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Abstract: This paper presents a Bayesian approach using Markov chain Monte Carlo methods and
the generalized-# (GT) distribution to predict loss reserves for the insurance companies. Existing
models and methods cannot cope with irregular and extreme claims and hence do not offer an
accurate prediction of loss reserves. To develop a more robust model for irregular claims, this paper
extends the conventional normal error distribution to the GT distribution which nests several heavy-
tailed distributions including the Student-¢ and exponential power distributions. It is shown that the
GT distribution can be expressed as a scale mixture of uniforms (SMU) distribution which facilitates
model implementation and detection of outliers by using mixing parameters. Different models for the
mean function, including the log-ANOVA, log-ANCOVA, state space and threshold models, are
adopted to analyze real loss reserves data. Finally, the best model is selected according to the
deviance information criterion (DIC).
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1. Introduction

An insurance policy is a promise of an insurance company to pay claims to the insureds if
some defined events (death, accident, injury, etc.) occur. However in many cases, claims
originating in a particular year are often not settled in that year, but with a time delay of years
or perhaps decades. Therefore, the insurance company must have the necessary loss reserves
to pay these outstanding claims and settlement costs incurred. With many uncertainties in the
time lags inherently involved in the claims settlement process, the estimation procedure of
the required loss reserves is extremely complicated. Since loss reserves generally represent
by far the largest liability and the greatest source of financial uncertainty in an insurance
company, accurate prediction of the loss reserves is of great importance. Failure to estimate
the loss reserves accurately may result in large profit losses and hence weaken the financial

stability of the company which may ultimately drive it into insolvency.

Denote Yij, i, j =1,...,n, the value of claims paid by an insurance company for accidents that
occurred in policy year i and were settled after j -1 years (lag year j ). The observed claim
amounts Yij i=1, ...,n, j<n—i+1 over a period of n policy years can be presented by a

run-off triangle; see Table 1. The total number of observed claims in the upper triangle is

_ n(n+1)

Sy and the number of unobserved claims to be predicted in the lower triangle is

n(n-1 . . . . .
= ( ). The aim is to predict the unobserved values in the lower triangle using an

S,

appropriate statistical model.

Table 1. Run-off triangle for claim data.
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The most popular method for prediction is the chain-ladder method (Renshaw, 1989) which
uses loss ratio estimate and loss development factors. However it is increasingly apparent
that this method lacks some measures of variability. Over the years, stochastic models with
hierarchical structure have been developed to overcome such shortcomings. For example,
Verrall (1991, 1996) and Renshaw and Verrall (1998) adopt the ANOVA-type and
ANCOVA-type models. The interaction between the policy year and lag year prompted the
development of the state space models which allow dynamic evolution of parameters in a
time-recursive way. See Verrall (1989, 1994). In addition, Hazan and Makov (2001) propose
the threshold models to allow for structural changes in the trend of outstanding claims over
time. Analyses of real data suggest that the dynamic nature of the state space model and

threshold model improves the prediction.

It is well known that the normal error distribution falls short of allowing for irregular and
extreme claims and hence contaminates the estimation procedure and leads to poor
prediction. To allow for irregular claims, error distributions that possess flexible tails are
recommended. The Student-¢ distribution has been widely used by many researchers for this
purpose while Choy and Chan (2003) use the exponential power (EP) family of distributions.
In this paper, we shall adopt the generalized-# (GT) distribution (McDonald and Newey,
1988) for the errors. The GT distribution is symmetric and is governed by two shape
parameters. By suitably choosing these shape parameter values, one can easily show that the

normal, Cauchy, Student-#, EP and Laplace distributions are members of the GT family.

For a long time the Bayesian approach had very limited applications in statistical inference
because the posterior functionals that involve high-dimensional integration cannot be
obtained analytically. Gelfand and Smith (1990) develop the simulated-based Markov chain
Monte Carlo (MCMC) techniques that transform the integration problem into a sampling
problem. The idea is to construct a Markov chain whose limiting distribution is the
intractable joint posterior distribution. The simulated realizations from the Markov chain
mimic a random sample from the joint posterior distribution and the posterior functionals can
be estimated from these realizations. Amongst the MCMC algorithms, Gibbs sampling
(Geman and Geman, 1984), Metropolis-Hastings (Metropolis et al., 1953 and Hastings, 1970)
and Reversible Jump MCMC (Green, 1995) are very common. Bayesian statistical inferences
can be easily done using WinBUGS (Spiegelhalter et al., 2004), an easy-to-use software for
MCMC algorithms. Readers who are interested in or unfamiliar to WinBUGS may find the
educational materials on the official WinBUGS website very useful. See www.mrc-
bsu.cam.ac.uk/bugs/welcome.shtml. They are referred to Gilks et al. (1998) and Gelman et
al. (2004) for MCMC applications in many statistical problems. For actuarial and insurance
applications, see, for example, Makov (2001), De Alba (2002), Ntzoufras and Dellaportas
(2002), Ntzoufras et al. (2005), Scollnik (1998, 2001, 2002) and Verrall (2004).
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To simplify the computational procedure for the Bayesian calculation and to speed up the
Gibbs sampling algorithm, the GT error distribution is expressed into a scale mixtures
representation. The GT distribution can be expressed as a scale mixture of uniforms (SMU)
distribution as all of its constituting families of distributions, the EP and Student-¢
distributions, can be expressed as SMU distributions. This paper makes the first attempt to
adopt the GT error distribution via the SMU form for model implementation and to protect
inferences from possible outliers that can be detected using the mixing parameters of the

SMU representation.

The rest of this paper is structured as follows. Section 2 introduces the data that demonstrate
the proposed loss reserve models. Section 3 reviews the models with normal error
distribution. Section 4 outlines the GT distribution and its scale mixtures representations.
Section 5 implements the models using the Bayesian approach and proposes the DIC for
choosing the best model. Section 6 reports and compares the results. Finally, discussion of

results and further research direction is outlined in Section 7.

2. The data

To demonstrate the models proposed in Sections 2 and 3, a loss reserve data set as shown in Table 2
is analyzed. The data are the amount of claims paid to the insureds of an insurance company during
the period of 1978 to 1995 over n = 18 years. The upper triangle has N = 171 observations and the
153 observations in lower triangle are not yet observed. For mathematical convenience, two zero
claim amounts are replaced by 0.01. Some general trends are obvious. Figure 1(a) shows that given a
policy year, the amount of claims paid follows an increasing trend in the first 4 to 6 lag years and then
a decreasing trend thereafter. On the other hand, Figure 1(b) shows no obvious trends for each lag

year.

This data set contains some extreme outliers which are underlined in Table 2. For example, extremely
large claims (in italic), amount to 11920 and 15546 dollars, were made in the 7-th lag year of policy
year 1984 and in the 4-th lag year of policy year 1992 respectively. These outliers distort the general
trends in the data and inflate the standard errors of the model parameters. Other outliers have much
smaller amount of claims than their neighboring claims. These claims may lead to underestimates of
loss reserves and hence lower the solvency and increase the risk of bankruptcy for an insurance
company. Hence for robustness consideration, heavy-tailed error distributions are adopted to

accommodate these irregular claims.



Table 2. The amount of claims paid to the insureds of an insurance during 1978 to 1995.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1978| 3323 8332 9572 10172 7631 3855 3252 4433 2188 333 199 692 311 001 405 293 76 14
1979] 3785 10342 8330 7849 2839 3577 1404 1721 1065 156 35 259 250 420 [ 1 001
1980| 4677 9989 8746 10228 8572 5787 3855 14456 1612 626 1172 589 438 473 370 31
1981| 5288 8089 12839 11829 7560 6383 4118 3016 1575 1985 2645 266 38 45 115
1982| 2294 9869 10242 13808 8775 5419 2424 1597 4149 1296 917 295 428 359
1983| 3600 7514 8247 9327 8584 4245 4096 3216 2014 593 1188 691 368
1984 3642 7394 9838 9733 6377 4884 11920 4188 4492 1760 944 921
1985 2463 5033 6980 7722 6702 7834 5579 3622 1300 3069 1370
1986| 2267 65959 6175 7051 8102 6339 6978 4396 3107 903
1987 2009 3700 5298 6885 6477 7570 5855 5751 3871
1988] 1860 5282 3640 7538 5157 5766 6862 2572
1989] 2331 3517 5310 6066 10149 9265 5262
1990| 2314 4487 4112 7000 11163 10057
1091| 2607 3952 8228 7895 9317
1992| 2595 5403 6579 15546
1993| 31556 4974 7961
1994| 2626 5704
1995 2827

Figure 1 (a) Claim amounts across policy years. (b) Claim amounts across lag years.
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3. Modeling the mean function

The popular log-linear model was investigated by Renshaw (1989), Verrall (1991, 1996) and
Renshaw and Verrall (1998) in actuarial context. Depending on the formulation of policy year and
lag year effects, we consider the log-ANOVA, log-ANCOVA and state space models for the
mean function. For the state space model, the interaction effects between the policy-year and
the lag-year are assumed. Each of these models is then allowed to switch to the model with a
new set of parameters after certain thresholds. All models are implemented using WinBUGS
with vague and non-informative prior distributions assigned to the model parameters.

3.1 ANOVA models

Within the Bayesian hierarchical modeling framework, the log-adjusted claim amount 4, ,

written in year i and paid with a delay j-1 years, adopts a two-way ANOVA model with normal
error distribution where 4, is the mean function, ¢; is the policy year effects and S, is the

lag year effects as below:
)
2

10g(Y,.j): W + &,

ﬂU:#+ai+lB]
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&; ~N(0,0?) ®)

fori=1,...,n, j<n—i+1 subject to the constraints Z;ai = Z';:lﬂj =0. To complete the
Bayesian framework, we adopt the following priors for the model parameters:

,u~N(O,c7i), a; ~N(0,0'§ ), ,Bj ~N(0,0'2), o’ ~ 1G(a,b)

where /G(a,b)is the inverse gamma distribution with density

n ba L a+1 _i
f(“)_r(a)(cﬁj exp( sz-

Diffuse priors can be obtained by setting the hyperparameters Gj =0, = 02 =owand a=b=0,

i.e. inflating the variances of the prior distributions to reflect the lack of prior information
(Ntzoufras and Dellaportas, 2002). In this case, the joint prior density is

p(u,a.p,0%) Lz
O

where a =(a,,....2,) and B=(5,,....5,)

3.2 ANCOVA model

In the ANCOVA model, the effects of policy year i and lag year j are linear. The three different
combinations of effects are given below.

1. Linear effect of policy year and categorical effect of lag year,
2. Categorical effect of policy year and linear effect of lag year and
3. Linear effect of both policy year and lag year.

Preliminary result of the analysis reveals that the first combination provides the best fit to the
data and hence is chosen for all subsequent analyses of the ANCOVA model. Analysis of the
model follows from the log-ANOVA model from (1) to (3) except that the mean function
becomes

Wy =p+a-i+p, (4)

fori=1,...,n, j<n—i+1 subject to the constraints Z’;:l B; =0. The diffuse priors are

chosen to be
1
p(,u,a,B,aZ) oL —
o
where B =(f4,....5,).

3.3 State space model

To account for the interaction between the policy year and lag year in the mean function, the
state space model (Ntzoufras and Dellaportas, 2002, De Jong and Zehnwirth, 1983 and
Verrall, 1991, 1994) is considered. In the model, parameters are allowed to evolve in a time-

recursive pattern: @, depends on ¢, and an error term 4, while 5, depends on g, ; and an

error term v,. The model again follows from log-ANOVA model from (1) to (3) except that
the mean function becomes
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ﬂy=ﬂ+ai+ﬂij (5)

fori=1, ...,n, j <n—i+1 where the recursive associations are
o, =a,_,+h, h, ~N(O,U,f), i=23,...n (6)
By =Py v WeNOGD, =23 ()

subject to the constraints @, =0 and B, =0 for i =1,...,n. The priors for o; and o follow
o, ~I1G(a,,b,) and o’ ~IG(a,,b,) respectively. Diffuse prior distributions for the
parameters are chosen to be

1
p(ﬂ,ﬂl,O'z,O'Z,O'f)OCﬁ
o 0,0,

where S, =(B,.... B.,)-

3.4 Threshold model

Hazan and Makov (2001) suggested a switching regression model in which the mean functions
before and after a threshold 7" along the axis of policy year are assigned the same model but
with a different set of parameters. The reasoning behind is that some events such as a financial
crisis or a change in the insurance regulation may take place on or before certain threshold year 7.
These events may change the effects of some factors on the claim amounts and hence a new set of
parameters is adopted to reveal such changes. The threshold models based on different mean
function structures are given below:

Threshold log-ANOV A model: My =+ + py fori<T
Wy =ty +ay + By, fori>T, j<n-T+I

Threshold log-ANCOV A model: W= toxi+f,  fori<T
W= to,xi+ B, fori>T, j<n-T+I

Threshold state space model: Wy = ta, + By fori<T (8)
My =y + Ay + By fori>T, j<n-T+1 (9)

The main difference in these threshold models is related to the set of £ parameters which change

after the threshold policy year 7. On the contrary, the criterion that the & parameters are different
before and after the threshold also holds for the simple models. Prior distributions for the parameters
in the three models remain the same as those in Sections 3.1 to 3.3. The threshold 7" can be selected
based on some model selection measures such as the Akaike information criterion (4/C) (Akaike,
1974), the Bayesian information criterion (BIC) (Schwarz, 1978), the Deviance information criterion
(DIC) (Gelman et al., 2004) and the posterior expected utility U (Walker and Gutiérrez-Pefia, 1999).
We will use the DIC in this paper because it is particularly useful in Bayesian model selection
problems where the posterior distributions of the model parameters have been obtained by MCMC
simulation. Threshold models with threshold lag-years, for example,

Threshold log-ANOV A model: My =p ta,+p, forj<T,
Wy =ty ta, + B, for j>T,i<n-T+I,
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are also possible. However they are not considered further in this paper as the loss reserves data in the
numerical illustration show no clear trends of claim amounts across policy years for each given lag-
year (see Figure 1b).

4. Error distributions

Past experience has shown that irregular claims which often present in loss reserve data may
seriously distort the parameter estimates and hence affect the accuracy of the prediction. The
traditional log-linear models with normal errors fall short of allowing for the irregularities in the
claim amounts. Heavy-tailed distributions such as the Cauchy, Student-s, Laplace and EP
distributions are adopted for the errors in order to robustify the statistical inferences. However
searching across these error distributions for the most suitable distribution, though workable, is time-
consuming. The GT distribution, nesting all these competing heavy-tailed distributions as well as
lighter-tailed alternatives including the popular normal and uniform distributions, provides a
favorable choice for the error distribution (Butler ez al., 1990).

4.1 Generalized-7 distributions

Proposed by McDonald and Newey (1988), the GT distribution is symmetric and unimodal
and has a probability density function (PDF)

GT (x|, 0, p,q) = P : (10)

1 _ P\
261”0'B[1,q) 1+lx ,u‘
p gl o©

where 1€ R is a location parameter, o >0 is a scale parameter, p >0and g >0 are two
shape parameters and B(:) is the beta function. When x =0and o =1, the " moment of the
GT distribution is given by

provided that » < pgq.

In particular, the variance is given by
2
> 2
{2 Jr)
P
The tail behavior and other characteristics are controlled by p and ¢. Large values of p and ¢
signify distributions with thinner tails than the normal distribution whereas small values of p

and ¢ signify distributions with thicker tails. Hence the GT distribution can accommodate
both leptokurtic and platykurtic distributions.

provided that pg > 2.

The GT family includes several important distributions: the normal (p =2, g — ), the
Cauchy (p=2, g=1/2), the Student-r with 2¢g degrees of freedom (p =2), the Laplace
(p=1,qg—> o), the EP with shape parameter p (¢ - ), and the uniform (p — ©)
distributions. When p = 2, the PDF in (10) reduces to

- 8-



t(x|u,7,v)= —

Nm(;j [1 +<—ﬂ>j

TV

which is the PDF of the Student-¢ distribution with degrees of freedom v =2g and scale
parameter 7 = G/ V2. Moreover, (10) converges to the PDF of the EP distribution with shape

parameter p
X — p
exp _‘ﬂ
o

20 F(1+1j
p

when g — 00 Lastly, (10) also converges to the PDF of the uniform distribution

EP(x|u,0,p)=

1
Ulx|po)=——I(xe(u—o,u+0))
20
when p — co. In addition, when p <1, the GT distribution is cuspidate. Figure 2 summarizes

the relationship amongst the well-known distributions within the GT family. Figure 9 (a)-(¢)
in Appendix B gives the PDFs for different values of p and ¢ when #=0 and o =1.

Figure 2: The GT distribution family tree.

GT

== th\ Pgiw\‘z

Exponential Power Uniform Student-t ( df=2q)
p=1 p=2 g / q=1i2
YJ‘Z /
/
Laplace Normal Cauchy

4.2 The Generalized gamma distributions

The generalized gamma (GG) distribution with parameters «,f,y >0 , denoted by
GG(a, B,7), has a PDF given by

GG(x|a,B.y) = %x’”‘l exp(—,Byxy)



where [ is a scale parameter and « and y are shape parameters. The s™ moment of the
distribution is

E[X°]= F(a + s;f’l )
p’l(a)

The GG distribution includes the Weibull (« =1), gamma (y =1), exponential (¢ =y =1)
and lognormal (a =0) distributions as special cases. In particular, when y =1, the GG

distribution reduces to the gamma Ga(e, f) distribution having the PDF

G|t p) = oo x* el ),

o a
the mean E[X]=— and the variance V[X]= F . For inferential procedures for the GG

B
distribution, see Hager and Bain (1970). See also McDonald and Butler (1987) for the
applications in finance.

4.3 The scale mixtures representation of the GT distribution

Recently, Arslan and Gene (2003) showed that the GT distribution can be expressed into a
scale mixtures of Box and Tiao distribution (Box and Tiao, 1962), or the scale mixtures of
exponential power (SMEP) distribution because the Box and Tiao distribution is another
name for the EP distribution. Using the SMEP density representation, the PDF in (10) can be
rewritten as

GT(X | luao-apaq) = J.:Ep(x:uﬂql/ps_l/za’p)GG(S q’l’gjds' (11)

The latent variable, s, arises in the above expression is called the mixing variable of the
SMEP density representation and has a GG(g,l, p/2) distribution. Similar to the mixing

variables of the scale mixtures of normal (SMN) distributions (Choy and Smith, 1997) and
the scale mixtures of uniform (SMU) distributions (Choy and Chan, 2003), the mixing
variable s in (11) can be used as a global diagnostic of possible outliers. Small mean value of
s associates with possible outlier because the corresponding EP distribution in (11) must
inflate its variance to accommodate the outlier. See Choy and Smith (1997) and Choy and
Chan (2003) for outlier diagnostics using the mixing variable of the SMN and SMU
distributions, respectively.

Many symmetric and non-normal distributions are extremely difficult to handle in statistical
inference because of the non-conjugate structure of the models. In Bayesian computation,
expressing the PDF of a distribution into a certain kind of scale mixtures form enables
efficient simulation-based algorithms. Without using a scale mixtures representation,
sampling non-standard full conditionals in Bayesian Gibbs sampling procedure relies on the
Metropolis-Hastings algorithm, the slice sampler (Damien et al., 1999) or other simulation
algorithms. However, the Metropolis-Hastings algorithm and some other simulation
algorithms require expertise in simulation techniques to provide reliable and efficient
algorithms. The slice sampler is an easy-to-use algorithm that introduces an auxiliary
variable to reduce a non-standard full conditional in a Gibbs sampler to standard full
conditionals. However, there is no physical meaning for the auxiliary variable. On the
contrary, the use of a scale mixtures density representation for a non-normal distribution

- 10 -



results in adding extra latent variables in the model and hopefully produces a set of standard
full conditionals for the Gibbs sampler. In addition, these latent variables are used to identify
possible outliers. Therefore, the slice sampler and the use of scale mixtures density
representation play different roles in Gibbs sampling even though they both use latent
variables.

Although the GT distribution can be expressed as a SMEP distribution, the EP distribution is
difficult to handle analytically in statistical inference because its density function involves an
absolute term. Walker and Gutiérrez-Pefia (1999) showed that the EP distribution can be
expressed as a SMU distribution and Choy and Chan (2003) successfully adopt this SMU
representation of the EP distribution in an insurance application. In this paper, we combine
the SMEP for the GT distribution and the SMU for the EP distribution to obtain a SMU
representation for the GT distribution. The resulting Gibbs sampler can be shown to have a
set of easily sampled standard full conditional distributions.

Let U be a gamma Ga (1+1/ )2 1) random variable where the PDF of the
Ga(a,b) distribution is

Ga (u|a,b):b—u“_le_b” u,a,b>0

I'(a)

a a
and the mean and variance are E[U] =Z and V[U ]:b_2 , respectively, and S be a

generalized gamma GG (g,l, q j random variable. Then, if X is a GT random variable
with parameters x4, o, p and ¢, we have

X|U=u,S=s~ Um'f(,u g U, q”s;u”aj

U~ Ga(l+l,lj
p

and S ~ GG(Q;L%J .

In other words, the PDF in (10) can be rewritten as
I: I: Unif (| ji—q*s b o, i+ qFsub 0)Ga (u 11+ l, 1} GG (s | §,1, qj du ds
p

where
p P

1 2
¢= .

X—p

o)

S

The conditional variance of the above uniform distribution is (qu)>'” o /(3s) which inflates
with a large u and a smalls. To identify potential outliers, we propose to use the ratio

- 11 -



1/p -1/2 . . .
v=u''s because it controls the support and hence the variance of the uniform

distribution.

Hence the sampling is performed with the observed data x and the mixing parameters u and s
which are used for identification of outliers. Although the number of parameters to be
sampled becomes larger with the inclusion of mixing parameters, sampling can be conducted
more efficiently from standard full conditional distributions. Hence the SMU representation
simplifies the computational procedures for Bayesian calculation and speeds up the Gibbs
sampling algorithm in WinBUGS as designated.

5. Bayesian analysis

5.1 Model implementation

Bayesian approach is adopted for parameter estimation and is performed using WinBUGS.
Command codes for the implementations are given in the Appendix A. Parameters are
estimated from samples drawn from the posterior conditional distributions. Due to the
complexity of the models, high posterior correlations exist between some parameters. These
dependences may slow down the convergence rate in the Gibbs samplers for some
parameters. As a result, the number of iterations M should be large enough to ensure that the
sample is uncorrelated, large and stationary. We set M = 105,000 and the burn-in period is at
least 5,000 iterations. After the burn-in period, parameters are taken from every 50™ iteration
to mimic a random sample of size at least K = 1,000 from the intractable joint posterior
distribution. Trajectory plots and autocorrelation plots of the simulated values are used to
check for the independence and convergence of the sample. The posterior sample means, or
medians where appropriate, are reported as parameter estimates.

5.2 Model Selection

To choose the most appropriate Bayesian model for the loss reserves data, the Deviance
information criterion (DIC) is used. The DIC is proposed by Spiegelhalter, ef al. (2002) as a
model selection method for complex hierarchical models in which the number of parameters
is not clearly defined. The DIC is defined as

DIC = E[D(0)]+ AD(6)

where E[D(6)] is a measure of the adequacy of model fitting and AD(é) = E[D(0)]- D(é)
estimates the effective number of parameters in the model. Based on the posterior sample, we
calculate the DIC as

2 1000 n n—i+l 1 n n—i+l n
DIC=-2{—=>> >Inf(z;180)-—> D.Inf.(z;|0)
N 3= =1 N3 =1
where z; =Iny, is the log claim size, f;() is the GT density function given by (10) when
the mean w is replaced by g, in (2), (4) and (5) for the log-ANOVA, log-ANCOVA and
state space models respectively, 0, is a vector of all parameters in the Kt posterior sample

and 0 is a vector of posterior means or medians of all parameters. Obviously a model with
the smallest DIC is the best model.

- 12 -



6. Results

6.1 Comparison between mean functions and error distributions

Various models with different mean functions and error distributions are fitted to the claim data. For
each type of mean function, we set the two shape parameters, p and ¢, of the GT distribution to take
different values, which signify different distributions that are nested within the GT family. In the
simulation study, we set p = 50 to approximate the uniform distribution and ¢ = 50 to
approximate the EP distribution which includes the normal and Laplace distributions. From
(10), these values for p and ¢ approximate the limiting cases of p — cand g — o well.
Moreover, more general families of distributions can be obtained by setting either p or ¢ or both to
be random. For example, p = 1 and ¢ is random, and p is random and ¢ = 0.5, 1 and 2, respectively,
are used in the simulation study. Models are ranked according to DIC.

Table 3 exhibits the DIC values for a wide choice of error distributions for the log-ANOVA, log-
ANCOVA and state space models. For the log-ANOVA model, the most appropriate error
distribution is the GT distribution with p =1and ¢ being random. The posterior mean of ¢ is
2.46. For the log-ANCOVA and state space models, the GT error distribution with a random
p and g =2 is chosen and the posterior medians of p are 1.20 and 1.12, respectively. These p and
q values correspond to the GT distributions that are heavier-tailed than the normal distribution. The
DIC values for these three models are 336.0, 332.6 and 321.1, respectively and the state space model
with arandom p and g =2 is preferred amongst the models studied.

Table 3. Goodness-of-fit measures for models with different mean functions and error
distributions. Bold types values correspond to fixed parameter values.

Model ANOVA ANCOVA State space

Dist. p q DIC Rank p q DIC  Rank p q DIC Rank
Normal 2 50 5424 30 2 50 5299 29 2 50 528.3 28
t 2 126 3574 17 2 124 338.6 12 2 1.26 333.6 8
Cauchy 2 05 3750 22 2 05 34038 13 2 0.5 356.7 16
EP 1.24 50 4304 27 1.24 50 416.9 25| 1.24 50 418.3 26
Laplace 1 50 3756 23 1 50 359.0 20 1 5 350.9 15
Uniform 50 2 5821 31 50 2 617.2 32 50 2 8004 33
GT g=0.5 375 05 3832 24 354 05 3579 19 ] 3.52 0.5 374.0 21
GT g=1 2.01 1 3575 18 1.90 1 3334 6] 1.93 1 3323 4
GT g=2 1.13 2 3450 14 1.20 2 3326 5] 1.12 2 3211 1
GT p=1 1 246 336.0 10 1 3.09 3335 7 1 249 3219 2
GT 0.93 345 337.3 11 116 2.26 333.9 9] 1.06 2.73 3234 3

6.2 Comparison between simple and threshold models

To allow for structural changes in the trend of claim amount over time, threshold model that
assumes a structural change at policy year T is suggested. For the loss reserve data used
throughout this paper, state space model is shown to perform better than the log-ANOVA and
log-ANCOVA models across a wide choice of error distributions in general. Therefore, the state
space threshold model is used to re-analyze the claim data in this section. The threshold 7 is
fixed within the range (1, n) for the policy year, not too close to either sides of the range. The
mean function takes two different sets of parameters — one set before 7" and the other set on
and after 7. Table 4 exhibits the posterior medians and posterior standard deviations of p, g
and DIC of various state space threshold models. Figure 3 displays the change of DIC versus
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T. The state space model with threshold year 7 = 7 (year 1984) is shown to be the most
appropriate model (DIC = 228.3). The posterior medians of p and ¢ of the GT distribution are p =

0.81 and ¢ =2.63, respectively. This threshold model is chosen for the loss reserve prediction.

Table 4. Posterior medians of p and ¢ (standard deviations in parentheses) and DIC for different
state space threshold models.

Threshold T=4 T=5 T=6 T=17 T=8 T=9
p 1.19(0.16) | 0.84(0.10) | 0.79 (0.07) | 0.81 (0.16) | 0.84 (0.08) | 0.79 (0.10)
q 2.12(0.45) | 2.77(0.48) | 3.12(0.64) | 2.63(0.61) | 2.56(0.47) | 2.93 (0.58)
DIC 290.3 269.8 261.6 228.3 240.3 280.2

Figure 3. DIC versus threshold year, T for different state space threshold models.

300
290
280
270
260
250
240
230
220

DIC

4 5 6 7 8 9
Threshold year

Figure 4 gives the box-plots of all model parameters in the posterior samples for the chosen
model except the beta parameters, S, which have too many parameters. The alpha and beta

parameters in (8) and (9) are given by (6) and (7) respectively before and after the threshold
year of 1984. The beta parameters for each policy year form a periodic trend across lag years:
they increase up to lag years 4 to 6 and then decrease. Moreover the beta parameters at higher
lag years have larger variability due to the insufficiency of observations to estimate the
parameters accurately. Box-plots of alpha parameters also show trends of increasing
variances across policy years before and after 1984 (the first five box-plots and the remaining
box-plots respectively).
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Figure 4 (a) Box-plots of alpha parameters, «; . (b) Box-plots of mu parameters, 2, .
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Figure 4 (c) Box-plots of shape parameters, p and g. (d) Box-plots of scale parameter, o~ .
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Table 6 reports the predicted claims in the upper triangle. Claims in italic refer to the
predicted claims from policies written on and after 1984. Claims underlined are predicted
from claims which are extremely low or high (in italic) in values as compared with
neighboring claims.

The observed claims (Table 2) in solid line and the predicted claims in dotted line are plotted
in Figure 5. The figure shows clearly two different trends of claims before and after 1984 as
indicated by the black and grey lines respectively. For claims from policies written before
1984, the predicted claims increase with the lag year till the 4™ lag year and drop slowly
thereafter. For policies written on and after 1984, the predicted claims start from lower
levels, rise to the lower maximums at the 6 lag year and drop more rapidly thereafter. In
general, the predicted claims (dotted lines) lie close to the observed claims showing that the
chosen model fits the data well.
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Table 6. Run-off triangle of predicted and projected levels of claims using the chosen model.

-
o

E{Y}) 1 2 3 4 5 ] 7 8 9 10 11 12 13 14 15 16 17
1978| 3948 8373 9300 9881 7567 | 4606 3365 2387 1595 553 1013 443 342 397 332 31 58
1979] 3964 6630 7364 7824 5991 3647 2665 1890 1263 438 202 351 271 314 263 24

=|=
==

1980| 4082 9165 10179 10815 8282 5042 3684 2813 1746 605 1109 485 374 434 363 34 70| 18
1981| 4091 9517 10571 | 11231 8600 5236 3825 2713 1813 628 1152 504 388 451 377 35 70| 18
1982| 4032 9662 10732 11402 8731 5315 3883 2754 1840 638 1169 511 394 458 34 70| 18
1983| 3959 9388 10427 11079 8483 5164 3773 2676 1788 620 1136 497 383 363 32 68| 15
1984| 2802 5687 7723 9293 9284 9311 8434 4362 4377 1720 1162 243 283 | 237 22 41 | 10
1985 2542 4976 6757 8131 8122 8147 7379 3816 3829 1503 1016 209 242 | 200 20 34 El
1986| 2315 4572 6209 7471 7464 = 7486 6781 3507 3519 1383 733 195 226 | 186 18 22 8
1987| 2144 4148 35633 6777 6770 6791 6151 3192 844 | 662 174 201 | 168 16 29 7
1988| 2124 4064 5519 6640 6633 6653 1211 | 834 | 652 171 197 | 164 16 27 7
198Q| 2162 4104 5573 6706 6699 4073 | 1231 | 845 | 646 171 198 | 164 16 29 7
1990| 2328 4528 6148 7398 3405 | 6203 | 1371 | 933 | 726 191 222 | 185 12 32 8
1997| 2554 5047 6854 8247 7388 | 3834 | 7986 | 1520 | 1040 | 812 | 211 245 | 204 20 35 El
1992| 2647 5269 7155 8609 8475 7742 | 4016 | 8244 | 1588 | 1090 | 858 | 222 254 | 214 21 37 El
1993 2738 5473 7433 8928 | 8875 8101 | 4211 | 8309 | 1631 | 1146 | 883 | 231 269 | 225 22 39| 10
1994| 2727 35506 8924 8993 | 8938 8175 | 4241 | 7730 | 1667 | 1154 | 893 | 235 271 | 224 22 3@ | 10
1995 2782 7524 | 8938 Q054 | 8997 8127 | 4279 | 4037 | 1687 | 1163 | 894 236 272 | 224 22 g 10

Values in italic are estimated or predicted claims from policies written after 1984.

Values in black and underlined are predicted claims for outliers (predicted claims from large outliers are in italic).
Values in grey and purple in the lower triangle are projected claims.

Values in underlined in the lower triangle are projected claims with standard errors higher than half of the values.
Values in purple are projected claims estimated using (12).

Table 7. Total projected outstanding claims for each policy year and their standard errors.

1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
Total 11 86 131 515 928 868 | 1558 2450 3539 4729 10760 20295 31810 42016 52743 60016 61717
5.8, 69 161 210 229 254 219 11082 10828 8996 8697 8561 10202 12729 12688 12604 14927 17500

Figure 5. Observed and predicted claim amounts using the chosen model, the state space
threshold model with a GT error distribution (7= 7 and p and ¢ are random).
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Projection for the outstanding claims in the lower triangle of Table 2 using the chosen model
is reported in Table 6. The values are the posterior medians of the projected claims using the
- 16 -



K = 1,000 sets of parameter estimates. The projected total outstanding claims, as the posterior
median of the 1000 sums of projected claims, is 296,159 dollars with an estimated standard
error of 123,867 dollars. The projected total outstanding claims for each policy year and their

standard errors are reported in Table 7. Note that the projected claims };l.j, i27, j=213,

written in purple in Table 6, are estimated using
ﬂz,y = ﬂl,i—l,j Vo 238, Jj2 13 (12)

and f,,; = B, j 213 because their lag year effects f,, are not given by the model.

Moreover it should be noted that some projected claims are underlined in Table 6 because
their standard errors are more than half of the estimated values. As discussed above, the beta
parameters for higher lag year higher variability because fewer observations are available to
estimate these parameters accurately.

Figure 6 plots the observed relative frequencies and the expected probabilities using the
density function (10) for the residuals r; =Iny, — x, where 1, is given by (8) and (9). As
the observed relative frequencies are very close to the expected probabilities, the chosen
model provides a very good fit to the loss reserves data. The mean, median, standard
deviation, skewness and kurtosis for the residuals are -0.1655, -0.00715, 1.1306, -5.651 and
46.189 respectively. The residuals are quite leptokurtic and negatively skewed due to the
existence of several extremely small outliers.

Figure 6. Observed and predicted relative frequencies for residuals using the chosen model.
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6.3 Detection of Outliers

The SMU representation of the GT distribution not only simplifies the model implementation

using the Bayesian approach but also allows detection of possible outliers using the
1/p ~1/2
S..

parameter y/, =u; s,

. An unusually large w, value indicates that the observed claim
amount is a possible outlier. The posterior medians of y/,, for the chosen model are displayed
in Figure 7. They identify observations 14, 29, 33, 34 and 35 (64 and 65 are marginal),
labeled across a row from top to bottom in Table 2, to be possible outliers since their y; >10
(y, for observations 64 and 65 are 8.94 and 8.70 respectively). The level of 10 is chosen to

identify a moderate number of observations as outliers. Table 7 gives a summary of these
outlying observations. These observations, grey in color and underlined in Table 2,
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correspond to the claim amounts which are substantially lower than their neighboring values.
They may lead to an underestimation for the loss reserves and hence lower the solvency of an
insurance company and increase its risk of bankruptcy. Withy ,, effects from these outliers

are down-weighted and hence inference is protected.

-1/2

. : . _ ., Up
Figure 7. Posterior medians of the parameters v, =u, s,

in the chosen model.
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Figure 8 plots the observed verses predicted claims (in black for the chosen model). The plot
shows that observations 100 and 165 (grey, italic and underlined in Table 2) are potential
outliers as the observed claim amounts are much higher than their predicted values.
However, their y; values are 1.3 and 2.5 respectively indicating that y; is less sensitive to

large outliers. One possible explanation lies on the log-linear model: the log function is more
sensitive to low values than large values. As effects from large outliers are less likely to be
down-weighted by the mixing parameters in the SMU representation, loss reserves may be
over-estimated. However the problem of over-estimating loss reserves may lower the profit
of an insurance company but it may not weaken its solvency. Hence the risk of bankruptcy
may not be seriously affected by the over-estimation.

Figure 8. Observed value y; versus predicted value E(y;) for the GT and chain ladder

models.
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Table 8 gives a summary of the parameters y/,, observed claims y, and expected claims

E(y,). The posterior p-values p, is approximated using the following equation

2F(In(y;)), ry <0,
2[1 - F(ln(yij ))]9 Ty z Oa

where F(-)is an approximated cumulative distribution function of the density function in

Py

(10) and p; is given by (6) to (9). All except observations 100 and 165, written in italic in
Table 8, give negative residuals, r; =Iny; — 4, . The posterior p-values p, indicate that

these extreme observations, except observations 100 and 165, are outliers.

Table 8. Summary of the parameters y/;, observed values y,, fitted values E(y,)and the

posterior p-values p, of the extreme observations.

Outliers |Policy year i | Lagyear j | Mix.par. i/, |Observed y, [Fitted £(y;)|Post. p-value p,
14 1978 14 40.05 0.01 392 0.0000
29 1979 11 11.55 35 798 0.0106
33 1979 15 12.69 6 244 0.0080
34 1979 16 10.81 1 29 0.0099
35 1979 17 13.25 0.01 3 0.0000
64 1981 13 8.94 38 391 0.0197
65 1981 14 8.70 45 450 0.0213
100 1984 7 1.30 11920 8493 0.1712
165 1992 4 2.50 156546 8467 0.2595

6.4 Comparison with chain ladder method

The chosen model produces more accurate prediction of claims than the popular chain ladder
method which indirectly estimates the incremental loss y, by projecting the cumulative loss S;

S; =8, %/, i=2,...,n, j=n—i+2,...,n

J N
where S, = z y; and S, ., =S using the projective factors
k=1

i,n+l-i

n+l-j
Zi:l Sij
n+l-j S
Zi:l i,j-1

The prediction of S; on higher lag years, which is further away from the latest known claim amount

fi=

requires the product of more projection factors and hence becomes less reliable as less data are
available. We predict S, in the upper triangle of Table 2 using only one year ahead projective factor
so that

S’ij:Si,jflx i 2<j<n—-i+l
and S‘il =S, . Weproject S, in the lower triangle by
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Sy =S a X fis 122,018, j>n—i+].

y

The predicted and projected claims are reported in Table 9. Note that there are some negative values.
They refer to predicted and projected claims which are very close to zero. The MSE for the predicted
claims using the chain ladder method is 3,908,069 which is much larger than 1,584,478 for the
chosen model. Moreover Figure 8 reveals that the predicted claims using the chosen model (black
points) are closer to the observed claims than those using the chain ladder method (grey points). Thus
the GT model provides more reliable prediction of loss reserves. Accurate prediction of loss reserves
is very important to insurance companies since the levels of loss reserves have a dramatic impact on
the profitability and solvency of insurance companies.

Table 9. Run-off triangle of predicted and projected levels of claims using the chain ladder
method.

Y 1 2 3 4 5 ] 7 2 9 10 11 12 13 14 15 16 17 18]
1978 3323 T160 10531 11618 7967 | 5582 2164 1086 3700 807 178  -326 489 264 =30 299 222 47
1979 3785 8156 13531 9052 4663 32 | 2180 549 1017 -38 94 | 372 101 214 | 299
19801 4677 10078 11688 9548 7505 6450 4164 1446 442 141 470 €32 372 389
1981 5288 11394 7437 16182 2890 4769 4647 1505 2005 £1 | 1837 2048 13
1982| 2294 4943 14693 12513 12380 6408 3594 222 582 2703 1142 331
1983| 3600 7757 9682 9725 7330 7008 2702 2067 2433 679 449
1984| 3642 7848 8409 12191 7485 4186 3439 10430 3284 2954
1985| 2463 5307 5745 8738 6448 5493 7216 3923 2928
1986| 2267 4885 7680 7307 5599 7232 5494 5469
1987 2009 4329 3956 6627 6213 5T00 TI172
1988| 1860 4008 7009 3698 7113 | 4091
1989 2331 5023 3120 6609 5117
1990 2314 4986 4962 4514
1991 2607 5617 3602 10908
1992| 2595 5592 7988
1993| 3155 6798
1994| 2626 5658
1995| 2827

7. Conclusion

In this paper, log-linear models with three different forms of mean function are used to model loss
reserves. For the data set analyzed, the GT error distribution performs better than the normal and
other well-know heavy-tailed error distributions such as Student-# and EP distributions. Meanwhile,
the time-recursive state space model with threshold in 1984 provides the best fit to the data.
Prediction and projection of loss reserves are based on Bayesian approach. Expressing the GT
distribution into the uniform scale mixtures form makes Gibbs sampler more efficient and enables
outlier diagnostics using the scale mixture mixing parameters. Model selection relies on the
Deviance information criterion. Comparing with the popular chain ladder method, the chosen GT
model is shown to provide more accurate predicted claims. The chosen model is then used to project
outstanding claims of the lower triangle in Table 2.

As the log-linear model is more sensitive to low values than large values, the residuals for the data set
analyzed are negatively skewed. To allow for a skewed error distribution, one may consider the
skewed heavy-tailed distributions including the skewed-# distribution or the scale mixtures of beta
distribution. Further investigation into the skewed error distributions will surely improve the
modeling of loss reserve data.
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Appendix A WinBUGS command codes for M1 to M4

M1 log-ANOVA model
model {
for(iin1:N){
z[i] <- log(y[il)
ubli] <- pow(abs(z[i]-muli]),p)*pow(sli],b)/(q*pow(sigma,p))
u[i] ~ dgamma(a,1)l(ub[i],1000)
s[i] ~ gen.gamma(q,1, b)
z[i] ~ dunif(lower[i],upperli])
lowerl[i] <- muli]-sigma*pow(q,1/p)*pow(s[il,-1/2)*pow(u[i],1/p)
upperli] <- mu[i]+sigma*pow(q,1/p)*pow(sli],-1/2)*pow(u[i],1/p)
muli] <- muO+alpha[row][i]]+beta[col[il]
}
for (jin 2:18){
alpha[j] ~ dnorm(0, 0.01)
betalj]~ dnorm(0, 0.01)
}
alpha[1]<- 0-sum(alpha[2:18])
beta[1]<- 0-sum(beta[2:18])
mu0 ~ dnorm(0, 0.001)
tau2 ~ dgamma(0.001,0.001)
sigma2 <- 1/tau2

M2 log-ANCOVA model

model {

for(iin1:N){

z[i] <- log(y[il)

ubl[i] <- pow(abs(z[i]-muli]),p)*pow(sl[i],b)/(q*pow(sigma,p))
u[i] ~ dgamma(a, 1)l(ub[i],1000)

s[i] ~ gen.gamma(q,1, b)

z[i] ~ dunif(lowerfi],upper]i])

lowerf[i] <- muli]-sigma*pow(q,1/p)*pow(slil,-1/2)*pow(u[i],1/p)
upperli] <- muli]+sigma*pow(q,1/p)*pow(s]i],-1/2)*pow(uli],1/p)
muli] <- muO+alpha*row[i]+beta[col[i]]

}

for (j in 2:18){

betalj]~ dnorm(0, 0.01)

}

beta[1]<- 0-sum(beta[2:18])

alpha ~ dnorm(0, 0.01)

mu0 ~ dnorm(0, 0.001)

tau2 ~ dgamma(0.001,0.001)

sigma2 <- 1/tau2

sigma <- pow(sigma2,0.5)

sigma <- pow(sigma2,0.5)
p ~ dgamma(0.001,0.001)
#p<-2

g ~ dgamma(0.001,0.001)

# when p is random
# when p is fixed at 2 say
# when q is random

p ~ dgamma(0.001,0.001)

# when p is random

#q<-2
a<-1+1/p
b <-p/2

}

# when q is fixed at 2 say

#p<-2 # when p is fixed at 2 say
g ~ dgamma(0.001,0.001) # when q is random
#q<-2 # when q is fixed at 2 say
a<-1+1/p

b <-p/2

}
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M3 State space model

model {

for(iin1:N){

Z[i] <- log(yli])

ubli] <- pow(abs(z[i]-mul[i]),p)*pow(s[il,b)/(q*pow(sigma,p))
u[i] ~ dgamma(a,1)l(ub[i],1000)

s[i] ~ gen.gamma(q,1, b)I(0.01,1000)

z[i] ~ dunif(lowerfi],upper]i])

lowerl[i] <- muli]-sigma*pow(q,1/p)*pow(s[i],-1/2)*pow(ul[i],1/p)
upperl[i] <- muli]+sigma*pow(q,1/p)*pow(sli],-1/2)*pow(u[i],1/p)
mul[i] <- muO+alpha[row[i]]+beta[row[i],col[i]]
}

for (iin 1:18) {

beta[i,1] <- 0

}

for (jin 2:18) {

beta[1,j] ~ dnorm(0, 0.01)

}

for (iin 2:18) {

for (jin 2:18) {

betali,j] <- betali-1,j]+V[i]

}

alpha(i] <- alphali-1]+hl[i]

v[i] ~ dnorm(0, tau2v)

h[i] ~ dnorm(0, tau2h)

}

alpha[1] <- 0

mu0 ~ dnorm(0, 0.001)

tau2 ~ dgamma(0.001,0.001)

tau2v ~ dgamma(0.001,0.001)

tau2h ~ dgamma(0.001,0.001)

sigma2 <- 1/tau2

sigma2v <- 1/tau2v

sigmaz2h <- 1/tau2h

sigma <- pow(sigma2,0.5)

p ~ dgamma(0.001,0.001) # when p is random

#p<-2 # when p is fixed at 2 say
g ~ dgamma(0.001,0.001) # when q is random
#q<-2 # when q is fixed at 2 say
a<-1+1/p

b <- p/2

}

M4 Threshold SS model

model {

# trend 1

for(iin1:N1-1){

2[i] <- log(y[il)

ubl[i] <- pow(abs(z[i]-mufi]),p)*pow(sli],b)/(q*pow(sigma,p))
u[i] ~ dgamma(a,1)l(ub[i],1000)

s[i] ~ gen.gamma(q,1, b)I(0.01,1000)

Z[i] ~ dunif(lower[i],upper]i])

lower(i] <- muli]-sigma*pow(q,1/p)*pow(s[i],-1/2)*pow(uli],1/p)
upperli] <- muli]+sigma*pow(q,1/p)*pow(sli],-1/2)*pow(uli],1/p)
mul[i] <- mu01+alpha1[row[i]]+beta1[col[i]]

}

for (iin 1:T-1){

beta1[i,1] <- 0

}

for (jin 2:18) {

beta1[1,j] ~ dnorm(0, 0.01)

beta1r1[j] <- beta1[1,]]

}

for (iin 2:T-1){

for (jin 2:18) {

beta1[i,j] <- beta1[i-1,j]+v1[i]

}

alpha1[i] <- alpha1[i-1]+h1[i]

v1[i] ~ dnorm(0, tau2v1)

h1[i] ~ dnorm(0, tau2h1)

}

alpha1[1] <-0

beta1r1[1]1<- 0

# trend 2

for(iin N1:N){

Z[i] <- log(y[il)

ubli] <- pow(abs(z[i]-mul[i]),p)*pow(s[i],b)/(a*pow(sigma,p))
u[i] ~ dgamma(a,1)I(ubli],1000)

s[i] ~ gen.gamma(q,1, b)I(0.01,1000)

z[i] ~ dunif(lower[i],upperli])

lower[i] <- muli]-sigma*pow(q,1/p)*pow(s[i],-1/2)*pow(uli],1/p)
upperli] <- muli]+sigma*pow(q,1/p)*pow(sli],-1/2)*pow(ul[i],1/p)
mu[i] <- mu02+alpha2[row[i]-T+1]+beta2[col[i]]

}

for (iin 1:18-T+1) {

beta2[i,1] <- 0

}

for (j in 2:18-T+1) {

beta2[1,j] ~ dnorm(0, 0.01)

beta2r1[j] <- beta2[1,j]

}

for (iin 2:18-T+1) {

for (jin 2:18-T+1) {

}

beta2[i,j] <- beta2[i-1,j]+v2][i]

}
alpha2][i] <- alpha2[i-1]+h2[i]

- 25-



v2[i] ~ dnorm(0, tau2v2)

h2[i] ~ dnorm(0, tau2h2)

}

alpha2[1]<-0

Beta2r1[1] <- 0

# end trend 2

mu01 ~ dnorm(0, 0.001)

mu02 ~ dnorm(0, 0.001)

tau2 ~ dgamma(0.001,0.001)
tau2v1 ~ dgamma(0.001,0.001
tau2h1 ~ dgamma(0.001,0.001
tau2v2 ~ dgamma(0.001,0.001
tau2h2 ~ dgamma(0.001,0.001
sigma2 <- 1/tau2

sigma2v1 <- 1/tau2v1
sigma2h1 <- 1/tau2h1
sigma2v2 <- 1/tau2v2
sigma2h2 <- 1/tau2h2
sigma2v1 <- 1/tau2v1

sigma <- pow(sigma2,0.5)

p ~ dgamma(0.001,0.001)  # when p is random

#p<-2 # when p is fixed at 2 say
q ~dgamma(0.001,0.001)  # when q is random
#q<-2 # when q is fixed at 2 say
a<-1+1/p

b <-p/2

}

Remark:
1. Data are entered using the following format:

yl] rowl] coll]

3323 1 1
8332 1 2
.2.8.27 18 1
END

2. Values for some constants are:

list(N=171, T=7, N1=94)  # threshold model
list(N=171) # simple model

For 7=5,6,7,8,9, N1=67,81,94,106,117 respectively.

3. Starting values for the parameters are: 0.1 for mu01, mu02, 0.000001 for tau2, tau2h1, tau2v1, tau2h1,
tau2v1, O for h1, h2, vi and v2, all 1 for u and all 2 for s) for the threshold SS model.

4. Model parameters for the threshold SS model which are stored for calculation include:
mu01,mu02,v1,h1,v2,h2,alpha1,alpha2,betalr1,beta2r1,sigma2h1,sigma2v1,sigma2h2,sigma2v2,u,s,p,q,sigma2.
Note that beta1r1 and beta2r1 store the beta in the first row for trend 1 and 2 respectively.

The lengths of alpha1,h1,v1 are T-1, the length of betatr1 is 18 and alpha1[1]= beta1r1[1]=h1[1]=v1[1]=0.
The lengths of alpha2, beta2,h2,v2 are 18-T+1 and alpha2[1]= beta2r1[1]=h2[1]=v2[1]=0.

B, canbe calculated using (7) for each k, betatr1, beta2r1, v1 and v2.
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Appendix B

Figure 9(a) — (e) Various density functions for the GT distribution.

GT distributions when q = 0.5

—p=0.25
—p=0.5
p=1
p=2
—p=5
— =15
—p=50
—p=100

GT distributions when q = 1

—p=025
—p=05
p=1
p=2
—p=5
—p=15
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GT distributions when q = 2

GT distributions when p = q

—p=q=0.25
—p=q=0.5
p=q=1
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