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Abstract: This paper presents a Bayesian approach using Markov chain Monte Carlo methods and 
the generalized-t (GT) distribution to predict loss reserves for the insurance companies. Existing 
models and methods cannot cope with irregular and extreme claims and hence do not offer an 
accurate prediction of loss reserves. To develop a more robust model for irregular claims, this paper 
extends the conventional normal error distribution to the GT distribution which nests several heavy-
tailed distributions including the Student-t and exponential power distributions. It is shown that the 
GT distribution can be expressed as a scale mixture of uniforms (SMU) distribution which facilitates 
model implementation and detection of outliers by using mixing parameters. Different models for the 
mean function, including the log-ANOVA, log-ANCOVA, state space and threshold models, are 
adopted to analyze real loss reserves data. Finally, the best model is selected according to the 
deviance information criterion (DIC).  
 
Keywords: Bayesian approach, state space model, threshold model, scale mixtures of uniform 
distribution, deviance information criterion.  
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1. Introduction 

 
An insurance policy is a promise of an insurance company to pay claims to the insureds if 
some defined events (death, accident, injury, etc.) occur. However in many cases, claims 
originating in a particular year are often not settled in that year, but with a time delay of years 
or perhaps decades. Therefore, the insurance company must have the necessary loss reserves 
to pay these outstanding claims and settlement costs incurred. With many uncertainties in the 
time lags inherently involved in the claims settlement process, the estimation procedure of 
the required loss reserves is extremely complicated. Since loss reserves generally represent 
by far the largest liability and the greatest source of financial uncertainty in an insurance 
company, accurate prediction of the loss reserves is of great importance. Failure to estimate 
the loss reserves accurately may result in large profit losses and hence weaken the financial 
stability of the company which may ultimately drive it into insolvency.  
 
 
Denote Yi,j, ,,,1, nji K=  the value of claims paid by an insurance company for accidents that 

occurred in policy year i  and were settled after j -1 years (lag year j ). The observed claim 

amounts Yi,j, 1,,,1 +−≤= injni K  over a period of n  policy years can be presented by a 

run-off triangle; see Table 1. The total number of observed claims in the upper triangle is 

2
)1( +

=
nnSU  and the number of unobserved claims to be predicted in the lower triangle is 

2
)1( −

=
nnSL . The aim is to predict the unobserved values in the lower triangle using an 

appropriate statistical model. 
 
 

 

Table 1. Run-off triangle for claim data. 

Lag year j  
1 2 3 . . . n - 1 n 

1 Y1,1 Y1,2 Y1,3 . . . Y1,n-1 Y1,n 
2 Y2,1 Y2,2 . . . . Y2,n-1  
3 Y3,1 . . . . .   
. . . . . .    
. . . . .     
. . . .      

n - 1 Yn-1,1 Yn-1,2       

  
Policy 
year  

i 
  

N Yn,1        
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The most popular method for prediction is the chain-ladder method (Renshaw, 1989) which 
uses loss ratio estimate and loss development factors. However it is increasingly apparent 
that this method lacks some measures of variability. Over the years, stochastic models with 
hierarchical structure have been developed to overcome such shortcomings. For example, 
Verrall (1991, 1996) and Renshaw and Verrall (1998) adopt the ANOVA-type and 
ANCOVA-type models. The interaction between the policy year and lag year prompted the 
development of the state space models which allow dynamic evolution of parameters in a 
time-recursive way. See Verrall (1989, 1994). In addition, Hazan and Makov (2001) propose 
the threshold models to allow for structural changes in the trend of outstanding claims over 
time. Analyses of real data suggest that the dynamic nature of the state space model and 
threshold model improves the prediction. 
 
It is well known that the normal error distribution falls short of allowing for irregular and 
extreme claims and hence contaminates the estimation procedure and leads to poor 
prediction. To allow for irregular claims, error distributions that possess flexible tails are 
recommended. The Student-t distribution has been widely used by many researchers for this 
purpose while Choy and Chan (2003) use the exponential power (EP) family of distributions. 
In this paper, we shall adopt the generalized-t (GT) distribution (McDonald and Newey, 
1988) for the errors. The GT distribution is symmetric and is governed by two shape 
parameters. By suitably choosing these shape parameter values, one can easily show that the 
normal, Cauchy, Student-t, EP and Laplace distributions are members of the GT family.   
 
For a long time the Bayesian approach had very limited applications in statistical inference 
because the posterior functionals that involve high-dimensional integration cannot be 
obtained analytically. Gelfand and Smith (1990) develop the simulated-based Markov chain 
Monte Carlo (MCMC) techniques that transform the integration problem into a sampling 
problem. The idea is to construct a Markov chain whose limiting distribution is the 
intractable joint posterior distribution. The simulated realizations from the Markov chain 
mimic a random sample from the joint posterior distribution and the posterior functionals can 
be estimated from these realizations. Amongst the MCMC algorithms, Gibbs sampling 
(Geman and Geman, 1984), Metropolis-Hastings (Metropolis et al., 1953 and Hastings, 1970) 
and Reversible Jump MCMC (Green, 1995) are very common. Bayesian statistical inferences 
can be easily done using WinBUGS (Spiegelhalter et al., 2004), an easy-to-use software for 
MCMC algorithms. Readers who are interested in or unfamiliar to WinBUGS may find the 
educational materials on the official WinBUGS website very useful. See www.mrc-
bsu.cam.ac.uk/bugs/welcome.shtml. They are referred to Gilks et al. (1998) and Gelman et 
al. (2004) for MCMC applications in many statistical problems. For actuarial and insurance 
applications, see, for example, Makov (2001), De Alba (2002), Ntzoufras and Dellaportas 
(2002), Ntzoufras et al. (2005), Scollnik (1998, 2001, 2002) and Verrall (2004).  
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To simplify the computational procedure for the Bayesian calculation and to speed up the 
Gibbs sampling algorithm, the GT error distribution is expressed into a scale mixtures 
representation. The GT distribution can be expressed as a scale mixture of uniforms (SMU) 
distribution as all of its constituting families of distributions, the EP and Student-t 
distributions, can be expressed as SMU distributions. This paper makes the first attempt to 
adopt the GT error distribution via the SMU form for model implementation and to protect 
inferences from possible outliers that can be detected using the mixing parameters of the 
SMU representation. 
 
The rest of this paper is structured as follows. Section 2 introduces the data that demonstrate 
the proposed loss reserve models. Section 3 reviews the models with normal error 
distribution. Section 4 outlines the GT distribution and its scale mixtures representations. 
Section 5 implements the models using the Bayesian approach and proposes the DIC for 
choosing the best model. Section 6 reports and compares the results. Finally, discussion of 
results and further research direction is outlined in Section 7. 
 

2. The data 

To demonstrate the models proposed in Sections 2 and 3, a loss reserve data set as shown in Table 2 
is analyzed. The data are the amount of claims paid to the insureds of an insurance company during 
the period of 1978 to 1995 over n = 18 years. The upper triangle has N = 171 observations and the 
153 observations in lower triangle are not yet observed. For mathematical convenience, two zero 
claim amounts are replaced by 0.01. Some general trends are obvious. Figure 1(a) shows that given a 
policy year, the amount of claims paid follows an increasing trend in the first 4 to 6 lag years and then 
a decreasing trend thereafter. On the other hand, Figure 1(b) shows no obvious trends for each lag 
year.  
 
This data set contains some extreme outliers which are underlined in Table 2. For example, extremely 
large claims (in italic), amount to 11920 and 15546 dollars, were made in the 7-th lag year of policy 
year 1984 and in the 4-th lag year of policy year 1992 respectively. These outliers distort the general 
trends in the data and inflate the standard errors of the model parameters. Other outliers have much 
smaller amount of claims than their neighboring claims. These claims may lead to underestimates of 
loss reserves and hence lower the solvency and increase the risk of bankruptcy for an insurance 
company. Hence for robustness consideration, heavy-tailed error distributions are adopted to 
accommodate these irregular claims. 
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Table 2. The amount of claims paid to the insureds of an insurance during 1978 to 1995. 

 
 
Figure 1 (a) Claim amounts across policy years. (b) Claim amounts across lag years. 
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3. Modeling the mean function 

The popular log-linear model was investigated by Renshaw (1989), Verrall (1991, 1996) and 
Renshaw and Verrall (1998) in actuarial context. Depending on the formulation of policy year and 
lag year effects, we consider the log-ANOVA, log-ANCOVA and state space models for the 
mean function. For the state space model, the interaction effects between the policy-year and 
the lag-year are assumed. Each of these models is then allowed to switch to the model with a 
new set of parameters after certain thresholds. All models are implemented using WinBUGS 
with vague and non-informative prior distributions assigned to the model parameters. 

 

3.1 ANOVA models 

Within the Bayesian hierarchical modeling framework, the log-adjusted claim amount ijμ , 
written in year i and paid with a delay j-1 years, adopts a two-way ANOVA model with normal 
error distribution where ijμ is the mean function, iα  is the policy year effects and iβ  is the 
lag year effects as below: 

( ) ijijijY εμ +=log                    (1) 

jiij βαμμ ++=                    (2) 
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),0(~ 2σε Nij                        (3) 

for 1,,,1 +−≤= injni K  subject to the constraints .0
11

==∑∑ ==

n

j j
n

i i βα  To complete the 

Bayesian framework, we adopt the following priors for the model parameters:  

),0(~ 2
μσμ N , ),0(~ 2

ασα Ni , ),0(~ 2
βσβ Nj , ),(~2 baIGσ  

where ),( baIG is the inverse gamma distribution with density  

⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛

Γ
=

+

2

1

2
2 exp1

)(
)(

σσ
σ b

a
bf

aa

. 

Diffuse priors can be obtained by setting the hyperparameters ∞=== 222
βαμ σσσ and 0== ba , 

i.e. inflating the variances of the prior distributions to reflect the lack of prior information 
(Ntzoufras and Dellaportas, 2002). In this case, the joint prior density is  
 

2
2 1),,,(

σ
σμ ∝βαp  

where ).,( 1 nαα K=α  and ).,,( 1 nββ K=β  

3.2 ANCOVA model 

In the ANCOVA model, the effects of policy year i and lag year j are linear. The three different 
combinations of effects are given below. 

 1. Linear effect of policy year and categorical effect of lag year, 
2. Categorical effect of policy year and linear effect of lag year and 
3. Linear effect of both policy year and lag year. 

Preliminary result of the analysis reveals that the first combination provides the best fit to the 
data and hence is chosen for all subsequent analyses of the ANCOVA model. Analysis of the 
model follows from the log-ANOVA model from (1) to (3) except that the mean function 
becomes  

jij i βαμμ +⋅+=                     (4) 

for 1,,,1 +−≤= injni K  subject to the constraints .0
1

=∑ =

n

j jβ  The diffuse priors are 

chosen to be  

2
2 1),,,(

σ
σαμ ∝βp  

where ).,,( 1 nββ K=β  

3.3 State space model 

To account for the interaction between the policy year and lag year in the mean function, the 
state space model (Ntzoufras and Dellaportas, 2002, De Jong and Zehnwirth, 1983 and 
Verrall, 1991, 1994) is considered. In the model, parameters are allowed to evolve in a time-
recursive pattern: iα depends on 1−iα and an error term ih  while ijβ  depends on ji ,1−β  and an 
error term iv . The model again follows from log-ANOVA model from (1) to (3) except that 
the mean function becomes 
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ijiij βαμμ ++=                    (5) 

for 1,,,1 +−≤= injni K  where the recursive associations are 

iii h+= −1αα ,  ),,0(~ 2
hi Nh σ   ni ,...,3,2=        (6)  

ijiij v+= − ,1ββ ,  ),,0(~ 2
vi Nv σ   nji ,...,3,2, =     (7) 

subject to the constraints 01 =α  and 01 =iβ  for ni ,,1K= . The priors for 2
hσ and 2

vσ  follow 
),(~2

hhh baIGσ  and ),(~2
vvv baIGσ  respectively. Diffuse prior distributions for the 

parameters are chosen to be  
 

222
222

1
1),,,,(

vh
vhp

σσσ
σσσβμ ∝  

where ).,,( 1121 nβββ K=   

3.4 Threshold model 

Hazan and Makov (2001) suggested a switching regression model in which the mean functions 
before and after a threshold T along the axis of policy year are assigned the same model but 
with a different set of parameters. The reasoning behind is that some events such as a financial 
crisis or a change in the insurance regulation may take place on or before certain threshold year T. 
These events may change the effects of some factors on the claim amounts and hence a new set of 
parameters is adopted to reveal such changes. The threshold models based on different mean 
function structures are given below: 

Threshold log-ANOVA model:  jiij 111 βαμμ ++=   for Ti <  
  jiij 222 βαμμ ++=  for Ti ≥ ,  j ≤ n – T+1 

Threshold log-ANCOVA model:  jij i 111 βαμμ +×+=  for Ti <  
  jij i 222 βαμμ +×+=  for Ti ≥ ,  j ≤ n – T+1 

Threshold state space model:  ijiij 111 βαμμ ++=  for Ti <                          (8) 
  ijiij 222 βαμμ ++=   for Ti ≥ ,  j ≤ n – T+1    (9) 

The main difference in these threshold models is related to the set of β  parameters which change 
after the threshold policy year T.  On the contrary, the criterion that the α  parameters are different 
before and after the threshold also holds for the simple models. Prior distributions for the parameters 
in the three models remain the same as those in Sections 3.1 to 3.3. The threshold T can be selected 
based on some model selection measures such as the Akaike information criterion (AIC) (Akaike, 
1974), the Bayesian information criterion (BIC) (Schwarz, 1978), the Deviance information criterion 
(DIC) (Gelman et al., 2004) and the posterior expected utility U (Walker and Gutiérrez-Peña, 1999). 
We will use the DIC in this paper because it is particularly useful in Bayesian model selection 
problems where the posterior distributions of the model parameters have been obtained by MCMC 
simulation. Threshold models with threshold lag-years, for example, 

Threshold log-ANOVA model:  jiij 111 βαμμ ++=     for Tj < , 
 jiij 222 βαμμ ++=  for Tj ≥ ,  i ≤ n – T+1, 
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are also possible. However they are not considered further in this paper as the loss reserves data in the 
numerical illustration show no clear trends of claim amounts across policy years for each given lag-
year (see Figure 1b).  

 

4. Error distributions 

Past experience has shown that irregular claims which often present in loss reserve data may 
seriously distort the parameter estimates and hence affect the accuracy of the prediction. The 
traditional log-linear models with normal errors fall short of allowing for the irregularities in the 
claim amounts. Heavy-tailed distributions such as the Cauchy, Student-t, Laplace and EP 
distributions are adopted for the errors in order to robustify the statistical inferences. However 
searching across these error distributions for the most suitable distribution, though workable, is time-
consuming. The GT distribution, nesting all these competing heavy-tailed distributions as well as 
lighter-tailed alternatives including the popular normal and uniform distributions, provides a 
favorable choice for the error distribution (Butler et al., 1990). 
 

4.1 Generalized-t distributions 

Proposed by McDonald and Newey (1988), the GT distribution is symmetric and unimodal 
and has a probability density function (PDF) 

),,,|( qpxGT σμ  = 
p

qpx
q

q
p

q

p

p

1

11,12
1

+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Β

σ
μσ

                       (10) 

where ℜ∈μ  is a location parameter, 0>σ  is a scale parameter, 0>p and 0>q  are two 
shape parameters and )(⋅B  is the beta function. When 0=μ and ,1=σ the rth moment of the 
GT distribution is given by  

( )q
p

p
rq

p
rq

XE

p
r

r

Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Γ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−Γ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
Γ

=
1

1

][  provided that .pqr <  

In particular, the variance is given by  

( )q
p

p
q

p
q

XV

p

Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Γ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−Γ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Γ

=
1

23

][

2

  provided that .2>pq  

The tail behavior and other characteristics are controlled by p and q. Large values of p and q 
signify distributions with thinner tails than the normal distribution whereas small values of p 
and q signify distributions with thicker tails. Hence the GT distribution can accommodate 
both leptokurtic and platykurtic distributions. 
 
The GT family includes several important distributions: the normal ),2( ∞→= qp , the 
Cauchy )2/1,2( == qp , the Student-t with 2q degrees of freedom )2( =p , the Laplace 

),1( ∞→= qp , the EP with shape parameter p )( ∞→q , and the uniform )( ∞→p  
distributions. When 2=p , the PDF in (10) reduces to  
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2
1

2

2)(1
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1

),,|( +
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⎝
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μννπτ

ν

ντμ
x

xt   

which is the PDF of the Student-t distribution with degrees of freedom q2=ν  and scale 
parameter 2στ = . Moreover, (10) converges to the PDF of the EP distribution with shape 
parameter p  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+Γ

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

=

p

x

pxEP

p

112

exp
),,|(

σ

σ
μ

σμ    

when ∞→q . Lastly, (10) also converges to the PDF of the uniform distribution  

)),((
2
1),|( σμσμ
σ

σμ +−∈= xIxU  

when ∞→p . In addition, when ≤p 1, the GT distribution is cuspidate. Figure 2 summarizes 
the relationship amongst the well-known distributions within the GT family. Figure 9 (a)-(e) 
in Appendix B gives the PDFs for different values of p and q when 0=μ  and 1=σ . 
 

Figure 2: The GT distribution family tree. 

 
 

3.2 Scale mixtures of uniform distributions 
 
 
 
 
 
 

4.2 The generalized gamma distribution  

 

 

 

4.2 The Generalized gamma distributions 

The generalized gamma (GG) distribution with parameters 0,, >γβα , denoted by 
),,,( γβαGG  has a PDF given by  

( )γγαγ
αγ

β
α

γβγβα xxxGG −
Γ

= − exp
)(

),,|( 1
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where β  is a scale parameter and α  and γ are shape parameters. The sth moment of the 
distribution is  

( ).
)(

][
1

αβ
γα

Γ
+Γ

=
−

s
s sXE  

The GG distribution includes the Weibull ( 1=α ), gamma ( 1=γ ), exponential ( 1== γα ) 
and lognormal ( 0=α ) distributions as special cases. In particular, when 1=γ , the GG 
distribution reduces to the gamma ),( βαGa distribution having the PDF 

( )xxxGa β
α
ββα α

α

−
Γ

= − exp
)(

),|( 1 , 

the mean 
β
α

=][XE  and the variance 2][
β
α

=XV . For inferential procedures for the GG 

distribution, see Hager and Bain (1970). See also McDonald and Butler (1987) for the 
applications in finance.  

 

4.3 The scale mixtures representation of the GT distribution  

Recently, Arslan and Genc (2003) showed that the GT distribution can be expressed into a 
scale mixtures of Box and Tiao distribution (Box and Tiao, 1962), or the scale mixtures of 
exponential power (SMEP) distribution because the Box and Tiao distribution is another 
name for the EP distribution. Using the SMEP density representation, the PDF in (10) can be 
rewritten as  

( ) dspqsGGpsqxEPqpxGT p
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∫

∞ −

2
,1,,,),,,|(

0

2/1/1 σμσμ .     (11) 

The latent variable, s, arises in the above expression is called the mixing variable of the 
SMEP density representation and has a )2/,1,( pqGG distribution. Similar to the mixing 
variables of the scale mixtures of normal (SMN) distributions (Choy and Smith, 1997) and 
the scale mixtures of uniform (SMU) distributions (Choy and Chan, 2003), the mixing 
variable s in (11) can be used as a global diagnostic of possible outliers. Small mean value of 
s associates with possible outlier because the corresponding EP distribution in (11) must 
inflate its variance to accommodate the outlier. See Choy and Smith (1997) and Choy and 
Chan (2003) for outlier diagnostics using the mixing variable of the SMN and SMU 
distributions, respectively.  
  
Many symmetric and non-normal distributions are extremely difficult to handle in statistical 
inference because of the non-conjugate structure of the models. In Bayesian computation, 
expressing the PDF of a distribution into a certain kind of scale mixtures form enables 
efficient simulation-based algorithms. Without using a scale mixtures representation, 
sampling non-standard full conditionals in Bayesian Gibbs sampling procedure relies on the 
Metropolis-Hastings algorithm, the slice sampler (Damien et al., 1999) or other simulation 
algorithms. However, the Metropolis-Hastings algorithm and some other simulation 
algorithms require expertise in simulation techniques to provide reliable and efficient 
algorithms. The slice sampler is an easy-to-use algorithm that introduces an auxiliary 
variable to reduce a non-standard full conditional in a Gibbs sampler to standard full 
conditionals. However, there is no physical meaning for the auxiliary variable. On the 
contrary, the use of a scale mixtures density representation for a non-normal distribution 
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results in adding extra latent variables in the model and hopefully produces a set of standard 
full conditionals for the Gibbs sampler. In addition, these latent variables are used to identify 
possible outliers. Therefore, the slice sampler and the use of scale mixtures density 
representation play different roles in Gibbs sampling even though they both use latent 
variables.  
 
Although the GT distribution can be expressed as a SMEP distribution, the EP distribution is 
difficult to handle analytically in statistical inference because its density function involves an 
absolute term. Walker and Gutiérrez-Peña (1999) showed that the EP distribution can be 
expressed as a SMU distribution and Choy and Chan (2003) successfully adopt this SMU 
representation of the EP distribution in an insurance application. In this paper, we combine 
the SMEP for the GT distribution and the SMU for the EP distribution to obtain a SMU 
representation for the GT distribution. The resulting Gibbs sampler can be shown to have a 
set of easily sampled standard full conditional distributions.  
 
Let U  be a gamma ( )1,/11 pGa +  random variable where the PDF of the 

),( baGa distribution is  

bua
a

eu
a

bbauGa −−

Γ
= 1

)(
),|(   0,, >bau  

 

and the mean and variance are 
b
aUE =][  and 2][

b
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⎜
⎝
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2  random variable. Then, if X is a GT random variable 

with parameters p,,σμ and ,q  we have  
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In other words, the PDF in (10) can be rewritten as  
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.
1 2

pp

sx
q σ

μφ −
=  

The conditional variance of the above uniform distribution is )3/()( 2/2 squ pσ  which inflates 
with a large u and a small s . To identify potential outliers, we propose to use the ratio 
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2/1/1 −= su pψ  because it controls the support and hence the variance of the uniform 
distribution.  
 
Hence the sampling is performed with the observed data x and the mixing parameters u and s 
which are used for identification of outliers. Although the number of parameters to be 
sampled becomes larger with the inclusion of mixing parameters, sampling can be conducted 
more efficiently from standard full conditional distributions. Hence the SMU representation 
simplifies the computational procedures for Bayesian calculation and speeds up the Gibbs 
sampling algorithm in WinBUGS as designated.  

 

5. Bayesian analysis 
 

5.1 Model implementation 

Bayesian approach is adopted for parameter estimation and is performed using WinBUGS.  
Command codes for the implementations are given in the Appendix A. Parameters are 
estimated from samples drawn from the posterior conditional distributions. Due to the 
complexity of the models, high posterior correlations exist between some parameters. These 
dependences may slow down the convergence rate in the Gibbs samplers for some 
parameters. As a result, the number of iterations M should be large enough to ensure that the 
sample is uncorrelated, large and stationary. We set M = 105,000 and the burn-in period is at 
least 5,000 iterations. After the burn-in period, parameters are taken from every 50th iteration 
to mimic a random sample of size at least K = 1,000 from the intractable joint posterior 
distribution. Trajectory plots and autocorrelation plots of the simulated values are used to 
check for the independence and convergence of the sample. The posterior sample means, or 
medians where appropriate, are reported as parameter estimates.  

 
5.2 Model Selection 

To choose the most appropriate Bayesian model for the loss reserves data, the Deviance 
information criterion (DIC) is used. The DIC is proposed by Spiegelhalter, et al. (2002) as a 
model selection method for complex hierarchical models in which the number of parameters 
is not clearly defined. The DIC is defined as  

)ˆ()]([ θθ DDEDIC Δ+=  

where )]([ θDE  is a measure of the adequacy of model fitting and )ˆ()]([)ˆ( θθθ DDED −=Δ  
estimates the effective number of parameters in the model. Based on the posterior sample, we 
calculate the DIC as 
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where ijij yz ln=  is the log claim size, )(⋅ijf  is the GT density function given by (10) when 
the mean μ  is replaced by ijμ  in (2), (4) and (5) for the log-ANOVA, log-ANCOVA and 
state space models respectively, kθ  is a vector of all parameters in the kth  posterior sample 

and θ̂  is a vector of posterior means or medians of all parameters. Obviously a model with 
the smallest DIC is the best model. 
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6. Results  
 

6.1 Comparison between mean functions and error distributions 
Various models with different mean functions and error distributions are fitted to the claim data. For 
each type of mean function, we set the two shape parameters, p and q, of the GT distribution to take 
different values, which signify different distributions that are nested within the GT family. In the 
simulation study, we set p = 50 to approximate the uniform distribution and q = 50 to 
approximate the EP distribution which includes the normal and Laplace distributions. From 
(10), these values for p and q approximate the limiting cases of ∞→p and ∞→q well. 
Moreover, more general families of distributions can be obtained by setting either p or q or both to 
be random. For example, p = 1 and q is random, and p is random and q = 0.5, 1 and 2, respectively, 
are used in the simulation study. Models are ranked according to DIC. 
 
Table 3 exhibits the DIC values for a wide choice of error distributions for the log-ANOVA, log-
ANCOVA and state space models. For the log-ANOVA model, the most appropriate error 
distribution is the GT distribution with 1=p and q being random. The posterior mean of q is 
2.46. For the log-ANCOVA and state space models, the GT error distribution with a random 
p  and 2=q   is chosen and the posterior medians of  p are 1.20 and 1.12, respectively. These p and 

q values correspond to the GT distributions that are heavier-tailed than the normal distribution. The 
DIC values for these three models are 336.0, 332.6 and 321.1, respectively and the state space model 
with a random p  and 2=q   is preferred amongst the models studied.  
 
Table 3. Goodness-of-fit measures for models with different mean functions and error 
distributions. Bold types values correspond to fixed parameter values.  

Model ANOVA ANCOVA State space 
Dist. p q DIC Rank p q DIC Rank p q DIC Rank
Normal 2 50 542.4 30 2 50 529.9 29 2 50 528.3 28
t 2 1.26 357.4 17 2 1.24 338.6 12 2 1.26 333.6 8
Cauchy 2 0.5 375.0 22 2 0.5 340.8 13 2 0.5 356.7 16
EP 1.24  50 430.4 27 1.24 50 416.9 25 1.24  50 418.3 26
Laplace 1 50 375.6 23 1 50 359.0 20 1 5 350.9 15
Uniform 50 2 582.1 31 50 2 617.2 32 50 2 800.4 33
GT q=0.5 3.75  0.5 383.2 24 3.54 0.5 357.9 19 3.52 0.5 374.0 21
GT q=1 2.01  1 357.5 18 1.90 1 333.4 6 1.93 1 332.3 4
GT q=2 1.13  2 345.0 14 1.20 2 332.6 5 1.12 2 321.1 1
GT p=1 1 2.46  336.0 10 1 3.09 333.5 7 1 2.49 321.9 2
GT  0.93 3.45  337.3 11 1.16 2.26 333.9 9 1.06 2.73 323.4 3

 
 

6.2 Comparison between simple and threshold models 

To allow for structural changes in the trend of claim amount over time, threshold model that 
assumes a structural change at policy year T is suggested. For the loss reserve data used 
throughout this paper, state space model is shown to perform better than the log-ANOVA and 
log-ANCOVA models across a wide choice of error distributions in general. Therefore, the state 
space threshold model is used to re-analyze the claim data in this section. The threshold T is 
fixed within the range (1, n) for the policy year, not too close to either sides of the range. The 
mean function takes two different sets of parameters – one set before T and the other set on 
and after T. Table 4 exhibits the posterior medians and posterior standard deviations of p, q 
and DIC of various state space threshold models. Figure 3 displays the change of DIC versus 
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T. The state space model with threshold year T = 7 (year 1984) is shown to be the most 
appropriate model (DIC = 228.3). The posterior medians of p and q of the GT distribution are p̂ = 
0.81 and q̂ = 2.63, respectively. This threshold model is chosen for the loss reserve prediction. 
 
Table 4. Posterior medians of p and q (standard deviations in parentheses) and DIC for different 
state space threshold models. 

Threshold 4=T  5=T  6=T  7=T  8=T  9=T  
p 1.19 (0.16) 0.84 (0.10) 0.79 (0.07) 0.81 (0.16) 0.84 (0.08) 0.79 (0.10) 
q 2.12 (0.45) 2.77 (0.48) 3.12 (0.64) 2.63 (0.61) 2.56 (0.47) 2.93 (0.58) 

DIC 290.3 269.8 261.6 228.3 240.3 280.2 
 

 

Figure 3. DIC versus threshold year, T for different state space threshold models. 
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Figure 4 gives the box-plots of all model parameters in the posterior samples for the chosen 
model except the beta parameters, ijβ , which have too many parameters. The alpha and beta 
parameters in (8) and (9) are given by (6) and (7) respectively before and after the threshold 
year of 1984. The beta parameters for each policy year form a periodic trend across lag years:  
they increase up to lag years 4 to 6 and then decrease. Moreover the beta parameters at higher 
lag years have larger variability due to the insufficiency of observations to estimate the 
parameters accurately. Box-plots of alpha parameters also show trends of increasing 
variances across policy years before and after 1984 (the first five box-plots and the remaining 
box-plots respectively). 
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Figure 4 (a) Box-plots of alpha parameters, iα .                (b) Box-plots of mu parameters, kiμ .   
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Figure 4 (c) Box-plots of shape parameters, p and q.        (d) Box-plots of scale parameter, 2σ . 
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Table 6 reports the predicted claims in the upper triangle. Claims in italic refer to the 
predicted claims from policies written on and after 1984. Claims underlined are predicted 
from claims which are extremely low or high (in italic) in values as compared with 
neighboring claims.  
 
The observed claims (Table 2) in solid line and the predicted claims in dotted line are plotted 
in Figure 5. The figure shows clearly two different trends of claims before and after 1984 as 
indicated by the black and grey lines respectively. For claims from policies written before 
1984, the predicted claims increase with the lag year till the 4th lag year and drop slowly 
thereafter. For policies written on and after 1984, the predicted claims start from lower 
levels, rise to the lower maximums at the 6th lag year and drop more rapidly thereafter. In 
general, the predicted claims (dotted lines) lie close to the observed claims showing that the 
chosen model fits the data well. 
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Table 6. Run-off triangle of predicted and projected levels of claims using the chosen model.  

 
Values in italic are estimated or predicted claims from policies written after 1984.  
Values in black and underlined are predicted claims for outliers (predicted claims from large outliers are in italic).  
Values in grey and purple in the lower triangle are projected claims. 
Values in underlined in the lower triangle are projected claims with standard errors higher than half of the values. 
Values in purple are projected claims estimated using (12).  
 

Table 7. Total projected outstanding claims for each policy year and their standard errors.  

 
 
Figure 5. Observed and predicted claim amounts using the chosen model, the state space 
threshold model with a GT error distribution (T = 7 and p and q are random). 
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Projection for the outstanding claims in the lower triangle of Table 2 using the chosen model 
is reported in Table 6. The values are the posterior medians of the projected claims using the 
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K = 1,000 sets of parameter estimates. The projected total outstanding claims, as the posterior 
median of the 1000 sums of projected claims, is 296,159 dollars with an estimated standard 
error of 123,867 dollars. The projected total outstanding claims for each policy year and their 
standard errors are reported in Table 7. Note that the projected claims 13,7,ˆ ≥≥ jiYij , 
written in purple in Table 6, are estimated using 

13,8,,2,1,1,2 ≥≥+= − jiijiij νββ                                    (12) 

and 13,1,17,2 ≥= jjj ββ  because their lag year effects ij,2β  are not given by the model. 
Moreover it should be noted that some projected claims are underlined in Table 6 because 
their standard errors are more than half of the estimated values. As discussed above, the beta 
parameters for higher lag year higher variability because fewer observations are available to 
estimate these parameters accurately. 
 
Figure 6 plots the observed relative frequencies and the expected probabilities using the 
density function (10) for the residuals ijijij yr μ−= ln  where ijμ  is given by (8) and (9). As 
the observed relative frequencies are very close to the expected probabilities, the chosen 
model provides a very good fit to the loss reserves data. The mean, median, standard 
deviation, skewness and kurtosis for the residuals are -0.1655, -0.00715, 1.1306, -5.651 and 
46.189 respectively. The residuals are quite leptokurtic and negatively skewed due to the 
existence of several extremely small outliers.  
 
Figure 6. Observed and predicted relative frequencies for residuals using the chosen model. 
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6.3 Detection of Outliers 

The SMU representation of the GT distribution not only simplifies the model implementation 
using the Bayesian approach but also allows detection of possible outliers using the 
parameter 2/1/1 −= ij

p
ijij suψ . An unusually large ijψ  value indicates that the observed claim 

amount is a possible outlier. The posterior medians of ijψ  for the chosen model are displayed 
in Figure 7. They identify observations 14, 29, 33, 34 and 35 (64 and 65 are marginal), 
labeled across a row from top to bottom in Table 2, to be possible outliers since their 10>ijψ  
( ijψ  for observations 64 and 65 are 8.94 and 8.70 respectively). The level of 10 is chosen to 
identify a moderate number of observations as outliers. Table 7 gives a summary of these 
outlying observations. These observations, grey in color and underlined in Table 2, 
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correspond to the claim amounts which are substantially lower than their neighboring values. 
They may lead to an underestimation for the loss reserves and hence lower the solvency of an 
insurance company and increase its risk of bankruptcy. With ijψ , effects from these outliers 
are down-weighted and hence inference is protected.   
 
Figure 7. Posterior medians of the parameters 2/1/1 −= ij

p
ijij suψ  in the chosen model. 
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Figure 8 plots the observed verses predicted claims (in black for the chosen model). The plot 
shows that observations 100 and 165 (grey, italic and underlined in Table 2) are potential 
outliers as the observed claim amounts are much higher than their predicted values. 
However, their ijψ  values are 1.3 and 2.5 respectively indicating that ijψ  is less sensitive to 
large outliers. One possible explanation lies on the log-linear model: the log function is more 
sensitive to low values than large values. As effects from large outliers are less likely to be 
down-weighted by the mixing parameters in the SMU representation, loss reserves may be 
over-estimated. However the problem of over-estimating loss reserves may lower the profit 
of an insurance company but it may not weaken its solvency. Hence the risk of bankruptcy 
may not be seriously affected by the over-estimation. 
  
Figure 8. Observed value ijy  versus predicted value )( ijyE  for the GT and chain ladder 
models. 
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Table 8 gives a summary of the parameters ijψ , observed claims ijy  and expected claims 
)( ijyE . The posterior p-values ijp  is approximated using the following equation 

⎩
⎨
⎧

≥−
<

=
,0))],(ln(1[2
,0)),(ln(2

ijij

ijij
ij ryF

ryF
p        

where )(⋅F is an approximated cumulative distribution function of the density function in 
(10) and ijμ is given by (6) to (9). All except observations 100 and 165, written in italic in 
Table 8, give negative residuals, ijijij yr μ−= ln . The posterior p-values ijp  indicate that 
these extreme observations, except observations 100 and 165, are outliers.  

 
Table 8. Summary of the parameters ijψ , observed values ijy , fitted values )( ijyE and the 
posterior p-values ijp  of the extreme observations. 

Outliers Policy year i  Lag year j  Mix. par. ijψ  Observed ijy Fitted )( ijyE  Post. p-value ijp

14 1978 14 40.05 0.01 392 0.0000 

29 1979 11 11.55 35 798 0.0106 

33 1979 15 12.69 6 244 0.0080 

34 1979 16 10.81 1 29 0.0099 

35 1979 17 13.25 0.01 3 0.0000 

64 1981 13 8.94 38 391 0.0197 

65 1981 14 8.70 45 450 0.0213 

100 1984 7 1.30 11920 8493 0.1712 

165 1992 4 2.50 15546 8467 0.2595 

 
 

6.4 Comparison with chain ladder method 

The chosen model produces more accurate prediction of claims than the popular chain ladder 
method which indirectly estimates the incremental loss ijy  by projecting the cumulative loss ijS   
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The prediction of ijS  on higher lag years, which is further away from the latest known claim amount 
requires the product of more projection factors and hence becomes less reliable as less data are 
available. We predict ijS  in the upper triangle of Table 2 using only one year ahead projective factor 
so that  

12,ˆ
1, +−≤≤×= − injfSS jjiij   

and 11
ˆ

ii SS = . We project ijS  in the lower triangle by  
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1,18,,2,ˆ
21, +−>=∏×= +−=+− injifSS k

j
inkiniij K . 

The predicted and projected claims are reported in Table 9. Note that there are some negative values. 
They refer to predicted and projected claims which are very close to zero. The MSE for the predicted 
claims using the chain ladder method is 3,908,069 which is much larger than 1,584,478 for the 
chosen model. Moreover Figure 8 reveals that the predicted claims using the chosen model (black 
points) are closer to the observed claims than those using the chain ladder method (grey points). Thus 
the GT model provides more reliable prediction of loss reserves. Accurate prediction of loss reserves 
is very important to insurance companies since the levels of loss reserves have a dramatic impact on 
the profitability and solvency of insurance companies. 
 
Table 9. Run-off triangle of predicted and projected levels of claims using the chain ladder 
method.  

 
 

 

7. Conclusion 
In this paper, log-linear models with three different forms of mean function are used to model loss 
reserves. For the data set analyzed, the GT error distribution performs better than the normal and 
other well-know heavy-tailed error distributions such as Student-t and EP distributions. Meanwhile, 
the time-recursive state space model with threshold in 1984 provides the best fit to the data.  
Prediction and projection of loss reserves are based on Bayesian approach. Expressing the GT 
distribution into the uniform scale mixtures form makes Gibbs sampler more efficient and enables 
outlier diagnostics using the scale mixture mixing parameters. Model selection relies on the 
Deviance information criterion. Comparing with the popular chain ladder method, the chosen GT 
model is shown to provide more accurate predicted claims. The chosen model is then used to project 
outstanding claims of the lower triangle in Table 2.   
 
As the log-linear model is more sensitive to low values than large values, the residuals for the data set 
analyzed are negatively skewed. To allow for a skewed error distribution, one may consider the 
skewed heavy-tailed distributions including the skewed-t distribution or the scale mixtures of beta 
distribution. Further investigation into the skewed error distributions will surely improve the 
modeling of loss reserve data. 

 

 

 



-  21 -  

Acknowledgement  

The authors would like to thank Deborah Street and anonymous referees for very 
constructive comments, Connie P.Y. Lam for calculating the DICs and Wai-Yin Wan for 
running some WinBUGS programs. The second author is supported by an ECR grant of the 
University of Technology Sydney, Australia.   
 
Reference  
Akaike, H., “A new look at the statistical model identification”, IEEE Transactions on 
Automatic Control, 19, 716–723, 1974. 
 
Arslan, O. and Genc, A.I., “Robust location and scale estimation based on the univariate 
generalized t (GT) distribution”, Communications in Statistics: Theory and Methods, 32, 
1505-1525, 2003. 
 
Box, G.E.P. and Tiao, G.C., “A further look at robustness via Bayes' theorem”, Biometrika, 
49, 419-432, 1962. 
 
Butler R.J., McDonald B.J., Nelson R.D., and White S.B., “Robust and Partially Adaptive 
Estimation of Regression Models”, MIT Press, 72, 321-327, 1990. 
 
Choy, S.T.B. and Chan, C.M., “Scale mixtures distributions in insurance applications”, 
ASTIN Bulletin, 33, 93-104, 2003. 
 
Choy, S.T.B. and Smith, A.F.M., “Hierarchical models with scale mixtures of normal 
distribution”, TEST, 6, 205-221, 1997.  
 
De Alba, E., “Bayesian estimation of outstanding claim reserves”, North American Actuarial 
Journal, October 2002. 
 
De Jong, P. and Zehnwirth, B., “Claims reserving state space models and Kalman filter”, 
The Journal of the Institute of Actuaries, 110, 157-181, 1983. 
 
Damien, P., Wakefield, J. and Walker, S., “Gibbs sampling for Bayesian non-Conjugate and 
hierarchical models by using auxiliary variables”, Journal of the Royal Statistical Society, 
Series B, 61, 331-344, 1999. 
 
Gelfand, A.E. and Smith A.F.M., “Sampling-based approaches to calculating marginal 
densities”,  Journal of American Statistical Association, 85, 398-409, 1990. 
 
Geman, S. and Geman, D., “Stochastic relaxation, Gibbs distributions and the Bayesian 
restoration of images”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 
721-741, 1984.  
 
Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B., Bayesian Data Analysis, 2nd edition, 
Chapman & Hall/CRC, 182–184, 2004. 
 
Gilks, W.R., Richardson, S. and Spiegelhalter, D.J., “Markov chain Monte Carlo in 
practice”, Boca Raton, Fla.: Chapman and Hall, 1998. 
 



-  22 -  

Green, P.J., “Reversible jump Markoc chain Monte Carlo computation and Bayesian model 
determination”, Biometrika, 82, 711-732, 1995. 
 
Hager, H.W. and Bain, L.J., “Inferential procedures for the generalized gamma distribution”, 
Journal of the American Statistical Association, 65, 1601-1609, 1970.  
 
Hastings, W.K., “Monte Carlo sampling methods using Markov Chains and their 
applications”, Biometrika, 57, 97-10, 1970. 
 
Hazan, A. and Makov, U.E., “A switching regression model for loss reserves”, Technical 
report TR24, 2001. 
 
Makov, U.E., “Perspective applications of Bayesian methods in actuarial science: a 
perspective”, North American Actuarial Journal, 2001. 
 
McDonald, J.B. and Butler, R.J., “Some generalized mixture distributions with an 
application to unemployment duration”, Review of Economics and Statistics, 69, 232-240, 
1987.    
 
McDonald, J.B. and Newey, W.K., “Partially adaptive estimation of regression models via 
the generalized t distribution”, Economic Theory, 4, 428-457, 1988. 
 
Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N. and Teller, A.H., “Equations of State 
calculations by fast computing machines”, Journal of Chemical Physics, 21, 1087-1091, 
1953. 
 
Ntzoufras, I. and Dellaportas P., “Bayesian modeling of outstanding liabilities incorporating 
claim count uncertainty”, North American Actuarial Journal, 6, 113-128, 2002. 
 
Ntzoufras, I., Katsis, A. and Karlis, D., “Bayesian assessment of the distribution of insurance 
claim counts using reversible jump MCMC”, North American Actuarial Journal, 9, 90-108, 
2005. 
   
Renshaw, A.E., “Chain ladder and interactive modeling”, The Journal of the Institute of 
Actuaries, 116, 559-587, 1989. 
 
Renshaw, A.E., and Verrall, R.J., “A stochastic model underlying the chain-ladder 
technique”, British Actuarial Journal, 4, 903-926, 1998. 

Schwarz, G., “Estimating the dimension of a model”, Annals of Statistics 6(2), 461-464, 
1978.  

Scollnik, D.P.M., “On the analysis of truncated generalized Poisson distribution using a 
Bayesian method”, ASTIN Bulletin, 28, 135-152, 1998. 
 
Scollnik, D.P.M., “Actuarial modeling with MCMC and BUGS”, North American Actuarial 
Journal, 5, 96-124, 2001. 
 
Scollnik, D.P.M., “Implementation of four models for outstanding liabilities in WinBUGS: A 
discussion of a paper by Ntzoufras and Dellaportas”, North American Actuarial Journal, 6, 
128-136, 2002. 



-  23 -  

 
Spiegelhalter, D., Thomas, A., Best, N.G. and Lunn, D., “Bayesian inference using Gibbs 
sampling for Window version (WinBUGS)”, Version 1.4.1, MRC Biostatistics Unit, Institute 
of Public health, Cambridge, UK. (www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml), 2004. 
 
Spiegelhalter, D., Best, N.G., Carlin, B.P. and van der Linde, A., “Bayesian measures of 
model complexity and fit”, Journal of the Royal Statistical Society, Series B, 64, 583-639, 
2002.  
 
Verrall, R.J., “State space representation of the chain ladder linear model”, The Journal of 
Institute of Actuaries, 116, 589-610, 1989. 
 
Verrall, R.J., “Chain ladder and maximum likelihood”, The Journal of Institute of Actuaries, 
118, 489-499, 1991. 
 
Verrall, R.J., “A method of modeling varying-off evolutions in claims reserving”, ASTIN 
Bulletin, 24, 325-332, 1994. 
 
Verrall, R.J., “Claims reserving and generalized additive models”, The Journal of Institute 
of Actuaries, 19, 31-43, 1996. 
 
Verrall, R.J., “A Bayesian generalized linear model for the Bornhuetter-Ferguson method of 
claims reserving”, North American Actuarial Journal, 8, 67-89, 2004. 
 
Walker, S. G. and Gutiérrez-Peña, E., “Robustifying Bayesian procedures”, In: Bayesian 
Statistics 6. Oxford, New York, 685-710, 1999. 
 



-  24 -  

Appendix A WinBUGS command codes for M1 to M4 
 

M1 log-ANOVA model M2 log-ANCOVA model 
model { model { 
for( i in 1 : N ) { for( i in 1 : N ) { 
z[i] <- log(y[i]) z[i] <- log(y[i]) 
ub[i] <- pow(abs(z[i]-mu[i]),p)*pow(s[i],b)/(q*pow(sigma,p)) ub[i] <- pow(abs(z[i]-mu[i]),p)*pow(s[i],b)/(q*pow(sigma,p)) 
u[i] ~ dgamma(a,1)I(ub[i],1000) u[i] ~ dgamma(a,1)I(ub[i],1000) 
s[i] ~ gen.gamma(q,1, b) s[i] ~ gen.gamma(q,1, b) 
z[i] ~ dunif(lower[i],upper[i]) z[i] ~ dunif(lower[i],upper[i]) 
lower[i] <- mu[i]-sigma*pow(q,1/p)*pow(s[i],-1/2)*pow(u[i],1/p)  lower[i] <- mu[i]-sigma*pow(q,1/p)*pow(s[i],-1/2)*pow(u[i],1/p)  
upper[i] <- mu[i]+sigma*pow(q,1/p)*pow(s[i],-1/2)*pow(u[i],1/p) upper[i] <- mu[i]+sigma*pow(q,1/p)*pow(s[i],-1/2)*pow(u[i],1/p) 
mu[i] <- mu0+alpha[row[i]]+beta[col[i]]  mu[i] <- mu0+alpha*row[i]+beta[col[i]]  
} } 
for (j in 2:18){ for (j in 2:18){ 
alpha[j] ~ dnorm(0, 0.01) beta[j]~ dnorm(0, 0.01) 
beta[j]~ dnorm(0, 0.01) } 
} beta[1]<- 0-sum(beta[2:18]) 
alpha[1]<- 0-sum(alpha[2:18]) alpha ~ dnorm(0, 0.01) 
beta[1]<- 0-sum(beta[2:18]) mu0 ~ dnorm(0, 0.001) 
mu0 ~ dnorm(0, 0.001) tau2 ~ dgamma(0.001,0.001) 
tau2 ~ dgamma(0.001,0.001) sigma2 <- 1/tau2 
sigma2 <- 1/tau2 sigma <- pow(sigma2,0.5) 
sigma <- pow(sigma2,0.5) p ~ dgamma(0.001,0.001)       # when p is random 
p ~ dgamma(0.001,0.001)       # when p is random #p <- 2                                     # when p is fixed at 2 say 
#p <- 2                                     # when p is fixed at 2 say q ~ dgamma(0.001,0.001)       # when q is random 
q ~ dgamma(0.001,0.001)       # when q is random #q <- 2                                     # when q is fixed at 2 say 
#q <- 2                                     # when q is fixed at 2 say a <- 1+1/p 
a <- 1+1/p b <- p/2 
b <- p/2 } 
}  
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M3 State space model M4 Threshold SS model 
model { model { 
for( i in 1 : N ) { # trend 1 
z[i] <- log(y[i]) for( i in 1 : N1-1 ) { 
ub[i] <- pow(abs(z[i]-mu[i]),p)*pow(s[i],b)/(q*pow(sigma,p)) z[i] <- log(y[i]) 
u[i] ~ dgamma(a,1)I(ub[i],1000) ub[i] <- pow(abs(z[i]-mu[i]),p)*pow(s[i],b)/(q*pow(sigma,p)) 
s[i] ~ gen.gamma(q,1, b)I(0.01,1000) u[i] ~ dgamma(a,1)I(ub[i],1000) 
z[i] ~ dunif(lower[i],upper[i]) s[i] ~ gen.gamma(q,1, b)I(0.01,1000) 
lower[i] <- mu[i]-sigma*pow(q,1/p)*pow(s[i],-1/2)*pow(u[i],1/p)  z[i] ~ dunif(lower[i],upper[i]) 
upper[i] <- mu[i]+sigma*pow(q,1/p)*pow(s[i],-1/2)*pow(u[i],1/p) lower[i] <- mu[i]-sigma*pow(q,1/p)*pow(s[i],-1/2)*pow(u[i],1/p)  
mu[i] <- mu0+alpha[row[i]]+beta[row[i],col[i]]  upper[i] <- mu[i]+sigma*pow(q,1/p)*pow(s[i],-1/2)*pow(u[i],1/p) 
} mu[i] <- mu01+alpha1[row[i]]+beta1[col[i]] 
for (i in 1:18) { } 
beta[i,1] <- 0 for (i in 1:T-1) { 
} beta1[i,1] <- 0  
for (j in 2:18) { } 
beta[1,j] ~ dnorm(0, 0.01) for (j in 2:18) { 
} beta1[1,j] ~ dnorm(0, 0.01) 
for (i in 2:18) { beta1r1[j] <- beta1[1,j] 
for (j in 2:18) { } 
beta[i,j] <- beta[i-1,j]+v[i] for (i in 2:T-1) { 
} for (j in 2:18) { 
alpha[i] <- alpha[i-1]+h[i] beta1[i,j] <- beta1[i-1,j]+v1[i] 
v[i] ~ dnorm(0, tau2v) } 
h[i] ~ dnorm(0, tau2h) alpha1[i] <- alpha1[i-1]+h1[i] 
}  v1[i] ~ dnorm(0, tau2v1) 
alpha[1] <- 0 h1[i] ~ dnorm(0, tau2h1) 
mu0 ~ dnorm(0, 0.001) } 
tau2 ~ dgamma(0.001,0.001) alpha1[1] <- 0 
tau2v ~ dgamma(0.001,0.001) beta1r1[1] <- 0 
tau2h ~ dgamma(0.001,0.001) # trend 2 
sigma2 <- 1/tau2 for( i in N1 : N ) { 
sigma2v <- 1/tau2v z[i] <- log(y[i]) 
sigma2h <- 1/tau2h ub[i] <- pow(abs(z[i]-mu[i]),p)*pow(s[i],b)/(q*pow(sigma,p)) 
sigma <- pow(sigma2,0.5) u[i] ~ dgamma(a,1)I(ub[i],1000) 
p ~ dgamma(0.001,0.001)       # when p is random s[i] ~ gen.gamma(q,1, b)I(0.01,1000) 
#p <- 2                                     # when p is fixed at 2 say z[i] ~ dunif(lower[i],upper[i]) 
q ~ dgamma(0.001,0.001)       # when q is random  lower[i] <- mu[i]-sigma*pow(q,1/p)*pow(s[i],-1/2)*pow(u[i],1/p)  
#q <- 2                                     # when q is fixed at 2 say upper[i] <- mu[i]+sigma*pow(q,1/p)*pow(s[i],-1/2)*pow(u[i],1/p) 
a <- 1+1/p mu[i] <- mu02+alpha2[row[i]-T+1]+beta2[col[i]] 
b <- p/2 } 
} for (i in 1:18-T+1) { 
 beta2[i,1] <- 0 
 } 
 for (j in 2:18-T+1) { 
 beta2[1,j] ~ dnorm(0, 0.01) 
 beta2r1[j] <- beta2[1,j] 
 } 
 for (i in 2:18-T+1) { 
 for (j in 2:18-T+1) { 
 } 
 beta2[i,j] <- beta2[i-1,j]+v2[i] 
 } 
 alpha2[i] <- alpha2[i-1]+h2[i] 
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 v2[i] ~ dnorm(0, tau2v2) 
 h2[i] ~ dnorm(0, tau2h2) 
 } 
 alpha2[1] <- 0 
 Beta2r1[1] <- 0 
 # end trend 2 
 mu01 ~ dnorm(0, 0.001) 
 mu02 ~ dnorm(0, 0.001) 
 tau2 ~ dgamma(0.001,0.001) 
 tau2v1 ~ dgamma(0.001,0.001) 
 tau2h1 ~ dgamma(0.001,0.001) 
 tau2v2 ~ dgamma(0.001,0.001) 
 tau2h2 ~ dgamma(0.001,0.001) 
 sigma2 <- 1/tau2 
 sigma2v1 <- 1/tau2v1 
 sigma2h1 <- 1/tau2h1 
 sigma2v2 <- 1/tau2v2 
 sigma2h2 <- 1/tau2h2 
 sigma2v1 <- 1/tau2v1 
 sigma <- pow(sigma2,0.5) 
 p ~ dgamma(0.001,0.001)      # when p is random 
 #p <- 2                                    # when p is fixed at 2 say 
 q ~ dgamma(0.001,0.001)      # when q is random 
 #q <- 2                                    # when q is fixed at 2 say 
 a <- 1+1/p 
 b <- p/2 
 } 

 
Remark: 
1. Data are entered using the following format: 
y[] row[] col[] 
3323 1    1 
8332       1    2 
… 
2827 18    1 
END 
 
2. Values for some constants are: 
list(N=171, T=7, N1=94)     # threshold model 
list(N=171)                          # simple model 
 
For T=5,6,7,8,9, N1=67,81,94,106,117 respectively.  
 
3. Starting values for the parameters are: 0.1 for mu01, mu02, 0.000001 for tau2, tau2h1, tau2v1, tau2h1, 
tau2v1, 0 for h1, h2, v1 and v2, all 1 for u and all 2 for s) for the threshold SS model. 
 
4. Model parameters for the threshold SS model which are stored for calculation include: 
mu01,mu02,v1,h1,v2,h2,alpha1,alpha2,beta1r1,beta2r1,sigma2h1,sigma2v1,sigma2h2,sigma2v2,u,s,p,q,sigma2. 
Note that beta1r1 and beta2r1 store the beta in the first row for trend 1 and 2 respectively.  
The lengths of alpha1,h1,v1 are T-1, the length of beta1r1 is 18 and alpha1[1]= beta1r1[1]=h1[1]=v1[1]=0.   
The lengths of alpha2, beta2,h2,v2 are 18-T+1 and alpha2[1]= beta2r1[1]=h2[1]=v2[1]=0. 

ijβ  can be calculated using (7) for each k, beta1r1, beta2r1, v1 and v2. 

 
 
 



-  27 -  

Appendix B  
 
Figure 9(a) – (e) Various density functions for the GT distribution. 
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