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ABSTRACT. Inspired by the theoretically oriented dynamic analy-
sis of moving average rules in Chiarella, He and Hommes (CHH)
(2006a) model, this paper conducts a dynamic analysis of a mi-
crostructure model of continuous double auctions in which the
probability of heterogeneous agents to trade is determined by the
rules of either fundamentalists mean-reverting to the fundamental
or chartists choosing moving average rules based their relative per-
formance. With such a realistic market microstructure, the model
is able not only to obtain the results of the CHH model but also
to characterise most of the stylized facts including the power-law
behaviour of volatility. The results seem to suggest that a com-
prehensive explanation of several statistical properties of returns is
possible in a framework where both behavioral traits and realistic
microstructure have a role.
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1. INTRODUCTION

In traditional economic and finance theory based on the assumptions
of investor homogeneity and rational expectations, agents are rationally
impounding all relevant information into their trading decisions. Hence
the movement of prices is assumed to be perfectly random and to ex-
hibit random walk behaviour. The theory does provide a benchmark
framework for our understanding of the dynamics of financial asset
prices, but it ignores some of the most important features of real world
economic agents such as their heterogeneity and bounded rationality
and the impact of their interaction on the particular structure of fi-
nancial markets. Also, empirical investigations of high-frequency, such
as daily, financial time series in financial markets show some common
stylized facts, including excess volatility, some skewness and excess
kurtosis, fat tails, volatility clustering, power-law behaviour in returns,
and some other types of power-law behaviour; see Pagan (1996) for a
comprehensive discussion of stylized facts characterizing financial time
series and Lux (2004) for a recent survey on empirical evidence of
various power laws. These facts are not entirely contradictory to the
traditional economic and finance theory, but standard results do not
provide persuasive explanations for a large subset of these facts.

As a result the literature has witnessed an increasing number of at-
tempts at modelling financial markets by incorporating heterogeneous
agents and bounded rationality, on which there is a nice overview in the
recent surveys by Lux (2004, 2009), Hommes (2006), LeBaron (2006),
and Chiarella, Dieci and He (2009). This class of model characterizes
the dynamics of financial asset prices as resulting from the interaction
of heterogeneous agents having different attitudes to risk and differ-
ent expectations about the future evolution of prices. One of the key
aspects of these models is that they exhibit expectations feedback—
agents’ decisions are based upon predictions of future values of en-
dogenous variables whose actual values are determined by equilibrium
equations. In particular, Brock and Hommes (1997, 1998) proposed
an Adaptive Belief System model of financial markets. The agents
adapt their beliefs over time by choosing from different predictors or
expectation functions, based upon their past performance. The result-
ing nonlinear dynamical system is, as Brock and Hommes (1998) and
Hommes (2002) show, capable of generating a wide range of complex
price behaviour from local stability to high order cycles and chaos. It is
very interesting to find that adaptation, evolution, heterogeneity, and
even learning, can be incorporated into the Brock and Hommes type
of framework, for details of such extensions the reader should consult
Gaunersdorfer (2000), Hommes (2001, 2002), Chiarella and He (2001,
2002, 2003), Chiarella et al. (2002) for asset markets and De Grauwe
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and Grimaldi (2006) and Westerhoff (2003) for foreign exchange mar-
kets. Moreover, the recent articles by Westerhoff (2004) and Chiarella
et al. (2005, 2006) show that complex price dynamics may also re-
sult within a multi-asset market framework. This broader framework
of boundedly rational heterogeneous agents can also give rise to quite
rich and complicated dynamics and so give a deeper understanding
of market behaviour. In particular it is capable of explaining various
types of market behaviour, such as the deviation of the market price
from the fundamental price, market booms and crashes, and quite a
number of the stylized facts referred to earlier. More recently, He and
Li (2007, 2008) use a simple market fraction model of fundamentalists
and trend followers to analyze the mechanism generating the power-law
distributed fluctuations. Their results provide a promising perspective
on the use of these models to produce the observed characteristics of
financial market time series.

In contrast to the theoretically oriented models discussed above,
there is also a rapidly expanding literature of heterogeneous agent mod-
els that is computationally oriented and on which we refer the reader
to the recent survey by LeBaron (2006). These models are becoming
increasingly important and have proved to be very powerful at gener-
ating the stylized facts, in particular, the various types of power-law
behaviour. There are at least two important advantages of this ap-
proach compared to the theoretically oriented one. The first is that
many behavioural aspects at the micro level including the interaction
of agents can be aggregated at the macro level through computer sim-
ulations. The second is that more realistic market features, including
budget or wealth constraints, no-short-selling and irregular intra-day
trading of non-fractional shares, can be readily incorporated into the
market microstructure of continuous double auctions, dealer and hybrid
markets. It should be stated that earlier work on the computational
class of models faced the problem of many degree of freedom and many
parameters, which made it difficult to understand and assess the main
causes of the observed stylized facts. Here we shall follow the path of
adding some realistic features to a model that is well understood from
a theoretical perspective but involves a minimal, in some sense, set of
parameters.

The advantages of both theoretically and computationally oriented
heterogeneous agent models have naturally led to some recent compu-
tationally oriented models which are based on theoretically oriented
models but with more realistic market microstructure, for example,
Chiarella and Iori (2002), Pellizzari and Westerhoff (2007), and Chiarella,
Tori and Perello (2009). The current paper falls into this category
and conducts a dynamic analysis of a microstructure model of con-
tinuous double auctions based on the theoretically oriented work of
Chiarella, He and Hommes (2006a) (CHH model hereafter) that gave a
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dynamic analysis of moving average rules under the market maker sce-
nario. The CHH model proposes a stochastic dynamic financial market
model in which demand for traded assets has both a fundamentalist
and a chartist component. The chartist demand is governed by the dif-
ference between current price and a long-run moving average. It shows
that the moving average can be a source of market instability, and the
interaction of the moving average and market noises can lead to the
tendency for the market price to take long excursions away from the
fundamental. The model reveals various types of market price phenom-
ena, the coexistence of apparent market efficiency and a large chartist
component, price resistance levels, and skewness and kurtosis of re-
turns. In order to be able to conduct a theoretical analysis, CHH make
some less realistic assumptions, including, a fixed length for the moving
average window, unlimited short selling and borrowing, trading of frac-
tional amounts of shares, and no intra-day trading. In particular, they
assume homogeneity within the two groups of the model, fundamen-
talists and chartists. This paper drops these unrealistic assumptions
and also allows the market price to be determined by a market mi-
crostructure model of continuous double auctions (CDA) instead of by
the stylised market maker scenario used in the CHH model. Unlike in
the CHH model, it is the probability of heterogeneous agents to trade,
rather than their demands, that is determined by the rules of either
fundamentalists mean-reverting to the fundamental or chartists choos-
ing moving average rules based on their relative performance. We find
that, with the inclusion of this realistic market microstructure, the
model is not only able to obtain the essential features of the CHH
model but also to characterise most of the stylized facts including the
power-law behaviour of the volatility. The results seem to suggest that
a comprehensive explanation of several statistical properties of returns
is possible in a framework where both behavioural traits and realistic
microstructure have a role.

The plan of the paper is as follows. Section 2 introduces the model.
As a benchmark, Section 3 reviews the stylized facts of three Euro-
pean stock market indices. Section 4 contains the main results and a
sensitivity analysis. Section 5 concludes.

2. A CONTINUOUS DOUBLE AUCTION WITH HETEROGENEOUS
TRADERS

Our model is inspired by that of Chiarella, He and Hommes (2006 a)
(CHH), much of the structure of which is retained in term of types of
agents and behavioural characteristics behind their demand functions.
However we extend the CHH model considerably in order to introduce
a more realistic market microstructure through a continuous double
auction (CDA) that has become a widely used clearing device in many
stock exchanges around the world.
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It is convenient to briefly outline the salient features of the CHH
model. Two types of agents, fundamentalists and chartists, populate
the market and trade depending on the value of the fundamental price
and on the trading signal generated by a fixed-length moving average
of past prices. The fractions of agents of type h € {f,c}, standing for
fundamentalist and chartist, respectively, evolve according to smoothed
realized profits, as pioneered in Brock and Hommes (1998). The price
reacts to the imbalance in demand and supply via a market maker who
clears the market and announces the price for the next period. The
CHH model shows that trading based on moving averages can be desta-
bilizing, especially if the window length is increased. The addition of
noise, either in the fundamental process or market noise, has the poten-
tial to cause the model to generate bubbles, crashes, and environments
where the chartist component is persistent. The price time series of the
model with fundamental noise alone however does not exhibit a number
of the standard statistical features found in most financial market time
series, in particular the power-law behaviour of volatility. Chiarella,
He and Hommes (2006b) further show that, with a careful selection
of the sizes of the fundamental and market noises, the addition of an
additive (rather than multiplicative) noise to the price equation of the
market maker bring these statistical features closer to what is observed
in actual financial data.

We stress the fact that the CHH model abstracts from many details
related to the actual trading mechanism. Agents, for example, without
considering endowments, can in principle buy or sell unlimited quanti-
ties acting as price takers. Demands are filled by a market maker or an
impersonal clearing device and all the chartists use the same moving
average signal for trading purposes. Whilst retaining the main ideas
of CHH this paper extends their model in several directions with the
main aim of introducing more realistic market microstructure and pro-
ducing more realistic statistical features of the returns generated by
simulation, as recently advocated by Lux (2009). First, we consider a
CDA where budget-constrained agents submit limit orders with no cer-
tainty that they will be filled. Exchange takes place only if two parties
agree on quantity and price and there is a layer of intra-day activity
that is missing from the original model. A book-based microstructure
framework also requires that agents be endowed with (simple) ways to
deal with the fundamental tradeoff in a continuous market: the more
aggressive the limit order, the bigger is the probability of trading but,
conversely, the smaller is the final profit if the transaction is executed.
Second, our agent-based market allows the chartists to use individual
lengths for their moving average. This was indeed one of the ideas
left for future research in the original work. Finally and possibly more
ambitiously, we claim that a realistic microstructure model can per-
turb the original model in the “right” way, meaning that a book-based



6 CHIARELLA, HE AND PELLIZZARI

augmented CHH model is able to produce a host of common stylized
facts.

2.1. The Heterogeneous Agents and Trading. We assume that
agent ¢ in a populations of N agents is initially endowed with some
units S;p of a non-dividend paying risky stock and cash Cjy, with
1 = 1,...,N. The endowments S;; and Cj at time t are updated
in the obvious way whenever the agents trade. Agents cannot short-
sell stocks or borrow money. We assume that the interest rate r = 0
or, equivalently, that the interest rate payments are spent elsewhere.

As in the CHH model, agents are heterogeneous in that they can
trade based on a fundamental or chartist strategy. In the first case,
they seek to buy (sell) stock when it is under(over)-valued with respect
to an exogenously given, stochastically fluctuating fundamental price
that evolves according to

Piy1 = pi explosur),
where oy > 0 is the constant volatility of the fundamental return and
vy ~ N(0,1) follows a standard normal distribution. The chartists use
a moving average price (computed over time-windows of heterogeneous
length) to obtain buy/sell signals.

In the following, the subscript ¢t = 1,...,T will refer to calendar
trading days when variables are constant over the ¢-th “trading day”,
while 7 € R™ is a time-subscript that will be used with variables that
can assume different values in the same day, such as the price of stock
traded in any continuous auction.

The agents can submit one limit order per day valid for one unit
of the StOCkE|. A limit order is a quantity-limit price couple (g, [) that
is submitted in a randomly selected instant t < 7 < ¢t + 1 of a given
day t. At the beginning of each day a random permutation P, of
{1,...,N} is drawn and agents take action in the order dictated by
P;. In other words, orders are issued sequentially, in a random order
that is independently sampled every day, so that agents have only one
chance to trade each day when it is their turn to “speak”.

Each fundamentalist trader posts an order with some probabilityﬂ
+s; = min(1, a|pf — p;|), with @ > 0 denoting the sensitivity to the
deviations of the most recent price from the fundamental value, and

1Allovving for cancellations of orders, resubmissions, multiple orders or other fea-
tures would hugely complicate the model and would require a much richer modelling
of the agents’ behaviour. Moreover, we do not think that single-unit orders con-
stitute a severe limitation for an agent willing to buy/sell multiple units as he/she
can keep trading for several days to reach the desired quantities. Chiarella, Tori
and Perelld (2009) provide a modelling framework of CDA markets where agents
do form multiple unit demand functions based on utility maximisation.

2Note that the form of the probability will be the same for each fundamentalist,
but it will yield a different value for each of them as the p, could possibly change
at each instant, determined by the sequencing of the agents.
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refrain from posting with the residual probability. The chances of sub-
mitting orders increases when this deviation is large and agents submit
for sure whenever the mispricing is bigger than 1/, in either direction.
Formally, the order (;¢;,l;r) of agent i posted with probability s, is
such that

tdir = Sgn(p: - pT)v
where sgn denotes the sign function so that that positive (negative)
arguments lead to buy (sell) orders. We assume that the submitted

limit price is uniformly drawn between the fundamental and the last
available closing price pss¢, thus

1= J U p) i P < pps
T Ui it pp < pie.
The specification of the limit price is consistent with the idea that a
fundamental agent would trade at any price below (above) the fun-
damental value, if he/she is a buyer (seller)[| Hence, he/she provides
(limited) liquidity at price levels that are, at the same time, more favor-
able than the previous closing price and secure some random profit with
respect to the fundamental value, if executed. We can also interpret
this bidding strategy, that has similarities with the Zero Intelligence
Constrained (ZIC) traders in Gode and Sunder (1993), as the choice of
a random mark-up (mark-down) with respect to the reservation price
of the fundamentalists that is given by the fundamental value p;.
Each chartist submits an order with probability ;7, = | tanh(a sb%?)|,
where a > 0 and ;F = p, — mar’ defines a trading signal, namely the
difference between the current price and a moving average of length
L; of the particular chartist, ma’ = 1/L; Ef;l pf’fje. The limit order,
submitted by the chartists with probability ;7., is (;¢ir, ¢l;z) Where

tqir = Sgn(twfi)a
tliT - pT(1+AtZT)7

¢tz ~ N(0,1) and the standard deviation A > 0 is related to the
aggressiveness of the agents in increasing the bid or in reducing the
ask with respect to the current intra-day price p,. A large A would
produce bids that exceed the price by a large amount and the same
holds for aggressively low asks. Smaller values for A, conversely, would
produce a lot of limit prices that are very close to the last price. Even
if the proportion of improving bids or asks is constantly 50%, the latter
case is likely to produce smooth price movements while the former has

3The reader should notice that, in the low probability event that pgl_"fe <p; <pr
a seller can issue with positive probability an order with a limit price smaller than
p;. However, given that other more advantageous bids may already be in the book,
he could cash more than p; even in this case. The same remark applies to buyers
with obvious modifications.
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the potential to induce large jumps in prices due to adjacent trades
at rapidly increasing/decreasing levelﬂ It should be noted that this
formulation captures the fact that fundamental agents use a different
time scale to the chartists. The former are anchoring their limit price
to the last closing price available while the latter are more sensitive
to intra-day dynamics and focus on the actual price p,, fostering at
times spectacular increases of the traded volume within the day. This
behaviour appears to describe rather convincingly some aspects of both
fundamental and chartist trading, the latter being more hazardous and
speculative.

In order to ensure the correct functioning of the CDA in every situ-
ation, a small amount of random trading must be introduced as, from
time to time, all the agents may end up on the same side of the market
and there would be no counterparty for any outstanding order. Hence,
with probability p., agents will issue a random order (in place of what
was described above) for a quantity +1 with equal probability and limit
price given by p, + o, ;z,, where ;2. ~ N(0,1) is newly sampled when-
ever needed. The limit price is obtained by offsetting the last observed
price p, by a random amount, whose constant standard deviation is o..

2.2. The Switching of Trading Strategies. The traders can switch
strategy at the end of each day, when the closing price becomes avail-
able and they can evaluate their realized profit, if any. Let I; C
{1,..., N} be the set of agents who traded on day ¢ at some price
p-, and let X;; € {f,c},i € I; be their state. They compute their
realized profit according to

close

pilese —p. i € I is a buyer,
Tt =
" D7, — DS 1 € I; is a seller.
Then agents adjust an individual smoothed profit measure in their state
as

UXl.t(Z',t) = Tt —I—T]UX”(Z,t - 1), 1€ It,

where n(€ [0,1]) is a memory parameter. Observe that only agents
who traded adapt the performance of the current state X;; whereas all
the other agents j & I, do not alter their profit measure Ux,,(j,t) =

Uth<jat - 1)'

4This mechanism is the reason why we do not model a ticked book, that is we
do not force limit prices to be on a discrete grid of finite step-size §. Sequences
of improving orders can drive the price considerably up or down even if the ¢ is
relatively small. Whereas, picking § — 0, can basically lead to too little variation
in prices and excessively peaked returns’ distribution. Allowing for a continuous
limit price offers considerable flexibility as it turns out that A can be tuned more
easily than the “corresponding” discrete tick 9.
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Finally, all fundamentalists switch to chartism with probability.

o exp(BU,(i, ))
U exp(BU (i 1)) + exp(BUL(3, 1))

Equivalently, the probability of any chartist switching to the fundamen-
talist strategy is given by ns;y =1 —mnc;4,4 = 1,...,N. Here 8 > 0
is a parameter related to the intensity of switching: small values of 3
make the agents insensitive to profits and prone to use the two strate-
gies with equal probability. On the contrary, large values of § make
them more likely to switch at once to the most profitable strategy at
time ¢t + 1. Our switching mechanism differs in two important ways
from the standard proposal pioneered in Brock and Hommes (1998).
A first difference lies in the use of individual switching probabilities
to be contrasted with the global one that is used in CHH. In other
words, agents of the same type can have rather different realized profit
measures, due to different transaction prices (even on the same day)
and different L;’s. As a consequence, their switching can be driven
by different probabilities. In the second place, the smoothed realized
profit measure is updated by an agent only if he/she succeeds in trad-
ing. In the standard treatment, trading always occurs but in our setup
this does not necessarily happen and we feel that there is no reason to
update the accumulated profits if an agents fails to trade on a specific
day. This means that, in such a case, we have Uy, (i,t+1) = Uy, (i, ).
A similar individual-based switching mechanism is used in Pellizzari

and Westerhoff (2007).

i=1,...,N.

2.3. Timing. A typical trading day t develops as follows and is illus-
trated in Figure [T}

(1) At t=, the end of day (t — 1), the closing price p§l°¢ of the
previous session or trading day ¢ —1 and all the moving averages
mafi,i =1,...,N are available;

(2) At time t*, the beginning of day ¢, the agents start trading at
random times ¢ < 7; < t 4+ 1, submitting their orders to the
market (with no certainty that they will be executed);

(3) In (t+1)~ the closing price pc°*® for day ¢ is known and traders
hence can compute profits m; and adjust their performance
measure Uy, (i,t). Notice that if an agent is unable to trade,
his/her U remain unchanged.

(4) The complementary probabilities ny,;: and n.;; are computed
for all agents who possibly switch to the other strategy to be
used starting at time (¢ + 1)7.

(5) New moving averages and new fundamental price can be com-
puted to be used starting at time (¢ + 1)".
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FIGURE 1. A schematic representation of the unfolding
of a trading day in the model.

2.4. The Market Protocol—CDA. We describe in this subsection
the set of rules that govern the trading process or, in brief, the mi-
crostructure of our model. A CDA allows agents to submit orders
at any time. We consider only limit orders, that is quantity-price
couples (gq,1) to be interpreted as the binding promise to buy (sell)
¢ units at a price no larger (smaller) than [. We stress that, once
submitted orders cannot be cancelled or changed. Every positive real
number [ is a legal limit price and we restrict the quantity to be
g = %1 to denote orders on the sell (-1) or buy (+1) side. All the
orders are sorted, kept in a book and, if the book is non empty, let
Gy = Gy > ...0G > a3 > by > by > ...b, be the sequence of
asks and bids, denoted by a; and bj;, respectively. The biggest bid
b; is called the best bid and the smallest ask a; is called the best
askﬂ Whenever a new limit order (g,l) is submitted, it is matched
against the opposite side to find the best compatible price. If it is pos-
sible, the order is executed at the price of the matched order (either
aj; or by). If no match is found, the order is inserted in the appro-
priate book. In more detail, if ¢ = 1 and [ > a; then one unit is
exchanged at the price a; between the agents whose orders crossed
and the best ask is removed from the book; otherwise the submitted
order is inserted among the bids so that the buying queue becomes
by >by>...>0b; >1>bjy1 > ... > by In the same way, if ¢ = —1
and [ < b; then one unit is exchanged at the price b; between the
agents with crossing orders and the best bid is removed from the book;
otherwise the submitted order is inserted among the asks so that the
selling queue becomes a,, > ap-1 > ... > a; > 1> a;_; > ... > a.
We assume that at the end of the trading day, the book is completely
erased so that the next trading day begins with no queued orders.
Tokyo Stock Exchange, for example, adopts this procedure while other

5Slightly different orderings are possible with orders having the same limit price,
based on the quantity or the time of submission. In this paper, as all orders have
unit quantity, we resort to strict time preference to break ties.
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markets let some orders survive across “days” according to different
rules.

3. EMPIRICAL EVIDENCE FROM THREE EXCHANGES

To get the flavor of some properties of daily returns of major Eu-
ropean stock indices we consider the German DAX, French CAC, and
English FTSE indices. The data, relative to two non-overlapping pe-
riods of 8 years (1992-1999 and 2000-2007), are sampled in business
time, so that weekends and holidays are omittedﬂ. Some descriptive
statistics are reported in Table 1.

Period Index Max Min Sd Skew Kurt
CAC 0.06098 -0.05627 0.012074 -0.11737 4.7272
1992-1999 DAX 0.05894 -0.06450 0.011938 -0.37973 6.1051
FTSE 0.05440 -0.04140 0.009199 0.04947 5.3713
CAC 0.07002 -0.07678 0.013961 -0.09272 5.9616
2000-2007 DAX 0.07553 -0.06652 0.015492 -0.04577 5.7472
FTSE 0.05904 -0.05589 0.011292 -0.17404 5.8785

TABLE 1. Descriptive statistics of the returns of three
European indices. We report the biggest and smallest
returns in the period, volatility, skewness and kurtosis of
returns.

There are some differences in the the two samples and the period
2000-2007 appears to be more volatile than the earlier one. Figures
and [3| show the autocorrelation of raw and absolute returns, their
density and normal plot for the two periods.

The returns of the indices are nearly uncorrelated even if there are
some significant coefficients at specific lags (in particular, there is a
positive serial correlation at the first lag for the FTSE in the period
1992-1999). Evidence of long memory in absolute returns, extending
for more than 30 lags, is evident in both periods but appears to be
stronger in more recent years. The distribution of returns is leptokurtic
compared to the corresponding normal plots, indicating quite fat tails
and extreme events.

We are interested in reproducing some salient stylized facts of the
real returns that are qualitatively stable across different indices and
time-periods, such as insignificant correlation of returns but positive
and persistent correlation of absolute returns, fat tails and positive
excess kurtosis. In particular, while some of the just mentioned statis-
tical regularities are difficult to obtain in the broad brush setup of the

6The source for the data is http://finance.yahoo.com and the logarithmic re-
turns are computed using the ‘Close’ column. The number of available observations
vary between 2002 and 2042 for the indices and periods we consider.
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F1GURE 2. The graphs depict some properties of the re-
turns of the CAC (left), FTSE (middle) and DAX (right)
for the period 1992-1999. The autocorrelation of raw and
absolute returns are shown in the first and second rows.
The distribution of returns and a normal plot (QQ-plot),
together with the line that would be obtained with nor-
mal returns, are drawn in the last two rows.

original CHH model, we find that the introduction of a realistic CDA
allows the model to robustly generate these features.
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F1GURE 3. The graphs depict some properties of the re-
turns of the CAC (left), FTSE (middle) and DAX (right)
for the period 2000-2007. The autocorrelation of raw and
absolute returns are shown in the first and second rows.
The distribution of returns and a normal plot (QQ-plot),
together with the line that would be obtained with nor-
mal returns, are drawn in the last two rows.

4. SIMULATION RESULTS

4.1. Parameter Selection. We discuss in this section the results ob-
tained by simulations of the model previously described. For each
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parameter set we run the market 100 times for 7" = 2500 trading days,
constituting a period of about 10 years. The first 500 observations are
discarded to avoid transient effects due mainly to the need to initial-
ize randomly the moving averagesﬂ We are then left with 100 series
of 1,999 logarithmic returns that can be analyzed. The choice of the
parameters is guided by the values that were used in CHH but still
required some trial-and-error in order to get realistic time series, as in
the most of time series analysis of heterogeneous agent-based models.
Also it is often the case in agent-based models that the number of pa-
rameters is large as heterogeneity is allowed at the level of the single
agent, for example, the length L; of the moving average and initial
endowments Cjg, S;o differ across agents. However, we resort to the
standard technique of sampling the individual parameters from a sin-
gle distribution, thus cutting down enormously the number of effective
parameters. All the length L;,7 = 1,..., N, are sampled from the set
of integers {20,21,...,100}, that contains commonly used values for
moving average lengths. Likewise, the distribution of the initial endow-
ments is the same for each agent and it is chosen so that on average
agents have a number of stock whose value is equal to the cash they
hold. Given that no short-selling or borrowing is allowed, this means
that there is no systematic bias in favor of buyers and sellers. The re-
maining parameters are listed in Table[2] Observe that o, is a constant
fraction of the initial fundamental price pfj and that « (reaction coeffi-
cient of the fundamentalists) and 3 (the intensity of switching), which
are not individual parameters indexed by 7, can have different values in
some of the 100 simulations as they are uniformly drawn from a “small”
set of nearby values. This is done to test for the local robustness of our
results with respect to slight changes in a and (.

4.2. Time Series and Distribution Results. Some representative
time series are shown in Figure[d] The graphs depict in the two columns
the results of two typical simulations. The first row of the picture
shows the time series of the market price and fundamental value. They
share a common feature found in CHH model, namely that the price is
tracking the fundamental value but the deviations are persistent and
sizeable. The strong bimodality of the distribution of the density of the
difference p; — p} in the last row confirms that the price stays for long
times either below or above the fundamental price, as can be verified
by a careful study of the panels in the first row.

The logarithmic returns 7, = log(p;/p;—1) are represented for the
same time span in the second row. There are episodes of large change
in price (in absolute value) and visual evidence of some degree of volatil-
ity clustering when the price surges or crashes. The third and fourth

"Given that the length L; of the moving average is at most L = 100 and we
discard 500 observations, the initial randomization should have little or no effect.
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Param. Value Description
N 1000 Number of agents
Sio {1,2,...,9} Initial stock endowment
Cio 1000S;9 Initial cash endowment

pelose 1000 Initial price

Do 990 Initial fundamental value
« {%, %, % Reaction coefficient for fundamentalists
a . Reaction coefficient for chartists
L; {20,21,...,100} | Length of MA windows
A 0.005 Aggressiveness parameter
6] {5, =} Intensity of switching
n 0.2 Profit smoothing parameter
De 0.05 Probability to issue a random order
of 0.005 Volatility of fund. value (daily)
Oe oDy Volatility of random offset by noise traders

TABLE 2. Parameters used in the simulation

rows illustrate the autocorrelation of r; and |r;|. The linear predictabil-
ity of the returns is very weak, pointing to some form of efficiency of
the market. At the same time the absolute returns are significantly cor-
related up to 20-25 lags thus confirming heteroskedasticity in returns.
Also the seemingly decaying pattern of the significant autocorrelations
of the absolute return indicates some sort of power-law or long memory
behaviour in volatility.

Obtaining uncorrelated raw returns and long memory in the abso-
lute returns are indeed the most difficult things to calibrate in most
agent-based models (see Lux (2004) and He and Li (2007) for related
discussion) and a subtle balance between «, 3 and A in our model is
needed. Loosely speaking, there must be occasional large returns and
occurrences of “spikes” but they must not be too frequent in order to
avoid serial positive correlation at low lags. Price spikes can be induced
by increasing (3, that triggers more switches to the current best per-
forming strategy, and A, which can cause avalanches of rapidly surging
or dropping prices. At the same time, « controls the activity of the
fundamental traders who step in and reverse the trend. The funda-
mentalists are also exploiting the fact that the finite budgets of the
chartists force them to exhaust their resources after prolonged trends.

The fifth row of Figure |4 shows that the distribution of returns is
leptokurtic and fat tailed: the kurtosis for the depicted returns’ time
series is 5.34 (left) and 29.30 (right).

4.3. Market Fractions. Figure [5| plots the fractions of fundamental-
ists (black) and chartists (grey) as a function of time. The technical
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FIGURE 4. Some representative time series. From the
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the price and the fundamental value.

component of the market is generically preponderant and, more im-
portantly, it is apparent that bubbles and crashes are indisputably
generated by large crowds of agents embracing the chartist view. One
of the significant differences from the CHH model, even the Brock and
Hommes model, is that the market fractions of the fundamentalists
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are always below 50% while the market fractions of the chartists are
always above 50%. This implies that the market is dominated by the
chartists most of the time. We do not observe the dramatic switching
of all the agents to either one of the trading strategies, which is the
striking feature of switching models such as in the Brock and Hommes
and CHH models. This difference is mainly due to the heterogeneity
and diversity in the length of the moving averages used among the
chartists.

0.6 0.8
1

Traders' fractions

0.4

0.2

500 600 700 800 900 1000 500 600 700 800 900

Time Time

FI1GURE 5. Evolution of the fraction of fundamentalist
(black) and chartist (red) traders for the same time series
depicted in Figure [4]

4.4. Statistical Results. Table |3 reports some descriptive statistics
of the simulated returns averaged across the set of all our simulations.
The maximum daily return, for example, exceeds 9.4% for half of our
simulations, while the smallest return is smaller than —11.5% in 50% of
the cases. Some mild negative asymmetry is confirmed by the negative
skewness in the time series of returns.

Max Min Sd Skew Kurt  Volume
Median 0.09404 -0.11541 0.01564 -0.0321 9.631 162.2
Mean 0.21782 -0.24684 0.02097 -0.5365 55.343 160.4

TABLE 3. Descriptive statistics of the returns of the sim-
ulations of the model. We report the median and mean
value (across 100 independent simulations) of the biggest
and smallest returns, volatility, skewness and kurtosis of
returns.

1000
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Table |3| confirms again that there is a fair amount of excess volatility
and excess kurtosis. In all the simulations, the volatility of the funda-
mental process was fixed at 0.5% daily and hence trading is responsible
for the inflated standard deviation of price returns (about 1.6%). The
number of exchanged units (volume) is typically close to 160 per day.

4.5. Power-law Behaviour Based on Monte Carlo Simulations.
In order to show effectively that many simulated time series exhibit
very weak linear predictability but strong volatility clustering, we sum-
marize the statistical properties of autocorrelations by taking averages
across the simulations. We denote by pj;;. and 4, the estimated j-
lag autocorrelation of raw and absolute returns of the k-th simula-
tion, respectively. The distribution of the sampled values p;; and 9;i,
k=1,...,100 of the autocorrelation at j lags can then be graphically
condensed for all j = 1,...,30, as shown Figure[6] The graphs depict,
for each lag j, a simplified version of the box-and-whisker plot of pjj
and 4, see Becker et al. (1998) for details. In particular, all the me-
dians indicated by thick horizontal lines, and most “boxes”, that lie
between the first and third quartile, are well within a 20 confidence
band (dashed lines) for the p;;. Despite some outliers at specific lags
for some time series, the left part of the figure shows that about 50%
of the simulations satisfy the strict requirement of having all auto-
correlation coefficients within the band, thus pointing to the fact that
the model is robustly generating extremely low linear predictability in
returns.

The right graph of Figure [f] illustrates the distribution of the auto-
correlations 4, of absolute returns. Evidence of volatility clustering
is present when correlations exceed the upper dashed line. More than
50% of time series have significant heteroskedasticity for more than 15
lags and one quarter of the simulations strongly extend this features
for 30 lags. Both the realizations of Figure [4] are essentially in this set.
The reader should realize that we are not claiming that all time series
are equally realistic and there are manifestly outlying “bad” cases in
terms of autocorrelation in Figure [6] Instead, this aggregate examina-
tion is meant to validate a broad set of simulations showing that very
often the results of the model are quite satisfactory.

4.6. Noise and Sensitivity Analysis. In this subsection we discuss
the sensitivity to some key parameters, focusing in particular on the
effects of the various sources of noise that operate in our setupf} We
recall that randomness has a role in several components of the model.

8We have discussed previously the outcomes of other parameters, like a and £.
The initial amount of risky units and cash, is also relevant. We feel that this is
rather intuitive: for example, increasing the cash relative to the stock, can fuel
longer and more pronounced rises of prices as agents can mechanically buy more
stocks. In more realistic models, risk-related considerations are possibly limiting
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the thick line and the “boxes” depicts the inter-quartile
range of the data. Outlying points extending beyond the
“whiskers” are visible as single points (circles).

The first one is the selection of the order (permutation) in which agents
bid during a trading session. Second, the orders of the fundamentalists
are randomly selected in the interval described by the fundamental
value and the actual price. Third, chartists’ bids or asks offset the
price by a random amount with standard deviation A and, finally, the
fundamental process changes are governed by o¢. The model appears
to be much more sensitive to the two last sources of noise and hence we
limit our discussion to A and 0. We also try to give some impression
of the impact of the fraction p. of noise traders.

Decreasing A reduces the intensity of the stylized facts. Setting
A = 0.0025, that is halving the benchmark value, still produces uncor-
related, non-normal and leptokurtic returns, but only one quarter of
the simulations display significant autocorrelations of absolute returns
for up to 10 lags. The median (mean) volatility of returns decreases
to 0.01125 (0.01155) and the kurtosis drops to median (mean) values
of 4.15 (4.42). Figure [7|depicts a typical time series when A = 0.0025.
Doubling A causes large and explosive swings in prices that break down
the similarity to realistic time series.

the positions, but our simple agents are “dumb” in this respect and prone to take
extreme position if they can.
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FIGURE 7. Price and fundamental value time series
for one representative simulation obtained when A =
0.0025. The density of returns (with a normal distribu-
tion superimposed in red) and a QQ-plot are also shown.
The volatility and kurtosis of the depicted returns are
1.27% and 4.17, respectively.

Setting o = 0.25%, that is reducing the changes in the fundamental
price, results in smoother and somewhat pseudo-cyclic time series with
pronounced autocorrelation and very mild traces of heteroskedasticity.
The median (mean) volatility and kurtosis across 100 simulations with
oy = 0.25% are 0.008955 (0.009061) and 3.87 (5.48). A typical time
series in Figure [§] depicts only slightly non-normal features. Similar
to what happens for large A, increasing the size of oy to 1% daily
produces excessive volatility and kurtosis, in the range 4-5% and 50-
100, respectively.

To conclude this analysis, we investigate the importance of the pro-
portion p. of noise traders in the model. As we argued before, they are
needed to “move” the price when all other agents are on the same side
of the market. One could ask about the extent of the statistical prop-
erties that can be generated by noise traders alone. Indeed, Maslov
(2000) and LiCalzi and Pellizzari (2003) argue that the CDA can gen-
erate some stylized facts even with very simple behaviour on the part of
the agents. We run 100 simulations where only the fraction p. of noise
traders submits orders (while the fundamentalists and chartists are in-
active) to evaluate the incremental effect of the intertwined action of
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FIGURE 8. Price and fundamental value time series
for one representative simulation obtained when o; =
0.25%. The density of returns (with a normal distribu-
tion superimposed in red) and a QQ-plot are also shown.
The volatility and kurtosis of the depicted returns for this
realisation are 0.88% and 3.73, respectively.

chartists and fundamentalists. The time series produced in these purely
noisy markets are random-walk like and there is no connection between
the fundamental value and the price of the stock. This is obvious as no
trader is using p; to submit orders and, not surprisingly, the returns
are white and there is no autocorrelation of absolute returns at any lag.
The median (mean) volatility and kurtosis across all the simulations
are 0.01214 (0.01211) and 4.480 (4.508). Hence, purely noisy markets
exhibit insignificant correlations and some degree of leptokurtosis in re-
turns, confirming the findings of the previously cited works, but there
is no volatility clustering and smaller standard deviation. Moreover,
no herding due to switching is detected as active agents just bid or ask
in an entirely random manner and the performance measure is erratic.
All of this evidence indicates that the noise traders alone are not re-
sponsible for volatility clustering and the long memory observed when
both the fundamentalists and chartists are active in the market. To
summarize, our results are definitely richer than the ones that can be
obtained with purely random traders even if some stylized facts can
still be obtained in a weak form in this case.
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5. CONCLUSION

Inspired by the theoretically oriented CHH model under the mar-
ket maker market clearing mechanism, this paper conducts a dynamic
analysis of a microstructure model of continuous double auctions. The
model removes some less realistic assumptions in the CHH model, in-
cluding the fixed length of the moving average window, unlimited short
selling and borrowing, trading of fractional shares, and no intra-day
trading, in particular, the homogeneity amongst each type of the fun-
damentalists and chartists. With a realistic market microstructure,
the model is able not only to obtain the results of the CHH model but
also to characterise most of the stylized facts including the power-law
behaviour in the volatility. Our results seem to suggest that a com-
prehensive explanation of several statistical properties of the returns
is possible in a framework where both behavioral traits and realistic
microstructures have a role.

In this paper, we have not paid attention to the dynamics of the
intra-day price. Also, it is not clear whether and to what extent other
clearing mechanisms than the CDA, like automated dealerships or hy-
brid markets, would affect our results. We leave these issues for future
research.
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