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ABSTRACT. By taking into account conditional expectations and theethelence of

the systematic risk of asset returns on micro- and macroauoa factors, the con-
ditional CAPM with time-varying betas displays superigiiit explaining the cross-

section of returns and anomalies in a number of empiricalistu Most of the litera-

ture on time-varying beta is motivated by econometric estiiom rather than explicit

modelling of the stochastic behaviour of betas through tyéehaviour. Within the

mean-variance framework of repeated one-period optiinisatve set up a bound-
edly rational dynamic equilibrium model of a financial markéth heterogeneous
agents and obtain an explicit dynamic CAPM relation betwiherexpected equilib-

rium returns and time-varying betas. By incorporating tire¢ most popular types of
investors, fundamentalists, chartists and noise traddcsthe model, we show that,
independent of the fundamentals, there is a systematicgehemthe market port-

folio, risk-return relationships, and time varying betasen investors change their
behaviour, such as the chartists acting as momentum trddevarticular, we demon-

strate the stochastic nature of time-varying betas and shatithe commonly used
rolling window estimates of time-varying betas may not besistent with the ex-ante
betas implied by the equilibrium model. The results prodd®imber of insights into

an understanding of time-varying beta.

JEL ClassificationG12, D84.
Keywords Equilibrium asset prices; CAPM; time-varying betas, hegeneous ex-
pectations.

Current versionFebruary 26, 2010.
We would like to thank Alan Kirman and Cars Hommes for helgfoinments and conference partici-
pants at the WEHIA 2006 (Bologna), the COMPLEXITY 2006 (Aeér-Provence), CEF 2006 (Cyprus),
MDEFO08 (Urbino), and the 2009 Workshop on Evolution and MafRehavior in Economics and Fi-
nance (Pisa) for helpful comments and suggestions. Fiabsgpport for Chiarella and He from the
Australian Research Council (ARC) under Discovery GrarRQD73776) is gratefully acknowledged.
Dieci acknowledges support from MIUR under the project PRD04137559.
Corresponding authoiXue-Zhong (Tony) He, School of Finance and Economics, sty of Tech-
nology, Sydney, email: tony.hel@uts.edu.au. Ph: (61 249526, Fax: (61 2) 9514 7722.

1



2 CHIARELLA, DIECI AND HE
1. INTRODUCTION

Despite the propagation of multifactor models, includimgrfa-French type factors,
and various market anomalies, the Capital Asset PricingeViG@APM) remains very
popular. The CAPM assumes that all investors have the sapecttions about the
means, variances and covariances of future returns, arae ltka beta of the CAPM
is assumed to be constant over time and is estimated viaasydigast squares (OLS).
However, according to Bollerslev, Engle, and Wooldridg888), economic agents
take conditional expectations of the moments of futurernstand therefore these are
random variables rather than constant. Due to the depeadsribe systematic risk
of an asset return on micro- and macro-economic factorsageemption of beta sta-
bility has been rejected by various empirical studies okerlast three decades. In
fact there is strong evidence that the conditional betasiraeevarying. For example,
for book-to-market portfolios betas of the highest decile of book-to-market stocks
reached over 2.5 during the 1940s and fell to -0.5 at the e20@1 (see for example
Kothari, Shanken and Sloan (1995); Campbell and Vuoltee(2004) and Adrian and
Franzoni (2005)). Consequently, according to JagannahdniNang (1996), a con-
ditional CAPM that takes conditional expectations into@ott provides a convenient
way to incorporate time-varying beta and displays emgisageriority in explaining
the cross-section of returns and anomalies.

There exists a large literature on time-varying beta mqaeést of which is moti-
vated by econometric estimation. Introduced by Engle (1282 Bollerslev (1986),
the class of GARCH models, including M-GARCH (multivarigteneralized autore-
gressive conditional heteroskedasticity) model propdse@ollerslev (1990), were
the first to estimate time-varying betas. To model the asymomand nonlinear ef-
fects of beta on conditional volatility of positive and néga shocks, Braun, Nel-
son, and Sunier (1990) extended the basic GARCH model to ponextial GARCH
(EGARCH) model. Other models include the random walk mosle¢( for example,
Fabozzi and Francis (1978) and Collins, Ledolter, and Rayi§ii987)), the mean-
reverting model (see for example Bos and Newbold (1984} tla@ Markov switching
models introduced in the seminal works of Hamilton ((1982990)). More recently,
Harvey (2001) used instrumental variables to estimateskatd showed that the esti-
mates are very sensitive to the choice of instruments usptbtg for time-variation
in the conditional betas. Among others, Campbell and Veoldéo (2004), Fama and
French (2006), and Lewellen and Nagel (2006) assume déscineinges in betas across
subsamples but constant betas within subsamples. In stniag and Chen (2007)
treat betas as endogenous variables that vary slowly artthoonsly over time. By

The book-to-market portfolios are constructed based onok+m-market trading strategy that goes
long the highest decile portfolio of stocks sorted on bomkrarket ratios (value stocks) and short the
lowest decile portfolio of book-to-market ratio stocksdgth stocks).
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guestioning the conventional wisdom that there existangtrevidence of a book-to
market effect Ang and Chen (2007) developed a methodology for consigteati-
mating time-varying betas in a conditional CAPM and fourat #nsingle-factor model
performs substantially better in explaining the book-tarket premium. They demon-
strated that, when betas vary over time, the standard Olegente is misspecified and
cannot be used to assess the fit of a conditional CAPM.

Economically, most models of time-varying beta are basedhenrepresentative
economic agent assumption that all investors have the sabjecsive expectations of
the means, variances and covariances of future returne, Asst of the econometric
models of time-varying beta lack any economic explanatmahiatuition. In the litera-
ture, the conditional CAPM with time-varying betas take®s iaccount the conditional
expectations and the dependence of the systematic rislsef eturns on micro- and
macro-economic factors, but not agents’ behaviour. Thedstal justifications for the
assumption of unbounded rationality have recently beditised and economists are
giving more attention to the role of heterogeneity and baahctionality in explain-
ing economic phenomena. In the real world, agents can hdaeedgeneous subjective
expectations of the means, variances and covariancesushset Further more they
are boundedly rational rather than perfectly rational. fihancial markets represent
the aggregation of the interaction of the boundedly ratibehaviour among hetero-
geneous agents. Accordingly, the time-varying betas ictimelitional CAPM should
reflect the interaction of heterogeneous and boundediyratagents and heterogene-
ity can have profound consequences for the interpretafi@mpirical evidence. The
aim of this paper is to model explicitly the stochastic bebar of beta by focusing
on agents’ heterogeneity and the resulting boundedlyrratiequilibrium. Different
from the most of econometric models, the results in this ppp®/ide some economic
explanation and intuition of the mechanism underlying thretvariation of beta.

The impact of heterogeneous beliefs among investors on #r&emnequilibrium
price has been an important focus in the literature. A nunadfenodels with in-
vestors who have heterogeneous beliefs and follow someitegprocesses have been
previously studietd Recently, using ideas from the theory of nonlinear dynainic
systems, various heterogeneous agent models (HAMs) havedexeloped to charac-
terize the dynamics of financial asset prices resulting fiteennteraction of heteroge-
neous agents with different attitudes towards risk ancbrfiit expectations about the
future evolution of asset prices. One of the key elementsisfliiterature is the expec-
tations feedback mechanism, see Brock and Hommes ((128298)). This frame-
work can explain various types of market behaviour, sucthaddng-term swing of
2The book-to-market effect is that stocks with high bookstarket ratios have higher average returns
than what the CAPM predicts.

3See, for example, Lintner (1969), Williams (1977), Huangl ditzenberger (1988), Abel (2002),
Detemple and Murthy (1994), Zapatero (1998) and Basak (2000
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market prices from the fundamental price, asset bubbleskaherashes, the stylized
facts and various kinds of power law behavibaoinserved in financial markets. We re-
fer the reader to Hommes (2006), LeBaron (2006) and Charelkeci and He (2009)
for surveys of recent literature on HAMs. However, most & tlPAMs analysed in the
literature involve a financial market with only one risky @isand are not in the context
of the CAPM. More recently, some attempts have been madevielaieHAMSs with
many assetfs In particular, by introducing a concept obnsensus belieChiarella,
Dieci and He (2018, 201() show that the market equilibrium under heterogeneous
beliefs can be characterized by a consensus belief, whitcheaonstructed explicitly
as a weighted average of the heterogeneous beliefs.

Within the mean-variance framework of a repeated one-ggfiAPM, Chiarella,
Dieci and He (2016) set up a framework for the CAPM with heterogeneous beliefs
by considering a financial market with multiple risky assatgskless asset, and many
heterogeneous agents. Agents having heterogeneousshelitie mean and vari-
ance/covariance of asset returns choose their optimdbfiorbased on their beliefs.
In market equilibrium, the heterogeneous beliefs are agges into a “consensus”
belief in each period and the CAPM relation between markatiligium returns and
ex-ante aggregated beta coefficients are made explic. gdper uses the framework
developed in Chiarella, Dieci and He (2@1)Qo explore the time varying behaviour
of beta. By incorporating the three most popular types oéstors, fundamentalists,
chartists and noise traders, into the model, we charaeténiz betas through the in-
teraction of the three types of agents. It is found that thtasare time varying and
they are affected by agents’ behaviour. In particular, Wusitate that a change charac-
terised by the change of a key behavioral parameter, nathelgensitivity of chartists’
predictions to recently observed returns, has a significapact on the time-variation
of betas, and hence the market portfolio and risk-retumtiaiships between the risky
assets and the market. By using the common practice of galinS estimates of be-
tas, we show that the realized betas are time-varying, bytmoaibe consistent with
the ex-ante betas implied by the equilibrium CAPM, implythgt the rolling window

4See, for example, Day and Huang (1990), Kirman (1992), Feahal. (2004), Lux (2004), Chiarella,
He and Hommes (2006), Alfararet al. (2005), Gaunersdorfer and Hommes (2007), and He and Li
(2007).

SRecent studies with many risky assets include Wenzelby&@94), Westerhoff (2004), Bohm and
Chiarella (2005), Bohm and Wenzelburger (2005), Chiaredlal. (2005, 2007), Westerhoff and Dieci
(2006) and Horst and Wenzelburger (2008), showing that éexypice dynamics may also result within
a multi-asset market framework with heterogeneous beli@fgarella, Dieci and He (2007) show that
diversification does not always have a stabilizing role,rhay act as a further source of instability in
the financial market. Wenzelburger (2004) introduces aeefee portfolio and Bohm and Wenzelburger
(2005) show that the returns realized with an efficient pdidfdo not necessarily outperform those of
non-efficient portfolios. By allowing social interactioomang consumers, Horst and Wenzelburger
(2008) show that asset prices may behave in a non-ergodicenan
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estimates of time-varying betas can be misleading. Thdtsegtovide some under-
standing of the economic factors underlying the time vamnabf beta.

The paper is organized as follows. Section 2 reviews the dveonk developed
in Chiarella, Dieci and He ((201)). Section 3 incorporates the three most popular
types of investors, fundamentalists, chartists and noegets, into the framework
and examines the steady-state equilibrium of the correipgrdeterministic model.
Using numerical simulation, Section 4 examines the impaabwestors’ behaviour
on the market, including the equilibrium market pricesumes, the market portfolio,
and the betas. In addition, the stochastic behaviour of #tasband the consistency
of the realized betas estimated by the rolling OLS estimatesanalyzed. Section 5
concludes and suggests some directions for future rese@hehappendix contains a
result on the rescaling of the chartist parameter to diffett@ding periods.

2. A CAPM FRAMEWORK WITH HETEROGENEOUSBELIEFS

Consider an economy with agents, indexed by = 1,2,---, 1, who invest in
portfolios consisting of a riskless asset avdisky assets, indexedy=1,2,--- , N,
with N > 1. Letr; be the (constant) risk free rate of the riskless 4smed7; be the
rate of return of risky asset(; = 1,2, ..., N). Following the standard CAPM setup,
we assume that agents believe that the returns of the riggtsaare conditionally
multivariate normally distributed. Assume that thenvestors can be grouped into
H agent-types, indexed by = 1,2, --- , H, where the agents within the same group
are homogeneous in their beliefs as well as risk aversioa.cbnstant (absolute) risk
aversion coefficient of agents of typeis denoted by,. We also denote by, the
number of investors in group and byn,, := I,/I the market fraction of agents of
type h. In each period, agents update their beliefs about the figtsacond moment
of the joint distribution of risky asset returns, and foratel their portfolio decisions
in order to maximize one-period-ahead expected utility eéith. The/N-dimensional
random vector of risky asset returns over the time intemaahft to ¢ + 1 is denoted
by T/11, While Ej, ,(T141) and€2,; := [Covp (711, Tk e+1)] indicate the conditional
expectation and the conditional variance-covarianceirmafrr,,, for type+ agents
at timet. When agents form their beliefs at timgetheir information set includes
realized prices and returns up to time- 1. Finally, lets, = (s14,---,sn:)” be
the N-dimensional vector that collects the existing stock ofrekaat timet for each
risky asset, an8, :=diag|[s ;, 52, ..., Sn,¢]. Letalsog, , and¢, be theN-dimensional
vectors collecting the dollar demands of typegents and the aggregate dollar demand
for each risky asset, respectively. The quantitigs¢, , and ¢, represent average

®Note that when the risk-free rate is given exogenously, #tsuapply of the riskless asset in the market
may not be zero, see Chiarella, Dieci and He (2§)16r the details.
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amountsper investor. The N-dimensional vector of market clearing asset prices at
timet is denoted by, while d; is the random vector of dividends in periad

2.1. The general model of boundedly rational equilibrium. We summarize below
the general form of the dynamical system which describesrasket fraction multi-
asset model with heterogeneous beliefs developed in Qhiaeal. (201®). The
heterogeneous groups of agents form their beliefs abawgfwéturns based on agents’
information set at time consisting of realized prices and returns up to time. Such
beliefs determine agents’ demands, and the aggregationcbf @emands produces
temporary equilibrium prices at timg via market clearing. More precisely, under
mean-variance preferences WIEARA utility, the (dollar) demand vector of the risky
assets at timeis given by
Gi= Gue= > by QB (Fi) — 71,
heH heH

The market clearing conditidrat timet, ¢, = S,p;, Yyields the price vectop, as
follows

p:=S;" Z iy, [En (Fipn) — 7p1]. (2.1)

heH

We assume that agents’ conditional expectation and conditivariance-covariance

matrix ofr, . ;are functions of realized returns, , r;_», ..., and pricesp;_1, pi—2, -,
namely

Ep(Ti1) = (v, rig, oo, Pe—1, Pr—2, --),s
Qh,t = Qh(rt—h ry2,...,Pt-1, Pt—2, )

The market clearing prices at time (2.1), can therefore be expressed as functions
of realized returns and prices up to tirfre— 1), r;_1, 1y o, ..., Pr—1, Pt—2, ..., Via the
above specified functiorfs and€2;, and the same holds for random returns in period
t, which depend on the random dividend in perioat, as well

T = Pt_—11(Pt + at) —1= F(I't—h ry2,...,Pt—1, Pt—2, -3 at)’ (2-2)

whereP, :=diag(p1 ¢, pa, ..., pnt). NOiSy dividendsﬁt are assumed to follow a sto-
chastic process that may depend, in general, on past hst@nyces and returns and
an exogenous noise component.

In this framework it is possible to define aggregate or ‘cosse’ belief (see Chiarella,
Dieci and He (2016) for details). Given the “average” risk aversion coefficien

O = (> miby) (2.3)

heH

Note that the market clearing equation will include a noisgnponent if noise traders are introduced
into the model. See the next section.
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aggregate beliefs at timeabout variances/covariances and expected returns over the
time interval(z, ¢ + 1) are specified, respectively, as

-1
Q. =0;" (Z nheglﬂ;;) , (2.4)

heH

Eoy(Trs1) = 00z > iy ' 1 By (T (2.5)
heH

The market clearing prices (2.1) can therefore be rewrdteifi they were determined
by a homogeneous agent endowed with average risk aveffsiand the consensus
beliefsE, ;(r;11), Q4+, Namely

P =S;10,'Q } [Eas(Tiga) — ryl]. (2.6)

The price reflects the equilibrium price under the markearihg condition when
agents choose their optimal portfolios based on their tseli€herefore, we call the
price as the boundedly rational equilibrium price. Suchreggtion formulas are use-
ful to derive single-period ex-ante relationships in tewhaggregate beliefs, that are
formally identical to CAPM relationship, and can therefbeeuseful to study CAPM
implications of our heterogeneous agent model. Namelipeabéginning of each time
interval (¢,t + 1) the aggregate beliefs about returns (based on informafida time

t — 1) satisfy a CAPM-like equation of the type

Ea,t(?t+1) - Tfl = ﬁa,t[Ea,t(?m,t—i—l) - Tf],

where

(Bt (Fre1) — 1] T, T
Tmt+1 =

[Eai(Trra) — 1] T Q51
denotes the random return on the market portfolio of theyressets, whereas the
ex-ante “aggregate” beta coefficients are given by

[Bat(Frg) — 1] T Q001
[Eai(Fryr) = 1) T Q0 [Ea i (Tiga) — 771
Thus we see that the time variation of aggregate betas iscdagents’ time varying
beliefs about both the first and the second moment of therrelistributions.

Bat = (Bt (Teq1) — 7yl

2.2. Steady state equilibrium of the deterministic model. The dynamical system
(2.1) and (2.2) is stochastic in general through the dividprocess and other noise
terms possibly included is} (see the next section). In order to focus on the steady state
of the deterministic skeleton of the model, we first assunaé thie amount of shares

is constant over times; = s. We then consider the deterministic system obtained
by replacing the random divider&i with the conditional expectation of the dividend
process at time¢ — 1, d;, := Et_l[at]. The deterministic system thus represents the
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dynamics of the expectations of the equilibrium prices agtdrns. Denote byl a
steady state level al, := Et_l[at]. One can easily see from (2.1) and (2.2) that in
order that the deterministic system be at a steady statersgy pricesp, returnsr,
and (expected) dividendd,need to satisfy

p=5"1Y mb, ', [fi - rs1), 2.7)
heH
whereQ,;, := Q,(%,t,...,p, D, ...), f» :== fi (¥, T, ..., P, P, ...), and
F=P 'd (2.8)
or, equivalently
p=R 'dq, (2.9)

wheré P :=diag(p,,p,, ..., By ), R :=diag[7,, s, ...,7x). Equation (2.9) can be ex-
pressed component by component as

which provides a representation of equilibrium prices tigio the usual discounted
dividend formula via the appropriate rates of returns fotheasset. Substitution
of (2.8) (or (2.9)) into (2.7) results in a system df equations in the equilibrium
pricesp,, ps, ---, Py (Or in the equilibrium returng,,7,, ...,7y). Therefore, steady
state prices, or returns, emerge endogenously from theaindykamics with evolving
heterogeneous beliefs. However, in the particular caseldegd in the next sections,
parameters will be selected in a way that steady state pain@seturns are consistent
with steady state agents’ expectations such that

f, .= f,(v,7,...,p,p,...) =T, hcH.

This will highly simplify the dynamic analysis, without Ief generality. Further-
more, the ‘steady state’ dynamics of the noisy model in thigipular case will natu-
rally be interpreted as the standard multi-period CAPM witmogeneous beliefs and
stationary beta coefficients.

3. A MODEL WITH CLASSICAL HETEROGENEOUS AGENTTYPES

In this section we provide a representative example of theigd model outlined in
Section 2 with different types of beliefs and analyse thaltegy dynamics for prices,

8In the example of the next section, dividends will be assutndek generated by an underlying i.i.d.
process{p;} for the dividend yield, so thatd, = P,_1p:, whereP, :=diag(p1,, p2,i, -, DNt). It
follows thatEt_l[at] =P;_1p, wherep :=E;_;[p;], and thaid = Pp. As an alternative specification,
we may assume that dividenasfollow an i.i.d. process, WherEt,l[at] = E[at] = d represents the
constant (and steady state) expected dividend.

‘Note thatf_lﬁ =1.
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returns, aggregate portfolio shares and beta coeffici&his.example, which is close
in spirit to Chiarella, Dieci and Gardini (2005) and Chi¢aelDieci and He (2007),
considers two types of agent&indamentalists, who use information on the ‘funda-
mental values’, antrend followers, who form future return forecasts by extrapolating
realized return®. These two types of agents are the most common and popular one
in the literature on heterogeneous agent models. In additre allow for a third type
of agent noise traders - whose demand for each risky asset is treated as an exogenous
random disturbance, described by an i.i.d. process withmmean. The effect of noise
traders is equivalent to viewing the total amount of eacleta&s a noisy quantity. In
the following, we consider two types of agenfisndamentalists andtrend followers,
or chartists, labelled withh = f andh = ¢, respectively.

We also assume that the dividend yield follows ani.i.d. pes¢p, }, and we denote
by p andV, the expectation and the variance/covariance matrig,pfespectively.
This implies that

azt = Pt—lﬁt

Whel’ePt ::diag(th,pg,t, ---;pN,t>| with Et_l[at] = Pt—lp-

3.1. Fundamentalists. Fundamentalists compute conditional expected returnaf ea
risky asset as the sum of a constant component that repsesémg-run return (de-
pending on ‘fundamental’ variables), and a time varying ponent that accounts for
the expected mean reversion towards the fundamental dige.can be expressed as

Efy(Tp1) = p+ aP* ' (p* —pio1) = p+a(l — P 'p,y),

wherep* = [pj}, p3, ...,p*N]T is the vector of fundamental pricdB; := diag|[p*|, andp
= [p1, P2, .-\ pN]T IS the long-run component or the fundamental of asset reti8uch
a ‘fundamental’ component is related to the dividend preceamelyp represents the
(stationary) expected dividend yield. According to the aqn above, if fundamen-
talists believe that a certain asset is undervalued withe@go the fundamental price,
the expected return for the next trading period will incl@dgositive capital gain and
will therefore be larger than the long-run average returre a$o assume that the
fundamentalists have constant beliefs about the variaocafiance structure of the
returnst!

Q= .

10The chartists may or may not have information on the funddat@alues, however we assume that
they form their expectations based on historical prices.

Hrundamentalist second-moment beliefs are also relatdektedlatility of the dividend process. This
is the perspective we adopt in the following examples.
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3.2. Trend Followers. The trend followers are assumed to compute the expected re-
turn as a time-weighted average of observed returns, that is

Ec,t(?t—i-l) = W¢—1,

whereu;_; is a vector of sample means of past realized retwfng r;_5,.... This
specification captures the extrapolative behavior of teadrfollowers, who expect
price changes to occur in the same direction as the price wbserved over a past
time window. Similarly to Chiarella Dieci and He (2007), wesame thati,_; is
computed recursively as

W = 0wy + (1 —)ryy. 3.1)

Effectively, the trendu;_; is the average of all past historical retumsq,r; -, ...
weighted by geometric decaying weighits— §){1,4, 2, ---}. Therefore, ag$ de-
creases, the weight on the latest returns increases bugysigeametrically at a rate
of §. Therefore, the trend followers can be treated as momentagers and this is
in particular the case for small The variance/covariance mat, , is assumed to
consist of a constant componént, and of a time-varying component,

Qc,t = ﬁc + )\Vt—lu

where\ > 0 measures the sensitivity of the second-moment estimateetsample
varianceV,_;. The latter is updated recursively as a function of pastatens from
sample average returns using the same geometrically secasgights as in (3.1), so
that

Vi1 =06Via+6(1 —0)(remq — w—o)(re—q — ut—2)T-

Note that the recursive equations for ; andV,_; can be considered as limiting cases
of geometric decay processes when the memory lag lengtls tendfinity (see, for
example, Chiarella and He (2003)).

3.3. Noisetraders. We allow for a further class of agents, the so-catieide traders,
whose impact is simply modelled as an additional sourcerafoen fluctuations. The
demand for the risky assets (in terms of number of sharee) thos type of agent
at timet is described by the random vectg)tr [glt,ggt, . gN «] ", where thegjt
are assumed i.i.d. WItW(gﬁ) =0,7 =1,2,...,N. We also assume, for the sake
of simplicity, that the standard deviation of the noise #tademand for each asset is
proportional to the (fixed) supply of the same asset in thekatathat is Var(é; ) =

q> sj, while demands for different assets are not correlalié{@ﬂ,gkt) =0forj, k =
1,2,..., N. The parametey > 0, that will be assumed contant for all assets, represents
an additional behavioral parameter of our model, captuthegvolatility intensity’ of
noise-trading. Sét ::diag(gl,t,é,t, ...,gN,t). The market clearing condition in the
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presence of noise traders thus becomes, in general

9;19;% [Bat(Te1) —rpl] + étpzt = Sp,
and the market clearing prices (2.6) are therefore rewrdte

P = (S—E,) 710, Q0 By (Tr1) — 771), (3.2)

where€?,; and E, ,(r:+1) represent the consensus beliefs defined by (2.4) and (2.5)
in Section 2. Note that the introduction of noise traderssdugt cause the model to
depart from the general setup (2.1)-(2.2) with mean-vaganvestors, but it is simply
formally equivalent to assuming a noisy supply ve&ioe s—Et.

3.4. The complete dynamic model. We denote by, andd. the risk aversion coeffi-
cients of the two agent-types, andbyandn. = 1 —n; their market fractions. Using
(2.3), the market risk aversion is given By = (nf9;1 + ncegl)_l. From (2.4) and
(2.5), the aggregate variances/covariances and expetteds are given, respectively,
by

1 —1
nf Ne ~_1 ny c e -1
Q.. =601 Q —Q Q. +--Q :
e <9f "5, c’t) <9f " 90) <9f ) C’t)

— Tnfr——1 ~ Ne ~
Eot(Ti1) = 0820 {_Gfo By (i) + Q_Qc,tleq(rt-H)]
f c

-1
c — *— Ne —
(efnf Q—CQC}) {efﬁf [p+a(1-P 1pt_1)}+9—09q,}ut_1}.

With the above-specified agent-types, the general dynamdéehgiven by (2.1) and
(2.2) specialises to the following noisy nonlinear dynaahgystem:

Pt = (S—gt)_l{ 5, Qf [p+a(1—P'p,y)] + 78 0. P LT

(Z;‘Q Z—cagg) m}, (3.3)
F =P L(pi+d)—1=Pip+p —1, (3.4)
where(2,, = Q.+ \V,_4, and wherax,_; andV,_; are updated according to
w =o0w_; + (1 —9)ry, (3.5)
V=6V, +6(1—68)(r; —u_y)(ry —uy) . (3.6)
3.5. The steady state of the deterministic model. To obtain a steady-state equilib-

rium which is consistent with the fundament return, we cdawsithe deterministic
skeleton of the dynamical system (3.3)-(3.6) by lettmjg= p and=E; = 0 for all

t. Then we obtain a deterministic steady state solutioF, @, V) must necessarily
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satisfy the set of algebraic equations

r=u=p,
V =0,
p = s g! 1-Pp)] + = 'p— (Mo '+ Za ') ra
p {9f ! [p+a( p)}_‘_ec c P 0; f +90 c |7
= S HEO 7 + ) (p—rp1) + a2l (1P p) b 3.7
{<9f ; +90 . |(p rf)+a9f r( 3) (3.7)

The last condition represents a system of linear equatiregjuilibrium prices. In
the following we assume that parameters are such that fueikatst beliefs about
long-run pricesp*, are consistent with the model steady state. If this prgpeere
not to hold, at the steady state the fundamentalists woyddaba price correction that
never takes place, and the average realized returns woldgidbematically different
from long-run expected returps Put differently, we assume that fundamentalists are
rational in the sense that they have learnt steady statespand returns and regard
such quantities as fundamental prices. We therefore aspumg*. By substituting
p = p*into (3.7), it turns out thap* = p is determined as
p*=8" <%ﬁ;l + %ﬁ;l) (p—r1). (3.8)
f c

The analytical study of the local asymptotic stability o€ teterministic steady
state is difficult, due to the large dimension of the systechramimber of parameters.
Numerical simulation of (the deterministic skeleton of@¢ tinodel suggests the possi-
bility that the steady state becomes unstable via a NeirBadker bifurcation when
the decay parametérfalls below a certain threshditl This will be shown numerically
through an example with three risky assets in the next seciiée will focus on the
impact of the decay parameteon the market, in particular the time-varying betas.

4. A NUMERICAL ANALYSIS OF TIME-VARYING BETA

Based on the model developed in the previous section, wedmnsumerically an
example with three risky assets and a riskless asset, intythzesl market populated
by fundamentalists, trend followers and noise traders. Wroon parameter setting
is used in all the following numerical experiments, namély= 6. := 6 = 0.005,
ry = 0.01, s = (1,1,1)T. For simplicity, agents are assumed to be homogeneous

12pternatively, such a bifurcation may occur whéiis not too high and fundamentalist proportiop

or fundamentalist expected mean reversiohecome small enough. The effectbis less clear and
it does not seem to affect local stability of the steady staitece it is not associated with linearized
terms), but increasing values dfseem to be associated with more and more irregular flucnstioce
the steady state is destabilized.
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with regard to their risk aversidhand (the fixed part of) their variance/covariance
matrix Q. = Q; := Q. Also, in order to focus on the correlation emerging from the
endogenous dynamics of asset prices, we assume that tie&atiorrs among the three
assets irf) are zero, that is

Q; = diag(o7, 03, 03)

whereo; = 0.095, oo = 0.105, o3 = 0.11. The fundamentalist beliefs about first
moment of long-run returns are given py= (0.06,0.075,0.09)~.

As discussed above, the fundamental pripésre assumed to be consistent with
model equilibrium so that to satisfy

p*=8" (g—;ﬁf + Z—:ﬁj) (p—rs1) :% ST (p—rsl),

Dividend yields are i.i.d. normally distributed, uncoatdd across assets, and their
variance/covariance matri, is consistent with the exogenous part of agents’ second-
moment beliefs, namely, = Q. In particular, in our example the fundamental prices
p* turn out to be:

p 1108.03
pr=| ps | = | 1179.14 |,
P} 1322.31

Note that we are assuming no correlation in the stochasticasses of the dividend
yields and, accordingly, zero correlation in the fixed pdragents’ second-moment.
The reason for our choice is that we want to focus only on threetadion patterns
emerging from the endogenous dynamics of asset prices. dfaeetersy, 6, A, and
ny Will possibly vary across examples, as well as the parametieat represents the
standard deviation of noise traders percentage impact.

The numerical values of parametgssry, o1, 02, 03 given above are interpreted
as annualised parameter values. Corresponding monthéklyelaily parameters are
obtained by rescaling annualised parameters in a standardaecording to the fre-
quencyK = 12 (monthly), K = 50 (weekly), K = 250 (daily). The annual expected
returns are converted via the factofX” and the standard deviations are rescaled via
the factorl //K. Also the fundamentalist mean reversion parametisrrescaled by
dividing it by K, whereas parametér (related to the memory length) is converted
using a specific rule (see Appendix). With some abuse of iootain (3.3)-(3.6) we
adopt the same symbols to denote also the rescaled paraméteamall amount of
noise trading will also be assumed in some examples, nafmelgmally distributed)
noise on the supply of each asset will be introduced, witharcetation across assets,
with standard deviation that varies across examples.

BNote from (3.3) that if we assume homogeneous risk aversiefficients, what matters for the (de-
terministic) dynamics is the aggregate parameter (veétor)
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4.1. Deterministic Dynamics. Intuitively, when the trend followers extrapolate the
recent trend in returns strongly (corresponding to a dwthe market tends to be
destabilized. To verify this effect, we first consider thawes in the equilibrium
prices of the deterministic model whérchanges. In Fig. 4.1, we choose= 0.15,
ny = 0.3, A = 1.5 and¢ is decreased from = 0.88 to § = 0.84 (at an annual
frequency). These parameters are rescaled to weekly (wi¢hiad of lengthl / K" and
K = 50). Through numerical simulations, it is found that the stestéte equilibrium
loses its stability whem falls below a certain bifurcation valug, € (0.879,0.88),
which corresponds to a Neimark-Sacker bifurcation. Theaixels in Fig. 4.1, where
we use blue, green and red to represent asset 1, 2, and 3;treslgerepresent prices
(left panels) and returns (right panels) of the risky askaté = 0.865, 6 = 0.855,

0 = 0.84, respectively. The initial condition is selected at theadiestate, except for a
small deviation of the initial price of asset @ = 1.005 x p3).

At first, for ¢ just below the bifurcation valué,, only one among the three risky
assets (asset 1), displays fluctuations around the steagyestuilibrium level, due to
the interaction of the strong extrapolation of the trendofwers and mean-reverting
activity of the fundamentalists. ASdecreases further, namely as the trend followers
extrapolate the recent returns ever more strongly, thedighows that two assets and
finally all three assets are destabili§edviore precisely, further bifurcation valugg
and . for parametep exists, wherel; € (0.863,0.864) andéc € (0.848,0.849),
such that forgc <0< 33 also the price and return of asset 2 fluctuate around their
steady state values, whereas dor 30 all three assets display price and return fluctu-
ationg®. This dependence of the price dynamics on the decay parametelerlines
the nature of the time-varying betas of the stochastic miidelissed in the following
subsections.

4.2. A benchmark case of the standard *stationary’ CAPM. The standard CAPM
with homogeneous and constant beliefs can be obtained ascakpase of our dy-
namic model, by setting = 0 andd = 1 and taking the initial conditiona, = p and

V, = 0. Correspondingly, the expected return of the fundamestsadind the chartists
are given byE; (t;41) = E.+(Tr41) = pforallt andQ., = Q. = Q. We also assume
that noise trading is absent by setting- 0. Under these assumptions, all agents have
in fact the same fixed belief, which is fully consistent witlamket dynamics. As a

14as can be argued from Fig. 4.1, and reported by related st@ieiarella et al. (2005, 2007)), in such
multi-asset models the attractor developing from the lbdakcation may be entirely located, initially,
in a lower dimensional ‘manifold’ of the phase space. As asegjuence, we may observe systematic
fluctuations of prices and returns of some assets, whiler atbsets still remain at their steady state
levels.

ror different selections of risk and return parameterss ppassible to observe qualitatively similar
situations where asset 2, or asset 3 is the ‘first’ to be diigisth Numerical simulation reveals that this
may depend in a quite complicated way on risk-return trafdeof
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FIGURE 4.1. The fluctuations of prices (left panels) and returrgh(ri
panels)in the deterministic model. Here= 0.15, ny = 0.3, A = 1.5,
wherea9 = 0.865 (a,b),0 = 0.855 (c,d) andy = 0.840 (e,f). The blue,
green and red lines represent asset 1, 2, and 3, respectively

matter of fact, the dynamical system (3.3)-(3.6) then bezbn

(

Pt =

. =p

Vt == O

161 *
% S 19 (p - Tfl) - p )
¥, =P p"+P'p) - 1=p,

16The dynamical system turns out to be independent also ofrpeas:  and .
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FIGURE 4.2. The dynamics of the benchmark stationary CAPM with-
out noise traders. (a) The equilibrium prices of the riskyets and
value of the market portfolio; (b) the equilibrium returnistbe risky
assets and the market portfolio; (c) the market portfoliopprtions;

(d) the ex-ante betas of the risky assets; and (e) the radktighates of
the betas. Here = 0,6 = 1, K = 50 andq = 0. The blue, green and
red lines represent assets 1, 2, and 3, respectively.

This implies that prices are constant over time at theirdstestate fundamental level
p*, whereas returns follow an i.i.d. random process with firgt aecond mometit
given, respectively, by

E(ri41) V(ri4a)

A typical simulation of the benchmark scenario, with a wgdkhe stepKX = 50
and the length of the simulatidin = 1000 time periods, is illustrated in Fig. 4.2. Apart
from blue, green and red used for asset 1, 2, and 3, respgctixeeuse black for the
market portfolio. Among the plots, Figs 4.2 (a) and (b) reprégs the equilibrium

=p, =V,.

The latter are therefore consistent with the homogeneod®rogenous pa® of agents’ second
moment beliefs, since we have assured=
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prices and returns of the risky assets, respectively, dstrating the constant equilib-
rium prices and i.i.d returns generated from the i.i.d. diwid processes. Fig. 4.2 (c)
represents the constant proportions of the risky asselteimarket portfolio. Fig. 4.2
(d) plots the constant ex-ante aggregate betas resulting tihe simulation. Ex-post
betas of the three assets, estimated via ‘rolling’ regoes%of realized returns against
market return, using a rolling windows 600 periods, appear to fluctuate randomly
around their constant ex-ante beta levels. One can seeattet, from some small
random fluctuations, the rolling window estimates of theabetre consistent with the
constant ex-ante betas implied by the market equilibrium.

A comment on the simulation above is in order. In our simglifsetup prices are
constant in the benchmark case of ‘standard’ CAPM, and #imsary random returns
are entirely due to the normally distributed dividend ygel®ue to their low average
values and relatively high volatility (especially at dadpd weekly frequencies), the
simulation often results in negative dividend yields. Altigh this is not realistfé, this
experiment should be regarded as purely illustrative offereace case in which the
conditional distribution of the stationary i.i.d. returnopess is fully consistent with
fixed and homogeneus agents’ beliefs. Such a drawback ceukvdided within a
more rich setup, by modeling the ‘benchmark’ CAPM case asndreze prices follow
a random walk (the volatility of which is also incorporatedagents’ ‘steady state’
beliefs), in a way that the dividend yield is responsible doty a small portion of
return volatility?.

In the following examples we deviate from such a steady stegeario, interpreted
as the standard ‘stationary’ CAPM, and show how the intezaabtf noise with the
underlying nonlinear deterministic structure may affeghgicantly the risk-return re-
lationships over time. We focus mainly on the impact of a keghavioral’ parameter,
namely, memory parametér where(1 — ) represents the weight given by trend
followers to the most recent price movement.

4.3. Trend following and time-varying betas. We now examine the impact of chang-
ing behaviour on the betas in order to explore the naturerd-trarying betas. In the

18\ ote that a common practice in empirical work involving liog’ betas, is represented by rolling
OLS estimation over 60 months (5 years), though differeniads can be found in the literature. In
particular, the use of monthly returns appears to reducartpact of transaction costs. Such issues are
irrelevant within our stylized model. Therefore, we may hggher frequencies and time windows of
different length, to illustrate the time-varying naturetloé betas, and to emphasize the impact of model
parameters on their dynamic patterns. Note also that a gkfieature of the rolling betas is a slow time
variation, not necessarily mean-reverting to some fixeel|dut not monotonic either.

Bunless we regard the dividend yield as including a carrywsg,qoroportional to the value of the asset,
or we interpret a negative dividend payment as new equitieiss

201 such a setup, negative draws from the dividend yield pea®uld be realistically truncated at
zero, without substantially affecting the dynamics. A $ambbservation holds for the current model
too, in the parameter regimes for which price fluctuatioreslarge enough as compared to dividend
yield volatility, for instance when parameters sufficiently low.
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FIGURE 4.3. lllustration of the impact on the market of a changé in
att = 600. (a) The equilibrium prices of the risky assets and value of
the market portfolio; (b) the equilibrium returns of thekysassets and
the market portfolio; (c) the market portfolio proportior{d) the ex-
ante betas of the risky assets; and (e) the rolling estinuditibe betas.
1.5,q = 0, K = 50 andé = 0.98 for

t < t* = 600 and5 = 0.90 for t > t* = 600 (overT = 1000 time
periods). The blue, green and red lines represent assetdnd?3,

Herea = 0.15,n; =

respectively.

0.3,A =

following examples we set agents’ behavioral parameteiia asction 4.1, namely,

= 015, A= 15, nf

= 0.3 and allow the decay rat& to change to a different

level at a certain time. For the parameter values, the fuedéahtraders expect a cer-
tain degree of mean reversion towards fundamental pricesrems chartists update
their beliefs about the expected returns and volatilityrelations based upon realized
returns and observed deviations from sample average setunitially, we choose
o = 6, = 0.98, which is very close td. Then this scenario is still quite close to the
benchmark case described above. We again adopt a weeklgtapg< = 50), and
the length of the simulation i = 1000 time periods. A regime switch ifoccurs just
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after periodt* = 600 with 6 decreasing fromd; = 0.98 to 9, = 0.90. The decrease
in ¢ introduces a new phase with stronger trend extrapolathaat,is, with chartists
putting more weight on recent returns’ history when formihgir beliefs (3.5) and
(3.6). Foro = 0.90, the steady state equilibrium of the underlying deterntimimodel

is still stable, though it is close to its deterministic bifation valué', beyond which
endogenous fluctuations emerge. By adding noise (from elidd or noise traders)
into the model, dynamic patterns similar to the above meetiodeterministic fluc-
tuations tend to emerge when the underlying deterministiady state is still stable,
provided that the parametéis close enough to the boundary of the region of stability
(as is the case for the parameter value 5, = 0.90). Therefore, this change inhas

a significant impact on the market equilibrium prices. Unitherchange, agents start
varying their portfolios over time in order to exploit the erging endogenous corre-
lation patterns between the risky assets, sometimes reinfpthem. The impact is
illustrated in Figs 4.3 and 4.4 resulting from two typicahsilations with two different
sample paths from the noisy dividend process.

Figs 4.3 and 4.4 indicate that in the first period with high= 0.98, the equilib-
rium prices, returns, market weights and ex-ante aggréxpées fluctuate around their
steady state levels, and that the dynamics in the initidbdas not far from the ref-
erence case described in the stationary CAPM case. In tlaisephihe fluctuations
are essentially driven by the exogenous noise. The paramiedmge then leads to
a new scenario with more pronounced endogenous fluctuatigmsces and returns.
Such fluctuations also impact on the dynamics of market plastiveight$? and con-
sequently on the time-varying ex-ante betas. In particver make the following
observations.

Firstly, the stochastic nature of the time-varying betaangfes significantly when
the trend chasing behaviour of the trend followers chand#se to the interaction
of the extrapolation of the trend followers on the recentimed with mean-reverting
activity from the fundamentalists, a strong extrapolatimeasured by low) from the
trend followers makes the market price fluctuate dramadyicas seen in Figs 4.3(a)
and 4.4(a). This provides an opportunity for the trend fwos to exploit emerging
correlation among the risky assets, to re-balance theifgdias, which in turn affects
the equilibrium prices and hence the composition of the etgpkrtfolio, as indicated
in Figs 4.3(c) and 4.4(c). This expectation feedback meeshaleads to high volatility

2IThe value of§ = 0.90 is near the bifurcation value fargiven bygA € [0.879,0.88]. The previous
deterministic analysis has demonstrated numerically xistence of a Neimark-Sacker bifurcation for
decreasing values of the memory paraméténhich implies increasing importance of recent market
movements in trend follower beliefs).

22The relatively small amplitude of fluctuations of the pricglaeturn on the market portfolio contrasts
with the large fluctuations of asset returns in the postdpbase, which reveals that agents are actively
trading in a way to exploit emerging correlations among thleyrassets.
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FIGURE 4.4. lllustration of the impact on the market of a change in
0 att = 600. A different draw of the dividend process from Figures
4.3. (a) The equilibrium prices of the risky assets and valliéhe
market portfolio; (b) the equilibrium returns of the riskysets and the
market portfolio; (c) the market portfolio proportions;) @he ex-ante
betas of the risky assets; and (e) the rolling estimatessobétas. Here

a = 0.15,n; = 0.3,A = 1.5,¢ = 0,K = 50 andd = 0.98 for

t < t*=600andé = 0.90 for ¢t > t* = 600 (overT = 1000 time
periods). The blue, green and red lines represent assetdnd?3,
respectively.

in the market and the time-varying betas and simply refléetschange in risk of the
risky assets, see Figs 4.3(d) and 4.4(d). In the periodviitig the change, the average
level of the time-varying betas of asset 3 is lower than the¥aye ‘steady state’ betas
in the initial period before the change, so that asset 3 besdless aggressive’. On
the other hand, the average level of the time-varying betasset 1 is higher than
the average ‘steady state’ betas in the initial period leetbe change, so that asset
1 becomes ‘less defensive’. In addition, measured by the-tiarying ex-ante betas,
asset 2, which is less risky than asset 3 before the changeecame more risky than
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asset 3 after the change, as illustrated in Figs 4.3(d) at{d}4.Even asset 1, which
is much less aggressive than asset 3 before the change,@amdalmost as risky as
asset 3 after the change (Figs 4.3(d)).
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FIGURE 4.5. lllustration of the impact on the market of a change in
0 att = 600. A different draw of the dividend process from Figures
4.3. (a) The equilibrium prices of the risky assets and valuée
market portfolio; (b) the equilibrium returns of the riskysets and the
market portfolio; (c) the market portfolio proportions;) @he ex-ante
betas of the risky assets; and (e) the rolling estimatesedbétas. Here

a = 015n; = 03,A = 1.5,¢q = 0,K = 50 andd = 0.98 for

t < t* =600ands = 0.90 for ¢t > t* = 600 (overT = 1000 time
periods). The blue, green and red lines represent assetdnd?3,
respectively.

Secondly, Figs 4.3(e) and 4.4(e) suggest that the ex-ptsstbefficients, estimated
via rolling regression with a moving window 8600 periods, can display very different
patterns from the ex-ante betas. In Fig. 4.3(e), the quiaktahanges of rolling betas
from the first to the second period seem to be somehow relatbd thanges occurring
to the average levels of ex-ante betas. However, in Fig.e}.4(e pattern of the
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ex-post betas is not so similar to the ex-ante betas, althtwogh ex-ante and ex-
post rolling betas usually show important qualitative aesfrom one period to the
other. In Fig. 4.4(e), the rolling estimates of time-varyimetas for asset 1 after the
change is very different from the ex-ante betas. After thenge, the estimated betas
of asset 1 vary between 0.7 and 1.1, while the variation ofettiante betas for the
asset is much smaller and they remain largely below 1. Thasngke indicates that
rolling window estimates of time-varying betas can be naidlag in an economy with
boundedly rational agents. Finally, the example in Fig, #eSulting from a different
sample path of the dividend process (under the same panasettiag) again displays
significant differences between the ex-ante betas andritibirg estimates in the last
200 periods of the time series.

Similar results can be obtained by assuming a monthly 12) or a daily (K =
250) time step, and rescaling the parameters accordingly. Merethe results do not
change substantially onseall noise€®is added to the supply (via the impact of noise
traders). As an example, Fig. 4.6 reports the results of alation run with daily
time steps ' = 250) andT = 2000 periods, where the standard deviation of the
exogenous i.i.d. noise on the supply is equal.i® % of the average amount of shares.
In this simulation, the chartist parameteis decreased fromy, = 0.98 to J, = 0.90 at
timet* = 1000. The length of the rolling window i500 periods. In this example, the
inconsistency between the ex-ante betas and estimatesli#tames more significant
and the estimated betas in the period after the shock vavyeleet 0.6 and 1.2 for
assets 1, between 0.9 and 1.25 for asset 3, in face of ex-aagthat remain far more
stable in the same period. Overall, we can see that suchsistency is significant
for assets 1 and 3, which are the least risky and the most askgts, respectively.
This observation may provide an explanation as to why in @oglistudies, the time-
varying CAPM based on the rolling window estimates of betay mave little or no
explanatory power and this may simply due to the way the misdestimated rather
than any shortcoming of the underlying equilibrium models.

Similar experiments could be carried out by assuming thaagenous shock at
time ¢* affects other behavioral parameter. A downward shift ohpaeters\ would
result in scenarios somehow similar to those depicted abdte same would hap-
pen under a sudden increase of the impact of the noise-tdatieand component (an
upward shift of the paramete). The next section contains a deeper analysis of the
impact of changes of the key parameters.

We can summarise the insights provided by this experimeflbsvs. Roughly
speaking, what matters when beliefs are approximately lgemeous and constant
23Note that higher levels of ‘market noise’ may consideralffgct the dynamics and determine large
shifts of the average levels of the betas (see the numeriparienents in the next subsection). One

reason is that in our simplified setup, unlike the dividend@omarket noise has no counterpart in the
exogenous fixed portion of second-moment beliefs (thatrdetes the steady state levels of the betas).



prices

1600

1400

1200

1000

800

600

400

i | | i i L i | i
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000

TIME-VARYING BETA: A BOUNDEDLY RATIONAL EQUILIBRIUM APPROACH 23

asset (and market portfolio) retums versus time "market portfolio” of risky assets versus time
T T T 05 T T T

asset (and market portfolio) prices versus time 005
MM\. | 004 ; : :
003 |

Mm\_ﬂ q\»\ 002} L,, l
n | I

0.01 i Mont e ’ !

e — W"\W ki A

| 0 N Y |

W i S
§ ‘ .0.03

-0.04 ‘

returns

market partfolio weights

005

time time time
(a) Prices (b) Returns (c) Market portfolio
ex-ante aggregate hetas versus time estimated "rolling” betas versus time

YT T 71 T T T T 15
14

sx-ante betas
realized betas

I I I I I I I I I 0 i i i i 1 i | i i
200 400 600 800 1000 1200 1400 1600 1800 2000 200 400 600 300 1000 1200 1400 1600 1300 2000
fime time

(d) Ex-ante betas (e) Rolling estimates of betas

FIGURE 4.6. lllustration of the impact on the market of a changé in
att = 1000 at daily frequency (a) The equilibrium prices of the risky
assets and value of the market portfolio; (b) the equiliiarreturns of
the risky assets and the market portfolio; (c) the marketfplas pro-
portions; (d) the ex-ante betas of the risky assets; andhéegstimates
of the betas using rolling window of 500. Hete= 0.15,n; = 0.3, A =
1.5,q¢ = 0.15%, K = 250 ando = 0.98 for ¢ < ¢* = 1000 ando = 0.90
fort > t* = 1000 (overT = 2000 time periods). The blue, green and
red lines represent asset 1, 2, and 3, respectively.

over time is the ‘fundamental’ part of agents beliefs abbt éxpected returns and
their variance/covariance matrix. In our example (withoatse traders), such be-
liefs are consistent with the first and second moments ofdakelting return process.
As a consequence, when the steady state equilibrium of therlymg deterministic

system is well within the region of stability, the estimatsgtas are consistent with
ex-ante betas. However, when the steady state of the untgdgterministic system
is destabilised via a particular bifurcation scenario,soclose to the stability bound-
ary, stronger correlation patterns emerge from the noisgahariven by time varying

expectations and by the history-dependent portion of skoooment beliefs. Hence
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in equilibrium, the market portfolio also varies over timEhis produces fluctuations
of single-period ex-ante aggregate betas and, sometinsgst@matic change of their
average level. Ex-post betas computed over different sidyfseare affected by some-
how similar changes. Since ex-ante betas are directlyeckliat certain behavioural
parameters, our findings indicate that the time variatioolisferved beta coefficients
could be related, in principle, to changes in market semtmehis interpretation has
been suggested, so far, by ‘visual inspection’ of the timreeseof the ‘rolling’ betas.
Note, however, that in the previous simulations the chaofése betas from one pe-
riod to the other, affected by the parameter shift, could als partly due to the way
the underlying noise process develops over the two peribderefore, a more sound
basis to such an interpretation is required. This will bevfgted in the next section,
where we estimate the betas over a sufficiently long time aundor a full range of
values of each parameter, under fixed sample paths for tlggaras noise processes.

4.4. Parameter dependence of realized betas. The numerical experiments in this
section offer a deeper insight into the effect, on the betffioients, of the model
behavioral parameters, namely, the chartist paramétgnserpreted as the ‘memory’
of trend extrapolators’ moving averages) angsensitivity of risk beliefs to historical
volatility/correlation), the fundamentalist mean revensparametet, and the param-
eterq, related to the standard deviation of noise trading. By m&sg a time horizon
of T' = 480 iterations at monthly time steg( = 12) or, alternatively, a time horizon
of T' = 1000 iterations at weekly time steg{ = 50) we simulate the noisy model for
a grid of values of each parameter, within a specified rangartfrom the parameter
that is allowed to vary, the remaining parameters are sefrdir to our base selec-
tiona = 0.15, ny = 0.3, = 0.95, A = 1.5, ¢ = 0 (that is, we assume absence of
noise traders in the experiments involving the parameters;, 6 and\). For each
simulation run, realised betas over the whole time horizerpéotted against different
values of the the parameter under analysis, by assumingithe sample path for the
dividend process. Fig. 4.7 displays the results of two chkifé simulation runs for
each parameter, under the monthly and weekly scenaridgéatls and right panels,
respectively).

In Figs 4.7 (al) and (a2), we vary the paramétar the rangg0.90, 1]. While for §
close tol, the realised betas are close to their steady state leystgnsatic changes in
betas can be observed as long aecreases. In particular, we note a tendency for the
beta coefficients to become less dispersetigecreases. Intuitively, this may indicate
that the more weight trend extrapolators put on recentlyentesl pricechanges and
co-movements, when forming their beliefs and portfolios, the more simpaice and
return patterns of the three assets become. As a consegqtiendgnamic behavior of
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each asset tends to become increasingly similar to the markerms of stronger cor-
relation and/or more similar level of volatility. A qualtteely similar effect (though
less pronounced) is reported when sensitivity to samplawegs/covariances (the pa-
rameter)\) decreases over the ran{fe2|, see Figs 4.7 (b1) and (b2). The effect of
market noise (the parametgris also similar, when the level of noise is small. When
the parametey increases over the rangde, 0.02] for monthly data, or in the range
[0,0.015] for weekly data, see Figs 4.7 (cl) and (c2), the beta coettieibecome
less dispersed initially, whereas stronger noise may medarge shifts of the betas
and reverse their ordering. Our results suggest that, foremdevel of chartist mem-
ory parameted, smaller sensitivity to observed volatility (lowg}, and slightly larger
market noise (highey, within a suitable range), tend to strengthen the aboveithest
impact of parametef. The effect of varying parameteris more ambiguous, in gen-
eral. Under the assumed parameter selection, whiexcreases in the range.1, 0.2]

the betas tend to become less disperded, that is strongammeasion has a somehow
similar effect to stronger trend extrapolation (see Figs(d1) and (d2)). For different
selection of the parameters,may have the opposite effect. Similar effects are also
observed by varying the parameter (simulations are not reported here). From our
numerical experiments it appears also that such phenonrenalaust enough with
respect to a different choice of the time steps.

Leaving aside the direction of the impact of parameter changnd their possible
interpretation, the main message from these experimenitgisnost of the key be-
havioral parameters are able to produce significant chandexgh the ex-ante and the
ex-post beta coefficients.

5. CONCLUSION

Although the conditional CAPM with time-varying betas despsuperiority in em-
pirically explaining the cross-section of returns and aabes, it is mostly motivated
by econometric estimation and therefore lacks any econdmuicdations and intu-
ition. In fact, financial market behaviour is the outcometd interaction of investors
who trade optimally for different purposes with differempectations. It is this hetero-
geneity and bounded rationality that has not been charaetkein the current CAPM
literature with time-varying betas. This paper aims to Flstmissing part of the liter-
ature by modelling explicitly the time varying behaviourtbé betas through agents’
behaviour.

Motivated by the recent development of heterogeneous agedels, in this paper,
we set up a boundedly rational dynamic equilibrium model fihancial market with
heterogeneous agents within the mean-variance framevoepeated one-period op-
timisation. We first obtain an explicit dynamic CAPM relatibetween the expected
equilibrium returns and time-varying betas. We then app#/ results to a financial
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market model with heterogeneous agents by incorporatindamentalists, trend fol-
lowers and noise traders into the model. We show that, intgely of the fundamen-
tals, there is a systematic change in the market portfodisetgprices and returns, and
time varying betas when investors change their behaviagtuced by the trend ex-
trapolation of the chartists, the mean-reversion of thel&mentalists, and the strength
of the noise traders. In particular, we demonstrate thénaite nature of time-varying
betas and show that the commonly used rolling window esé@sat time-varying be-
tas are connected to, but may not be consistent with the &xkatas implied by the
equilibrium model. The variation of the estimated betaslmasignificantly different
from that of ex-ante betas. This observation may help us derstand some empirical
findings that the time-varying CAPM based on the rolling vandestimates of betas
may have no explanatory power and this may simply be due tedtimation tech-
nique rather than some shortcoming of the underlying emuiim models. The results
provide some insights into the factors affecting the timeaten of beta.

It would be interesting to examine the statistical progsrof the asset returns, in-
cluding the normality of the return distributions, voldilclustering, fat tails, and
long memory in the asset returns, in particular, their ddpane on agent behaviour.
It would also be interesting to study the impact of adaptiebdviour when agents
use combined strategies or beliefs in which the weights pdated by some fithess
measure. We leave these issues to future research.

Appendix: Rescaling the chartist parameter o to different trading periods
Chartist expected return (3.5) can be rewritten as a timegeeof past returns, with
exponentially declining weights, as

u; = 5ut_1 —+ (1 — 5)I't = Z 53(1 — 5)rt—s- (51)
s=0

Assume that time is measured in years. As is well known, thapeaters, 0 < 6 < 1,
is linked to the average memory length

0= is(l — 5= (1 —5)i558 ~ (1 —5)i358.

The latter is an arithmetic-geometric series, which sum®up

o0 i 6
Zs& = =

s=1

and therefore we obtain:

o
6——1_6.
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This means that, when the chartists compute the sample tienage using the weight-
ing parameted, their average memory Iength{% years.

If we switch, say, to monthly data, a reasonable criteriometgcale the chartist
parameter to the new time step (denote the new parametéf'by is to keep the
memory length constant, that is

) 5(12)
(= T35 years = 150 months.
This means thaf ands'? are related by
§(12) 126
1-00 ~1-3%
from which
az _ 120
14116
In general, ifK is the new time frequency and<) the rescaled decay parameter, then
s Koo
14+ (K —1)8°

where0 < 6%) < 1. In this way, agents update time averages at monthly frezyuen
using equation (5.1) with paramet#t?, and this is consistent with updating at yearly
frequency with parametet
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