, via market clearing. More precisely, under

mean-variance preferences withCARA utility, the (dollar) demand vector of the risky

assets at timet is given by

ζt :=
∑

h∈H

ζh,t =
∑

h∈H

nhθ
−1
h Ω−1

h,t[Eh,t(r̃t+1) − rf1].

The market clearing condition7 at time t, ζt = Stpt, yields the price vectorpt as

follows

pt = S−1
t

∑

h∈H

nhθ
−1
h Ω−1

h,t[Eh,t(r̃t+1) − rf1]. (2.1)

We assume that agents’ conditional expectation and conditional variance-covariance

matrix of r̃t+1are functions of realized returns,rt−1, rt−2, ..., and prices,pt−1,pt−2, ...,

namely

Eh,t(r̃t+1) = fh(rt−1, rt−2, ...,pt−1,pt−2, ...),

Ωh,t = Ωh(rt−1, rt−2, ...,pt−1,pt−2, ...).

The market clearing prices at timet, (2.1), can therefore be expressed as functions

of realized returns and prices up to time(t − 1), rt−1, rt−2, ...,pt−1,pt−2, ..., via the

above specified functionsfh andΩh, and the same holds for random returns in period

t, which depend on the random dividend in periodt, d̃t, as well

r̃t = P−1
t−1(pt + d̃t) − 1 = F(rt−1, rt−2, ...,pt−1,pt−2, ...; d̃t), (2.2)

wherePt :=diag(p1,t, p2,t, ..., pN,t). Noisy dividends̃dt are assumed to follow a sto-

chastic process that may depend, in general, on past historyof prices and returns and

an exogenous noise component.

In this framework it is possible to define aggregate or ‘consensus’ belief (see Chiarella,

Dieci and He (2010b) for details). Given the “average” risk aversion coefficient

θa :=
(∑

h∈H

nhθ
−1
h

)−1
, (2.3)

7Note that the market clearing equation will include a noisy component if noise traders are introduced
into the model. See the next section.
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aggregate beliefs at timet about variances/covariances and expected returns over the

time interval(t, t + 1) are specified, respectively, as

Ωa,t = θ−1
a

(
∑

h∈H

nhθ
−1
h Ω−1

h,t

)−1

, (2.4)

Ea,t(r̃t+1) = θaΩa,t

∑

h∈H

nhθ
−1
h Ω−1

h,tEh,t(r̃t+1). (2.5)

The market clearing prices (2.1) can therefore be rewrittenas if they were determined

by a homogeneous agent endowed with average risk aversionθa and the consensus

beliefsEa,t(r̃t+1), Ωa,t, namely

pt = S−1
t θ−1

a Ω−1
a,t [Ea,t(r̃t+1) − rf1]. (2.6)

The price reflects the equilibrium price under the market clearing condition when

agents choose their optimal portfolios based on their beliefs. Therefore, we call the

price as the boundedly rational equilibrium price. Such aggregation formulas are use-

ful to derive single-period ex-ante relationships in termsof aggregate beliefs, that are

formally identical to CAPM relationship, and can thereforebe useful to study CAPM

implications of our heterogeneous agent model. Namely, at the beginning of each time

interval(t, t + 1) the aggregate beliefs about returns (based on information up to time

t − 1) satisfy a CAPM-like equation of the type

Ea,t(r̃t+1) − rf1 = βa,t[Ea,t(r̃m,t+1) − rf ],

where

r̃m,t+1 =
[Ea,t(r̃t+1) − rf1]⊤Ω−1

a,t r̃t+1

[Ea,t(r̃t+1) − rf1]⊤Ω−1
a,t1

denotes the random return on the market portfolio of the risky assets, whereas the

ex-ante “aggregate” beta coefficients are given by

βa,t =
[Ea,t(r̃t+1) − rf1]⊤Ω−1

a,t1

[Ea,t(r̃t+1) − rf1]⊤Ω−1
a,t [Ea,t(r̃t+1) − rf1]

[Ea,t(r̃t+1) − rf1].

Thus we see that the time variation of aggregate betas is due to agents’ time varying

beliefs about both the first and the second moment of the return distributions.

2.2. Steady state equilibrium of the deterministic model. The dynamical system

(2.1) and (2.2) is stochastic in general through the dividend process and other noise

terms possibly included inst (see the next section). In order to focus on the steady state

of the deterministic skeleton of the model, we first assume that the amount of shares

is constant over time,st = s. We then consider the deterministic system obtained

by replacing the random dividend̃dt with the conditional expectation of the dividend

process at timet − 1, dt := Et−1[d̃t]. The deterministic system thus represents the
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dynamics of the expectations of the equilibrium prices and returns. Denote byd a

steady state level ofdt := Et−1[d̃t]. One can easily see from (2.1) and (2.2) that in

order that the deterministic system be at a steady state, stationary prices,p, returns,r,

and (expected) dividends,d need to satisfy8

p = S−1
∑

h∈H

nhθ
−1
h Ω

−1

h [fh − rf1], (2.7)

whereΩh := Ωh(r, r, ...,p,p, ...), fh := fh(r, r, ...,p,p, ...), and

r = P
−1

d (2.8)

or, equivalently

p = R
−1

d, (2.9)

where9 P :=diag(p1, p2, ..., pN ), R :=diag(r1, r2, ..., rN). Equation (2.9) can be ex-

pressed component by component as

pj =
dj

rj

, j = 1, 2, ..., N,

which provides a representation of equilibrium prices through the usual discounted

dividend formula via the appropriate rates of returns for each asset. Substitution

of (2.8) (or (2.9)) into (2.7) results in a system ofN equations in the equilibrium

pricesp1, p2, ..., pN (or in the equilibrium returnsr1, r2, ..., rN ). Therefore, steady

state prices, or returns, emerge endogenously from the market dynamics with evolving

heterogeneous beliefs. However, in the particular case developed in the next sections,

parameters will be selected in a way that steady state pricesand returns are consistent

with steady state agents’ expectations such that

fh := fh(r, r, ...,p,p, ...) = r, h ∈ H.

This will highly simplify the dynamic analysis, without loss of generality. Further-

more, the ‘steady state’ dynamics of the noisy model in this particular case will natu-

rally be interpreted as the standard multi-period CAPM withhomogeneous beliefs and

stationary beta coefficients.

3. A MODEL WITH CLASSICAL HETEROGENEOUS AGENT-TYPES

In this section we provide a representative example of the general model outlined in

Section 2 with different types of beliefs and analyse the resulting dynamics for prices,

8In the example of the next section, dividends will be assumedto be generated by an underlying i.i.d.
process{ρ̃t} for the dividend yield, so thatd̃t = Pt−1ρ̃t, wherePt :=diag(p1,t, p2,t, ..., pN,t). It
follows thatEt−1[d̃t] = Pt−1ρ, whereρ :=Et−1[ρ̃t], and thatd = Pρ. As an alternative specification,
we may assume that dividendsd̃t follow an i.i.d. process, whereEt−1[d̃t] = E[d̃t] = d represents the
constant (and steady state) expected dividend.
9Note thatP

−1

p = 1.
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returns, aggregate portfolio shares and beta coefficients.This example, which is close

in spirit to Chiarella, Dieci and Gardini (2005) and Chiarella, Dieci and He (2007),

considers two types of agents:fundamentalists, who use information on the ‘funda-

mental values’, andtrend followers, who form future return forecasts by extrapolating

realized returns10. These two types of agents are the most common and popular ones

in the literature on heterogeneous agent models. In addition, we allow for a third type

of agent -noise traders - whose demand for each risky asset is treated as an exogenous

random disturbance, described by an i.i.d. process with zero mean. The effect of noise

traders is equivalent to viewing the total amount of each asset as a noisy quantity. In

the following, we consider two types of agents,fundamentalists andtrend followers,

or chartists, labelled withh = f andh = c, respectively.

We also assume that the dividend yield follows an i.i.d. process{ρ̃t}, and we denote

by ρ andVρ the expectation and the variance/covariance matrix ofρ̃t, respectively.

This implies that

d̃t = Pt−1ρ̃t

wherePt :=diag(p1,t, p2,t, ..., pN,t), with Et−1[d̃t] = Pt−1ρ.

3.1. Fundamentalists. Fundamentalists compute conditional expected return of each

risky asset as the sum of a constant component that represents a long-run return (de-

pending on ‘fundamental’ variables), and a time varying component that accounts for

the expected mean reversion towards the fundamental price.This can be expressed as

Ef,t(r̃t+1) = ρ + αP∗−1(p∗ − pt−1) = ρ + α(1 −P∗−1pt−1),

wherep∗ = [p∗1, p
∗
2, ..., p

∗
N ]⊤ is the vector of fundamental prices,P∗ := diag[p∗], andρ

= [ρ1, ρ2, ..., ρN ]⊤ is the long-run component or the fundamental of asset returns. Such

a ‘fundamental’ component is related to the dividend process, namely,ρ represents the

(stationary) expected dividend yield. According to the equation above, if fundamen-

talists believe that a certain asset is undervalued with respect to the fundamental price,

the expected return for the next trading period will includea positive capital gain and

will therefore be larger than the long-run average return. We also assume that the

fundamentalists have constant beliefs about the variance/covariance structure of the

returns,11

Ωf,t = Ωf .

10The chartists may or may not have information on the fundamental values, however we assume that
they form their expectations based on historical prices.
11Fundamentalist second-moment beliefs are also related to the volatility of the dividend process. This
is the perspective we adopt in the following examples.
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3.2. Trend Followers. The trend followers are assumed to compute the expected re-

turn as a time-weighted average of observed returns, that is,

Ec,t(r̃t+1) = ut−1,

whereut−1 is a vector of sample means of past realized returnsrt−1, rt−2, .... This

specification captures the extrapolative behavior of the trend followers, who expect

price changes to occur in the same direction as the price trend observed over a past

time window. Similarly to Chiarella Dieci and He (2007), we assume thatut−1 is

computed recursively as

ut−1 = δut−2 + (1 − δ)rt−1. (3.1)

Effectively, the trendut−1 is the average of all past historical returnsrt−1, rt−2, ...

weighted by geometric decaying weights(1 − δ){1, δ, δ2, · · · }. Therefore, asδ de-

creases, the weight on the latest returns increases but decays geometrically at a rate

of δ. Therefore, the trend followers can be treated as momentum traders and this is

in particular the case for smallδ. The variance/covariance matrixΩc,t is assumed to

consist of a constant componentΩc, and of a time-varying component,

Ωc,t = Ωc + λVt−1,

whereλ ≥ 0 measures the sensitivity of the second-moment estimate to the sample

varianceVt−1. The latter is updated recursively as a function of past deviations from

sample average returns using the same geometrically decaying weights as in (3.1), so

that

Vt−1 = δVt−2 + δ(1 − δ)(rt−1 − ut−2)(rt−1 − ut−2)
⊤.

Note that the recursive equations forut−1 andVt−1 can be considered as limiting cases

of geometric decay processes when the memory lag length tends to infinity (see, for

example, Chiarella and He (2003)).

3.3. Noise traders. We allow for a further class of agents, the so-callednoise traders,

whose impact is simply modelled as an additional source of random fluctuations. The

demand for the risky assets (in terms of number of shares) from this type of agent

at timet is described by the random vectorξ̃t := [ξ̃1,t, ξ̃2,t, ..., ξ̃N,t]
⊤, where theξ̃j,t

are assumed i.i.d. withE(ξ̃j,t) = 0, j = 1, 2, ..., N . We also assume, for the sake

of simplicity, that the standard deviation of the noise trader demand for each asset is

proportional to the (fixed) supply of the same asset in the market, that is,V ar(ξ̃j,t) =

q2s2
j , while demands for different assets are not correlated,E(ξ̃j,t, ξ̃k,t) = 0 for j, k =

1, 2, ..., N . The parameterq ≥ 0, that will be assumed contant for all assets, represents

an additional behavioral parameter of our model, capturingthe ‘volatility intensity’ of

noise-trading. Set̃Ξt :=diag(ξ̃1,t, ξ̃2,t, ..., ξ̃N,t). The market clearing condition in the
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presence of noise traders thus becomes, in general

θ−1
a Ω−1

a,t [Ea,t(r̃t+1) − rf1] + Ξ̃tpt = Spt

and the market clearing prices (2.6) are therefore rewritten as

pt = (S−Ξ̃t)
−1θ−1

a Ω−1
a,t [Ea,t(r̃t+1) − rf1], (3.2)

whereΩa,t andEa,t(r̃t+1) represent the consensus beliefs defined by (2.4) and (2.5)

in Section 2. Note that the introduction of noise traders does not cause the model to

depart from the general setup (2.1)-(2.2) with mean-variance investors, but it is simply

formally equivalent to assuming a noisy supply vectors̃t = s−ξ̃t.

3.4. The complete dynamic model. We denote byθf andθc the risk aversion coeffi-

cients of the two agent-types, and bynf andnc = 1−nf their market fractions. Using

(2.3), the market risk aversion is given byθa =
(
nfθ

−1
f + ncθ

−1
c

)−1
. From (2.4) and

(2.5), the aggregate variances/covariances and expected returns are given, respectively,

by

Ωa,t = θ−1
a

(
nf

θf

Ω
−1

f +
nc

θc

Ω−1
c,t

)−1

=

(
nf

θf

+
nc

θc

)(
nf

θf

Ω
−1

f +
nc

θc

Ω−1
c,t

)−1

,

Ea,t(r̃t+1) = θaΩa,t

[
nf

θf

Ω
−1

f Ef,t(r̃t+1) +
nc

θc

Ω−1
c,t Ec,t(r̃t+1)

]

=

(
nf

θf

Ω
−1

f +
nc

θc

Ω−1
c,t

)−1{
nf

θf

Ω
−1

f

[
ρ + α(1 −P∗−1pt−1)

]
+

nc

θc

Ω−1
c,t ut−1

}
.

With the above-specified agent-types, the general dynamic model given by (2.1) and

(2.2) specialises to the following noisy nonlinear dynamical system:

pt = (S−Ξ̃t)
−1

{
nf

θf

Ω
−1

f

[
ρ + α(1 −P∗−1pt−1)

]
+

nc

θc

Ω−1
c,t ut−1

−
(

nf

θf

Ω
−1

f +
nc

θc

Ω−1
c,t

)
rf1

}
, (3.3)

r̃t = P−1
t−1(pt + d̃t) − 1 = P−1

t−1pt + ρ̃t − 1, (3.4)

whereΩc,t = Ωc + λVt−1, and whereut−1 andVt−1 are updated according to

ut = δut−1 + (1 − δ)rt, (3.5)

Vt = δVt−1 + δ(1 − δ)(rt − ut−1)(rt − ut−1)
⊤. (3.6)

3.5. The steady state of the deterministic model. To obtain a steady-state equilib-

rium which is consistent with the fundament return, we consider the deterministic

skeleton of the dynamical system (3.3)-(3.6) by lettingρ̃t ≡ ρ and Ξ̃t ≡ 0 for all

t. Then we obtain a deterministic steady state solution(p, r,u,V) must necessarily
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satisfy the set of algebraic equations

r = u = ρ,

V = 0,

p = S−1

{
nf

θf

Ω
−1

f

[
ρ + α(1 −P∗−1p)

]
+

nc

θc

Ω
−1

c ρ −
(

nf

θf

Ω
−1

f +
nc

θc

Ω
−1

c

)
rf1

}

= S−1

{(
nf

θf

Ω
−1

f +
nc

θc

Ω
−1

c

)
(ρ−rf1) + α

nf

θf

Ω
−1

f (1 − P∗−1p)

}
. (3.7)

The last condition represents a system of linear equations in equilibrium prices. In

the following we assume that parameters are such that fundamentalist beliefs about

long-run prices,p∗, are consistent with the model steady state. If this property were

not to hold, at the steady state the fundamentalists would expect a price correction that

never takes place, and the average realized returns would besystematically different

from long-run expected returnsρ. Put differently, we assume that fundamentalists are

rational in the sense that they have learnt steady state prices and returns and regard

such quantities as fundamental prices. We therefore assumep = p∗. By substituting

p = p∗ into (3.7), it turns out thatp∗ = p is determined as

p∗ = S−1

(
nf

θf

Ω
−1

f +
nc

θc

Ω
−1

c

)
(ρ − rf1). (3.8)

The analytical study of the local asymptotic stability of the deterministic steady

state is difficult, due to the large dimension of the system and number of parameters.

Numerical simulation of (the deterministic skeleton of) the model suggests the possi-

bility that the steady state becomes unstable via a Neimark-Sacker bifurcation when

the decay parameterδ falls below a certain threshold12. This will be shown numerically

through an example with three risky assets in the next section. We will focus on the

impact of the decay parameterδ on the market, in particular the time-varying betas.

4. A NUMERICAL ANALYSIS OF TIME-VARYING BETA

Based on the model developed in the previous section, we consider numerically an

example with three risky assets and a riskless asset, in the stylized market populated

by fundamentalists, trend followers and noise traders. A common parameter setting

is used in all the following numerical experiments, namely,θf = θc := θ = 0.005,

rf = 0.01, s = (1, 1, 1)T . For simplicity, agents are assumed to be homogeneous

12Alternatively, such a bifurcation may occur whenδ is not too high and fundamentalist proportionnf

or fundamentalist expected mean reversionα become small enough. The effect ofλ is less clear and
it does not seem to affect local stability of the steady state(since it is not associated with linearized
terms), but increasing values ofλ seem to be associated with more and more irregular fluctuations once
the steady state is destabilized.



TIME-VARYING BETA: A BOUNDEDLY RATIONAL EQUILIBRIUM APPROACH 13

with regard to their risk aversion13 and (the fixed part of) their variance/covariance

matrix Ωc = Ωf := Ω. Also, in order to focus on the correlation emerging from the

endogenous dynamics of asset prices, we assume that the correlations among the three

assets inΩ are zero, that is

Ωf = diag(σ2
1, σ

2
2, σ

2
3)

whereσ1 = 0.095, σ2 = 0.105, σ3 = 0.11. The fundamentalist beliefs about first

moment of long-run returns are given byρ = (0.06, 0.075, 0.09)T .

As discussed above, the fundamental pricesp∗ are assumed to be consistent with

model equilibrium so that to satisfy

p∗ = S−1

(
nf

θf

Ω
−1

f +
nc

θc

Ω
−1

c

)
(ρ − rf1) =

1

θ
S−1Ω

−1
(ρ − rf1),

Dividend yields are i.i.d. normally distributed, uncorrelated across assets, and their

variance/covariance matrixVρ is consistent with the exogenous part of agents’ second-

moment beliefs, namely,Vρ = Ω. In particular, in our example the fundamental prices

p∗ turn out to be:

p∗ =




p∗1
p∗2
p∗3


 =




1108.03

1179.14

1322.31


 ,

Note that we are assuming no correlation in the stochastic processes of the dividend

yields and, accordingly, zero correlation in the fixed part of agents’ second-moment.

The reason for our choice is that we want to focus only on the correlation patterns

emerging from the endogenous dynamics of asset prices. The parametersα, δ, λ, and

nf will possibly vary across examples, as well as the parameterq that represents the

standard deviation of noise traders percentage impact.

The numerical values of parametersρ, rf , σ1, σ2, σ3 given above are interpreted

as annualised parameter values. Corresponding monthly, weekly, daily parameters are

obtained by rescaling annualised parameters in a standard way, according to the fre-

quencyK = 12 (monthly),K = 50 (weekly),K = 250 (daily). The annual expected

returns are converted via the factor1/K and the standard deviations are rescaled via

the factor1/
√

K. Also the fundamentalist mean reversion parameterα is rescaled by

dividing it by K, whereas parameterδ (related to the memory length) is converted

using a specific rule (see Appendix). With some abuse of notation, in (3.3)-(3.6) we

adopt the same symbols to denote also the rescaled parameters. A small amount of

noise trading will also be assumed in some examples, namely,(normally distributed)

noise on the supply of each asset will be introduced, with no correlation across assets,

with standard deviation that varies across examples.

13Note from (3.3) that if we assume homogeneous risk aversion coefficients, what matters for the (de-
terministic) dynamics is the aggregate parameter (vector)θs.
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4.1. Deterministic Dynamics. Intuitively, when the trend followers extrapolate the

recent trend in returns strongly (corresponding to a lowδ), the market tends to be

destabilized. To verify this effect, we first consider the changes in the equilibrium

prices of the deterministic model whenδ changes. In Fig. 4.1, we chooseα = 0.15,

nf = 0.3, λ = 1.5 and δ is decreased fromδ = 0.88 to δ = 0.84 (at an annual

frequency). These parameters are rescaled to weekly (with aperiod of length1/K and

K = 50). Through numerical simulations, it is found that the steady state equilibrium

loses its stability whenδ falls below a certain bifurcation valuêδA ∈ (0.879, 0.88),

which corresponds to a Neimark-Sacker bifurcation. The sixpanels in Fig. 4.1, where

we use blue, green and red to represent asset 1, 2, and 3, respectively, represent prices

(left panels) and returns (right panels) of the risky assetsfor δ = 0.865, δ = 0.855,

δ = 0.84, respectively. The initial condition is selected at the steady state, except for a

small deviation of the initial price of asset 3 (p0,3 = 1.005 × p∗3).

At first, for δ just below the bifurcation valuêδA, only one among the three risky

assets (asset 1), displays fluctuations around the steady state equilibrium level, due to

the interaction of the strong extrapolation of the trend followers and mean-reverting

activity of the fundamentalists. Asδ decreases further, namely as the trend followers

extrapolate the recent returns ever more strongly, the figure shows that two assets and

finally all three assets are destabilised14. More precisely, further bifurcation valueŝδB

and δ̂C for parameterδ exists, wherêδB ∈ (0.863, 0.864) and δ̂C ∈ (0.848, 0.849),

such that for̂δC < δ < δ̂B also the price and return of asset 2 fluctuate around their

steady state values, whereas forδ < δ̂C all three assets display price and return fluctu-

ations15. This dependence of the price dynamics on the decay parameter δ underlines

the nature of the time-varying betas of the stochastic modeldiscussed in the following

subsections.

4.2. A benchmark case of the standard ‘stationary’ CAPM. The standard CAPM

with homogeneous and constant beliefs can be obtained as a special case of our dy-

namic model, by settingα = 0 andδ = 1 and taking the initial conditionsu0 = ρ and

V0 = 0. Correspondingly, the expected return of the fundamentalists and the chartists

are given byEf,t(r̃t+1) = Ec,t(r̃t+1) = ρ for all t andΩc,t = Ωc = Ω. We also assume

that noise trading is absent by settingq = 0. Under these assumptions, all agents have

in fact the same fixed belief, which is fully consistent with market dynamics. As a

14As can be argued from Fig. 4.1, and reported by related studies (Chiarella et al. (2005, 2007)), in such
multi-asset models the attractor developing from the localbifurcation may be entirely located, initially,
in a lower dimensional ‘manifold’ of the phase space. As a consequence, we may observe systematic
fluctuations of prices and returns of some assets, while other assets still remain at their steady state
levels.
15For different selections of risk and return parameters, it is possible to observe qualitatively similar
situations where asset 2, or asset 3 is the ‘first’ to be destabilized. Numerical simulation reveals that this
may depend in a quite complicated way on risk-return tradeoffs.
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(a) δ = 0.865 Equilibrium prices (b) Equilibrium returns of the risky assets

(c) =0.855: Equilibrium prices (d) Equilibrium returns of the risky assets(c) δ = 0.855 Equilibrium prices (d) Equilibrium returns of the risky assets

(e) δ = 0.840 Equilibrium prices (f) Equilibrium returns of the risky assets

FIGURE 4.1. The fluctuations of prices (left panels) and returns (right
panels)in the deterministic model. Hereα = 0.15, nf = 0.3, λ = 1.5,
whereasδ = 0.865 (a,b),δ = 0.855 (c,d) andδ = 0.840 (e,f). The blue,
green and red lines represent asset 1, 2, and 3, respectively.

matter of fact, the dynamical system (3.3)-(3.6) then becomes16





pt = 1
θ
S−1Ω

−1
(ρ − rf1) = p

∗,

r̃t = P∗−1(p∗ + P∗ρ̃t) − 1 = ρ̃t,

ut = ρ,

Vt = 0.

16The dynamical system turns out to be independent also of parametersnf andλ.
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(a) Prices (b) Returns (c) Market portfolio

(d) Ex-ante betas (e) Rolling estimates of betas

FIGURE 4.2. The dynamics of the benchmark stationary CAPM with-
out noise traders. (a) The equilibrium prices of the risky assets and
value of the market portfolio; (b) the equilibrium returns of the risky
assets and the market portfolio; (c) the market portfolio proportions;
(d) the ex-ante betas of the risky assets; and (e) the rollingestimates of
the betas. Hereα = 0, δ = 1, K = 50 andq = 0. The blue, green and
red lines represent assets 1, 2, and 3, respectively.

This implies that prices are constant over time at their steady state fundamental level

p∗, whereas returns follow an i.i.d. random process with first and second moment17

given, respectively, by

E(r̃t+1) = ρ, V(r̃t+1) = Vρ.

A typical simulation of the benchmark scenario, with a weekly time stepK = 50

and the length of the simulationT = 1000 time periods, is illustrated in Fig. 4.2. Apart

from blue, green and red used for asset 1, 2, and 3, respectively, we use black for the

market portfolio. Among the plots, Figs 4.2 (a) and (b) represents the equilibrium

17The latter are therefore consistent with the homogeneous and exogenous partΩ of agents’ second
moment beliefs, since we have assumedVρ = Ω.
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prices and returns of the risky assets, respectively, demonstrating the constant equilib-

rium prices and i.i.d returns generated from the i.i.d. dividend processes. Fig. 4.2 (c)

represents the constant proportions of the risky assets in the market portfolio. Fig. 4.2

(d) plots the constant ex-ante aggregate betas resulting from the simulation. Ex-post

betas of the three assets, estimated via ‘rolling’ regression18 of realized returns against

market return, using a rolling windows of500 periods, appear to fluctuate randomly

around their constant ex-ante beta levels. One can see that,apart from some small

random fluctuations, the rolling window estimates of the betas are consistent with the

constant ex-ante betas implied by the market equilibrium.

A comment on the simulation above is in order. In our simplified setup prices are

constant in the benchmark case of ‘standard’ CAPM, and the stationary random returns

are entirely due to the normally distributed dividend yields. Due to their low average

values and relatively high volatility (especially at dailyand weekly frequencies), the

simulation often results in negative dividend yields. Although this is not realistic19, this

experiment should be regarded as purely illustrative of a reference case in which the

conditional distribution of the stationary i.i.d. return process is fully consistent with

fixed and homogeneus agents’ beliefs. Such a drawback could be avoided within a

more rich setup, by modeling the ‘benchmark’ CAPM case as onewhere prices follow

a random walk (the volatility of which is also incorporated in agents’ ‘steady state’

beliefs), in a way that the dividend yield is responsible foronly a small portion of

return volatility20.

In the following examples we deviate from such a steady statescenario, interpreted

as the standard ‘stationary’ CAPM, and show how the interaction of noise with the

underlying nonlinear deterministic structure may affect significantly the risk-return re-

lationships over time. We focus mainly on the impact of a key ‘behavioral’ parameter,

namely, memory parameterδ, where(1 − δ) represents the weight given by trend

followers to the most recent price movement.

4.3. Trend following and time-varying betas. We now examine the impact of chang-

ing behaviour on the betas in order to explore the nature of time-varying betas. In the

18Note that a common practice in empirical work involving ‘rolling’ betas, is represented by rolling
OLS estimation over 60 months (5 years), though different choices can be found in the literature. In
particular, the use of monthly returns appears to reduce theimpact of transaction costs. Such issues are
irrelevant within our stylized model. Therefore, we may usehigher frequencies and time windows of
different length, to illustrate the time-varying nature ofthe betas, and to emphasize the impact of model
parameters on their dynamic patterns. Note also that a general feature of the rolling betas is a slow time
variation, not necessarily mean-reverting to some fixed level, but not monotonic either.
19Unless we regard the dividend yield as including a carrying cost, proportional to the value of the asset,
or we interpret a negative dividend payment as new equity issue.
20In such a setup, negative draws from the dividend yield process could be realistically truncated at
zero, without substantially affecting the dynamics. A similar observation holds for the current model
too, in the parameter regimes for which price fluctuations are large enough as compared to dividend
yield volatility, for instance when parameterδ is sufficiently low.



18 CHIARELLA, DIECI AND HE

(c) Market portfolio(a) Prices (b) Returns (c) Market portfolio

(d) Ex-ante betas (e) Rolling estimates of betas

FIGURE 4.3. Illustration of the impact on the market of a change inδ
at t = 600. (a) The equilibrium prices of the risky assets and value of
the market portfolio; (b) the equilibrium returns of the risky assets and
the market portfolio; (c) the market portfolio proportions; (d) the ex-
ante betas of the risky assets; and (e) the rolling estimatesof the betas.
Hereα = 0.15, nf = 0.3, λ = 1.5, q = 0, K = 50 andδ = 0.98 for
t ≤ t∗ = 600 andδ = 0.90 for t > t∗ = 600 (overT = 1000 time
periods). The blue, green and red lines represent asset 1, 2,and 3,
respectively.

following examples we set agents’ behavioral parameters asin section 4.1, namely,

α = 0.15, λ = 1.5, nf = 0.3 and allow the decay rateδ to change to a different

level at a certain time. For the parameter values, the fundamental traders expect a cer-

tain degree of mean reversion towards fundamental prices, whereas chartists update

their beliefs about the expected returns and volatility/correlations based upon realized

returns and observed deviations from sample average returns. Initially, we choose

δ = δ1 = 0.98, which is very close to1. Then this scenario is still quite close to the

benchmark case described above. We again adopt a weekly timestep (K = 50), and

the length of the simulation isT = 1000 time periods. A regime switch inδ occurs just
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after periodt∗ = 600 with δ decreasing fromδ1 = 0.98 to δ2 = 0.90. The decrease

in δ introduces a new phase with stronger trend extrapolation, that is, with chartists

putting more weight on recent returns’ history when formingtheir beliefs (3.5) and

(3.6). Forδ = 0.90, the steady state equilibrium of the underlying deterministic model

is still stable, though it is close to its deterministic bifurcation value21, beyond which

endogenous fluctuations emerge. By adding noise (from dividends or noise traders)

into the model, dynamic patterns similar to the above mentioned deterministic fluc-

tuations tend to emerge when the underlying deterministic steady state is still stable,

provided that the parameterδ is close enough to the boundary of the region of stability

(as is the case for the parameter valueδ = δ2 = 0.90). Therefore, this change inδ has

a significant impact on the market equilibrium prices. Underthe change, agents start

varying their portfolios over time in order to exploit the emerging endogenous corre-

lation patterns between the risky assets, sometimes reinforcing them. The impact is

illustrated in Figs 4.3 and 4.4 resulting from two typical simulations with two different

sample paths from the noisy dividend process.

Figs 4.3 and 4.4 indicate that in the first period with highδ = 0.98, the equilib-

rium prices, returns, market weights and ex-ante aggregatebetas fluctuate around their

steady state levels, and that the dynamics in the initial period is not far from the ref-

erence case described in the stationary CAPM case. In this phase, the fluctuations

are essentially driven by the exogenous noise. The parameter change then leads to

a new scenario with more pronounced endogenous fluctuationsof prices and returns.

Such fluctuations also impact on the dynamics of market portfolio weights22 and con-

sequently on the time-varying ex-ante betas. In particular, we make the following

observations.

Firstly, the stochastic nature of the time-varying betas changes significantly when

the trend chasing behaviour of the trend followers changes.Due to the interaction

of the extrapolation of the trend followers on the recent returns with mean-reverting

activity from the fundamentalists, a strong extrapolation(measured by lowδ) from the

trend followers makes the market price fluctuate dramatically, as seen in Figs 4.3(a)

and 4.4(a). This provides an opportunity for the trend followers to exploit emerging

correlation among the risky assets, to re-balance their portfolios, which in turn affects

the equilibrium prices and hence the composition of the market portfolio, as indicated

in Figs 4.3(c) and 4.4(c). This expectation feedback mechanism leads to high volatility

21The value ofδ = 0.90 is near the bifurcation value forδ given byδ̂A ∈ [0.879, 0.88]. The previous
deterministic analysis has demonstrated numerically the existence of a Neimark-Sacker bifurcation for
decreasing values of the memory parameterδ (which implies increasing importance of recent market
movements in trend follower beliefs).
22The relatively small amplitude of fluctuations of the price and return on the market portfolio contrasts
with the large fluctuations of asset returns in the post-shock phase, which reveals that agents are actively
trading in a way to exploit emerging correlations among the risky assets.
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(a) Prices (b) Returns (c) Market portfolio

(e) Rolling estimates of betas(d) Ex-ante betas (e) Rolling estimates of betas

FIGURE 4.4. Illustration of the impact on the market of a change in
δ at t = 600. A different draw of the dividend process from Figures
4.3. (a) The equilibrium prices of the risky assets and valueof the
market portfolio; (b) the equilibrium returns of the risky assets and the
market portfolio; (c) the market portfolio proportions; (d) the ex-ante
betas of the risky assets; and (e) the rolling estimates of the betas. Here
α = 0.15, nf = 0.3, λ = 1.5, q = 0, K = 50 and δ = 0.98 for
t ≤ t∗ = 600 andδ = 0.90 for t > t∗ = 600 (overT = 1000 time
periods). The blue, green and red lines represent asset 1, 2,and 3,
respectively.

in the market and the time-varying betas and simply reflects the change in risk of the

risky assets, see Figs 4.3(d) and 4.4(d). In the period following the change, the average

level of the time-varying betas of asset 3 is lower than the average ‘steady state’ betas

in the initial period before the change, so that asset 3 becomes ‘less aggressive’. On

the other hand, the average level of the time-varying betas of asset 1 is higher than

the average ‘steady state’ betas in the initial period before the change, so that asset

1 becomes ‘less defensive’. In addition, measured by the time-varying ex-ante betas,

asset 2, which is less risky than asset 3 before the change, can become more risky than
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asset 3 after the change, as illustrated in Figs 4.3(d) and 4.4(d). Even asset 1, which

is much less aggressive than asset 3 before the change, can become almost as risky as

asset 3 after the change (Figs 4.3(d)).

(a) Prices(a) Prices (b) Returns (c) Market portfolio

(d) Ex-ante betas (e) Rolling estimates of betas

FIGURE 4.5. Illustration of the impact on the market of a change in
δ at t = 600. A different draw of the dividend process from Figures
4.3. (a) The equilibrium prices of the risky assets and valueof the
market portfolio; (b) the equilibrium returns of the risky assets and the
market portfolio; (c) the market portfolio proportions; (d) the ex-ante
betas of the risky assets; and (e) the rolling estimates of the betas. Here
α = 0.15, nf = 0.3, λ = 1.5, q = 0, K = 50 and δ = 0.98 for
t ≤ t∗ = 600 andδ = 0.90 for t > t∗ = 600 (overT = 1000 time
periods). The blue, green and red lines represent asset 1, 2,and 3,
respectively.

Secondly, Figs 4.3(e) and 4.4(e) suggest that the ex-post beta coefficients, estimated

via rolling regression with a moving window of300 periods, can display very different

patterns from the ex-ante betas. In Fig. 4.3(e), the qualitative changes of rolling betas

from the first to the second period seem to be somehow related to the changes occurring

to the average levels of ex-ante betas. However, in Fig. 4.4(e), the pattern of the
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ex-post betas is not so similar to the ex-ante betas, although both ex-ante and ex-

post rolling betas usually show important qualitative changes from one period to the

other. In Fig. 4.4(e), the rolling estimates of time-varying betas for asset 1 after the

change is very different from the ex-ante betas. After the change, the estimated betas

of asset 1 vary between 0.7 and 1.1, while the variation of theex-ante betas for the

asset is much smaller and they remain largely below 1. This example indicates that

rolling window estimates of time-varying betas can be misleading in an economy with

boundedly rational agents. Finally, the example in Fig. 4.5, resulting from a different

sample path of the dividend process (under the same parameter setting) again displays

significant differences between the ex-ante betas and theirrolling estimates in the last

200 periods of the time series.

Similar results can be obtained by assuming a monthly (K = 12) or a daily (K =

250) time step, and rescaling the parameters accordingly. Moreover, the results do not

change substantially oncesmall noise23 is added to the supply (via the impact of noise

traders). As an example, Fig. 4.6 reports the results of a simulation run with daily

time steps (K = 250) andT = 2000 periods, where the standard deviation of the

exogenous i.i.d. noise on the supply is equal to0.15% of the average amount of shares.

In this simulation, the chartist parameterδ is decreased fromδ1 = 0.98 to δ2 = 0.90 at

time t∗ = 1000. The length of the rolling window is500 periods. In this example, the

inconsistency between the ex-ante betas and estimated betas becomes more significant

and the estimated betas in the period after the shock vary between 0.6 and 1.2 for

assets 1, between 0.9 and 1.25 for asset 3, in face of ex-ante betas that remain far more

stable in the same period. Overall, we can see that such inconsistency is significant

for assets 1 and 3, which are the least risky and the most riskyassets, respectively.

This observation may provide an explanation as to why in empirical studies, the time-

varying CAPM based on the rolling window estimates of betas may have little or no

explanatory power and this may simply due to the way the modelis estimated rather

than any shortcoming of the underlying equilibrium models.

Similar experiments could be carried out by assuming that anexogenous shock at

time t∗ affects other behavioral parameter. A downward shift of parametersλ would

result in scenarios somehow similar to those depicted above. The same would hap-

pen under a sudden increase of the impact of the noise-traderdemand component (an

upward shift of the parameterq). The next section contains a deeper analysis of the

impact of changes of the key parameters.

We can summarise the insights provided by this experiment asfollows. Roughly

speaking, what matters when beliefs are approximately homogeneous and constant

23Note that higher levels of ‘market noise’ may considerably affect the dynamics and determine large
shifts of the average levels of the betas (see the numerical experiments in the next subsection). One
reason is that in our simplified setup, unlike the dividend noise, market noise has no counterpart in the
exogenous fixed portion of second-moment beliefs (that determines the steady state levels of the betas).
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(a) Prices (b) Returns (c) Market portfolio(a) Prices (b) Returns (c) Market portfolio

(e) Rolling estimates of betas(d) Ex-ante betas (e) Rolling estimates of betas

FIGURE 4.6. Illustration of the impact on the market of a change inδ
at t = 1000 at daily frequency (a) The equilibrium prices of the risky
assets and value of the market portfolio; (b) the equilibrium returns of
the risky assets and the market portfolio; (c) the market portfolio pro-
portions; (d) the ex-ante betas of the risky assets; and (e) the estimates
of the betas using rolling window of 500. Hereα = 0.15, nf = 0.3, λ =
1.5, q = 0.15%, K = 250 andδ = 0.98 for t ≤ t∗ = 1000 andδ = 0.90
for t > t∗ = 1000 (overT = 2000 time periods). The blue, green and
red lines represent asset 1, 2, and 3, respectively.

over time is the ‘fundamental’ part of agents beliefs about the expected returns and

their variance/covariance matrix. In our example (withoutnoise traders), such be-

liefs are consistent with the first and second moments of the resulting return process.

As a consequence, when the steady state equilibrium of the underlying deterministic

system is well within the region of stability, the estimatedbetas are consistent with

ex-ante betas. However, when the steady state of the underlying deterministic system

is destabilised via a particular bifurcation scenario, or is close to the stability bound-

ary, stronger correlation patterns emerge from the noisy model, driven by time varying

expectations and by the history-dependent portion of second-moment beliefs. Hence
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in equilibrium, the market portfolio also varies over time.This produces fluctuations

of single-period ex-ante aggregate betas and, sometimes, asystematic change of their

average level. Ex-post betas computed over different subperiods are affected by some-

how similar changes. Since ex-ante betas are directly related to certain behavioural

parameters, our findings indicate that the time variation ofobserved beta coefficients

could be related, in principle, to changes in market sentiment. This interpretation has

been suggested, so far, by ‘visual inspection’ of the time series of the ‘rolling’ betas.

Note, however, that in the previous simulations the changesof the betas from one pe-

riod to the other, affected by the parameter shift, could also be partly due to the way

the underlying noise process develops over the two periods.Therefore, a more sound

basis to such an interpretation is required. This will be provided in the next section,

where we estimate the betas over a sufficiently long time window, for a full range of

values of each parameter, under fixed sample paths for the exogenous noise processes.

4.4. Parameter dependence of realized betas. The numerical experiments in this

section offer a deeper insight into the effect, on the beta coefficients, of the model

behavioral parameters, namely, the chartist parametersδ (interpreted as the ‘memory’

of trend extrapolators’ moving averages) andλ (sensitivity of risk beliefs to historical

volatility/correlation), the fundamentalist mean reversion parameterα, and the param-

eterq, related to the standard deviation of noise trading. By assuming a time horizon

of T = 480 iterations at monthly time step (K = 12) or, alternatively, a time horizon

of T = 1000 iterations at weekly time step (K = 50) we simulate the noisy model for

a grid of values of each parameter, within a specified range. Apart from the parameter

that is allowed to vary, the remaining parameters are set according to our base selec-

tion α = 0.15, nf = 0.3, δ = 0.95, λ = 1.5, q = 0 (that is, we assume absence of

noise traders in the experiments involving the parametersα, nf , δ andλ). For each

simulation run, realised betas over the whole time horizon are plotted against different

values of the the parameter under analysis, by assuming the same sample path for the

dividend process. Fig. 4.7 displays the results of two different simulation runs for

each parameter, under the monthly and weekly scenarios (left panels and right panels,

respectively).

In Figs 4.7 (a1) and (a2), we vary the parameterδ in the range[0.90, 1]. While for δ

close to1, the realised betas are close to their steady state levels, systematic changes in

betas can be observed as long asδ decreases. In particular, we note a tendency for the

beta coefficients to become less dispersed asδ decreases. Intuitively, this may indicate

that the more weight trend extrapolators put on recently observed pricechanges and

co-movements, when forming their beliefs and portfolios, the more similar price and

return patterns of the three assets become. As a consequence, the dynamic behavior of
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(a1) Dependence of ex-post on : monthly(a2) Dependence of ex-post on : weekly(a1) Dependence of ex-postβ on δ: monthly (a2) Dependence of ex-postβ on δ: weekly

(b1) Dependence of ex-post on : monthly(b2) Dependence of ex-post on : weekly(b1) Dependence of ex-postβ onλ: monthly (b2) Dependence of ex-postβ onλ: weekly

(c1) Dependence of ex-post on q: monthly(c2) Dependence of ex-post on q: weekly(c1) Dependence of ex-postβ on q: monthly (c2) Dependence of ex-postβ on q: weekly

(d1) Dependence of ex-post on : monthly(d1) Dependence of ex-postβ onα: monthly (d2) Dependence of ex-postβ onα: weekly

FIGURE 4.7. Dependence of realized betas on parametersδ, λ, q, α.
Left panels: monthly time step,480 iterations. Right panels: weekly
time step,1000 iterations. Base parameters:α = 0.15, λ = 1.5, nf =
0.3, δ = 0.95, q = 0.
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each asset tends to become increasingly similar to the market, in terms of stronger cor-

relation and/or more similar level of volatility. A qualitatively similar effect (though

less pronounced) is reported when sensitivity to sample variances/covariances (the pa-

rameterλ) decreases over the range[0, 2], see Figs 4.7 (b1) and (b2). The effect of

market noise (the parameterq) is also similar, when the level of noise is small. When

the parameterq increases over the range[0, 0.02] for monthly data, or in the range

[0, 0.015] for weekly data, see Figs 4.7 (c1) and (c2), the beta coefficients become

less dispersed initially, whereas stronger noise may produce large shifts of the betas

and reverse their ordering. Our results suggest that, for a given level of chartist mem-

ory parameterδ, smaller sensitivity to observed volatility (lowerλ), and slightly larger

market noise (higherq, within a suitable range), tend to strengthen the above described

impact of parameterδ. The effect of varying parameterα is more ambiguous, in gen-

eral. Under the assumed parameter selection, whenα increases in the range[0.1, 0.2]

the betas tend to become less disperded, that is stronger mean reversion has a somehow

similar effect to stronger trend extrapolation (see Figs 4.7 (d1) and (d2)). For different

selection of the parameters,α may have the opposite effect. Similar effects are also

observed by varying the parameternf (simulations are not reported here). From our

numerical experiments it appears also that such phenomena are robust enough with

respect to a different choice of the time steps.

Leaving aside the direction of the impact of parameter changes, and their possible

interpretation, the main message from these experiments isthat most of the key be-

havioral parameters are able to produce significant changesin both the ex-ante and the

ex-post beta coefficients.

5. CONCLUSION

Although the conditional CAPM with time-varying betas display superiority in em-

pirically explaining the cross-section of returns and anomalies, it is mostly motivated

by econometric estimation and therefore lacks any economicfoundations and intu-

ition. In fact, financial market behaviour is the outcome of the interaction of investors

who trade optimally for different purposes with different expectations. It is this hetero-

geneity and bounded rationality that has not been characterized in the current CAPM

literature with time-varying betas. This paper aims to fill this missing part of the liter-

ature by modelling explicitly the time varying behaviour ofthe betas through agents’

behaviour.

Motivated by the recent development of heterogeneous agentmodels, in this paper,

we set up a boundedly rational dynamic equilibrium model of afinancial market with

heterogeneous agents within the mean-variance framework of repeated one-period op-

timisation. We first obtain an explicit dynamic CAPM relation between the expected

equilibrium returns and time-varying betas. We then apply the results to a financial
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market model with heterogeneous agents by incorporating fundamentalists, trend fol-

lowers and noise traders into the model. We show that, independently of the fundamen-

tals, there is a systematic change in the market portfolio, asset prices and returns, and

time varying betas when investors change their behaviour, captured by the trend ex-

trapolation of the chartists, the mean-reversion of the fundamentalists, and the strength

of the noise traders. In particular, we demonstrate the stochastic nature of time-varying

betas and show that the commonly used rolling window estimates of time-varying be-

tas are connected to, but may not be consistent with the ex-ante betas implied by the

equilibrium model. The variation of the estimated betas canbe significantly different

from that of ex-ante betas. This observation may help us to understand some empirical

findings that the time-varying CAPM based on the rolling window estimates of betas

may have no explanatory power and this may simply be due to theestimation tech-

nique rather than some shortcoming of the underlying equilibrium models. The results

provide some insights into the factors affecting the time variation of beta.

It would be interesting to examine the statistical properties of the asset returns, in-

cluding the normality of the return distributions, volatility clustering, fat tails, and

long memory in the asset returns, in particular, their dependence on agent behaviour.

It would also be interesting to study the impact of adaptive behaviour when agents

use combined strategies or beliefs in which the weights are updated by some fitness

measure. We leave these issues to future research.

Appendix: Rescaling the chartist parameter δ to different trading periods
Chartist expected return (3.5) can be rewritten as a time average of past returns, with

exponentially declining weights, as

ut = δut−1 + (1 − δ)rt =
∞∑

s=0

δs(1 − δ)rt−s. (5.1)

Assume that time is measured in years. As is well known, the parameterδ, 0 < δ < 1,

is linked to the average memory length

ℓ :=

∞∑

s=0

s(1 − δ)δs= (1 − δ)

∞∑

s=0

sδs = (1 − δ)

∞∑

s=1

sδs.

The latter is an arithmetic-geometric series, which sums upto
∞∑

s=1

sδs =
δ

(1 − δ)2
,

and therefore we obtain:

ℓ =
δ

1 − δ
.
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This means that, when the chartists compute the sample time average using the weight-

ing parameterδ, their average memory length isδ
1−δ

years.

If we switch, say, to monthly data, a reasonable criterion torescale the chartist

parameter to the new time step (denote the new parameter byδ(12)) is to keep the

memory length constant, that is

ℓ =
δ

1 − δ
years =

δ(12)

1 − δ(12)
months.

This means thatδ andδ(12) are related by

δ(12)

1 − δ(12)
=

12δ

1 − δ

from which

δ(12) =
12δ

1 + 11δ
.

In general, ifK is the new time frequency andδ(K) the rescaled decay parameter, then

δ(K) =
Kδ

1 + (K − 1)δ
,

where0 < δ(K) < 1. In this way, agents update time averages at monthly frequency

using equation (5.1) with parameterδ(12), and this is consistent with updating at yearly

frequency with parameterδ.
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Böhm, V. and Wenzelburger, J. (2005), ‘On the performance of efficient portfolios’,Journal of Eco-

nomic Dynamics and Control 29, 721–740.

Bollerslev, T. (1986), ‘Generalized autoregressive conditional heteroskedasticity’,Journal of Econo-

metrics 31, 307–327.

Bollerslev, T. (1990), ‘Modelling the coherence in short-run nominal exchange rates: A multivariate

generalized ARCH model’,Review of Economics and Statistics 72(3), 498–505.

Bollerslev, T., Engle, R. and Wooldridge, J. (1988), ‘A capital asset pricing model with time varying

covariances’,Journal of Political Economy 96, 116–131.



TIME-VARYING BETA: A BOUNDEDLY RATIONAL EQUILIBRIUM APPROACH 29

Braun, P., Nelson, D. and Sunier, A. (1990), ‘Good news, bad news, volatility and betas’,Journal of

Finance 50, 1575–1603.

Brock, H. and Hommes, C. (1997), ‘A rational route to randomness’,Econometrica 65, 1059–1095.

Brock, H. and Hommes, C. (1998), ‘Heterogeneous beliefs androutes to chaos in a simple asset pricing

model’,Journal of Economic Dynamics and Control 22, 1235–1274.

Campbell, J. and Vuolteenaho, T. (2004), ‘Bad beta, good beta’, American Economic Review

94(5), 1249–1275.

Chiarella, C., Dieci, R. and Gardini, L. (2005), ‘The dynamic interaction of speculation and diversifica-

tion’, Applied Mathematical Finance 12(1), 17–52.

Chiarella, C., Dieci, R. and He, X. (2007), ‘Heterogeneous expectations and speculative behaviour in a

dynamic multi-asset framework’,Journal of Economic Behavior and Organization 62, 402–427.

Chiarella, C., Dieci, R. and He, X. (2009),Heterogeneity, Market Mechanisms and Asset Price Dy-

namics, Elsevier, pp. 277–344. inHandbook of Financial Markets: Dynamics and Evolution, Eds.

Hens, T. and K.R. Schenk-Hoppe.

Chiarella, C., Dieci, R. and He, X. (2010a), ‘Do heterogeneous beliefs diversify market risk?’,European

Journal of Finance . in press.

Chiarella, C., Dieci, R. and He, X. (2010b), A framework for CAPM with heterogeneous beliefs,

Springer, pp. 353–369. inNonlinear Dynamics in Economics, Finance and Social Sciences: Essays

in Honour of John Barkley Rosser Jr., Eds. Bischi, G.-I., C. Chiarella and L. Gardini.

Chiarella, C. and He, X. (2003), ‘Dynamics of beliefs and learning underal-processes – The Heteroge-

neous case’,Journal of Economic Dynamics and Control 27, 503–531.

Chiarella, C., He, X. and Hommes, C. (2006), ‘A dynamic analysis of moving average rules’,Journal

of Economic Dynamics and Control 30, 1729–1753.

Collins, D., Ledolter, J. and Rayburn, J. (1987), ‘Some further evidence on the stochastic properties of

systematic risk’,Journal of Business 60(3), 425–448.

Day, R. and Huang, W. (1990), ‘Bulls, bears and market sheep’, Journal of Economic Behavior and

Organization 14, 299–329.

Detemple, J. and Murthy, S. (1994), ‘Intertemporal asset pricing with heterogeneous beliefs’,Journal

of Economic Theory 62, 294–320.

Engle, R. (1982), ‘Autoregressive conditional heteroscedasticity with estimates of the variance of UK

inflation’, Econometrica 50, 987–1008.

Fabozzi, F. and Francis, J. (1978), ‘Beta as a random coefficient’,Journal of Financial and Quantitative

Analysis 13(1), 101–106.

Fama, E. and French, K. (2006), ‘The value premium and the CAPM’, Journal of Finance 61(5), 2163–

2185.

Farmer, J., Gillemot, L., Lillo, F., Mike, S. and Sen, A. (2004), ‘What really causes large price changes’,

Quantitative Finance 4, 383–397.

Gaunersdorfer, A. and Hommes, C. (2007),A Nonlinear Structural Model for Volatility Clustering,

Springer, Berlin/Heidelberge, pp. 265–288. inLong Memory in Economics, Eds. Teyssiere, G.

and A. Kirman.

Hamilton, J. (1989), ‘A new approach to the economic analysis of nonstationary time series and the

business cycle’,Econometrica 57(2), 357–384.

Hamilton, J. (1990), ‘Analysis of time series subject to changes in regime’,Journal of Econometrics

45, 39–70.



30 CHIARELLA, DIECI AND HE

Harvey, C. (2001), ‘The specification of conditional expectations’,Journal of Empirical Finance 8, 573–

638.

He, X. and Li, Y. (2007), ‘Power law behaviour, heterogeneity, and trend chasing’,Journal of Economic

Dynamics and Control 31, 3396–3426.

Hommes, C. (2006),Heterogeneous Agent Models in Economics and Finance, Vol. 2 of Handbook of

Computational Economics, North-Holland, pp. 1109–1186. inAgent-based Computational Eco-

nomics, Eds. Tesfatsion, L. and K.L. Judd.

Horst, U. and Wenzelburger, J. (2008), ‘On no-ergodic assetprices’,Economic Theory 34(2), 207–234.

Huang, C.-F. and Litzenberger, R. (1988),Foundations for Financial Economics, Elsevier, North-

Holland.

Jagannathan, R. and Wang, Z. (1996), ‘The conditional CAPM and cross-section of expected returns’,

Journal of Finance 51, 3–53.

Kirman, A. (1992), ‘Whom or what does the representative agent represent?’,Journal of Economic

Perspectives 6, 117–136.

Kothari, S., Shanken, J. and Sloan, R. (1995), ‘Another lookat the cross-section of expected stock

returns’,Journal of Finance 50(1), 185–224.

LeBaron, B. (2006),Agent-based Computational Finance, Vol. 2 of Handbook of Computational Eco-

nomics, North-Holland, pp. 1187–1233. inAgent-based Computational Economics, Eds. Tesfat-

sion, L. and K.L. Judd.

Lewellen, J. and Nagel, S. (2006), ‘The conditional CAPM does not explain asset-pricing anomalies’,

Journal of Financial Economics 82(3), 289–314.

Lintner, J. (1969), ‘The aggregation of investor’s diversejudgements and preferences in purely compet-

itive security markets’,Journal of Financial and Quantitative Analysis 4, 347–400.

Lux, T. (2004),Financial Power Laws: Empirical Evidence, Models and Mechanisms, Cambridge Uni-

versity Press. inPower Laws in the Social Sciences: Discovering Complexity and Non-equilibrium

in the Social Universe, Eds. C. Cioffi.

Wenzelburger, J. (2004), ‘Learning to predict rationally when beliefs are Heterogeneous’,Journal of

Economic Dynamics and Control 28, 2075–2104.

Westerhoff, F. (2004), ‘Multiasset market dynamics’,Macroeconomic Dynamics 8, 591–616.

Westerhoff, F. and Dieci, R. (2006), ‘The effectiveness of Keynes-Tobin transaction taxes when Het-

erogeneous agents can trade in different markets: A behavioral finance approach’,Journal of

Economic Dynamics and Control 30, 293–322.

Williams, J. (1977), ‘Capital asset prices with Heterogeneous beliefs’,Journal of Financial Economics

5, 219–239.

Zapatero, F. (1998), ‘Effects of financial innovations on market volatility when beliefs are heteroge-

neous’,Journal of Economic Dynamics and Control 22, 597–626.




