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Abstract

This paper studies intertemporal investment strategies under inflation risk by extending

the intertemporal framework of Merton (1973) to include a stochastic price index. The

stochastic price index gives rise to a two-tier evaluation system: agents maximize their

utility of consumption in real terms while investment activities and wealth evolution are

evaluated in nominal terms. We include inflation-indexed bonds in the agents’ investment

opportunity set and study their effectiveness in hedging against inflation risk. A new multi-

factor term structure model is developed to price both inflation-indexed bonds and nominal

bonds, and the optimal rules for intertemporal portfolio allocation, both with and without

inflation-indexed bonds are obtained in closed form. The theoretical model is estimated

using data of US bond yield, both real and nominal, and S&P 500 index. The estimation

results are employed to construct the optimal investment strategy for an actual real market

situation. Wachter (2003) pointed out that without inflation risk, the most risk averse

agents (with an infinite risk aversion parameter) will invest all their wealth in the long

term nominal bond maturing at the end of the investment horizon. We extend this result

to the case with inflation risk and conclude that the most risk averse agents will now invest

all their wealth in the inflation-indexed bond maturing at the end of the investment horizon.
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1 Introduction

In a world with inflation risk a long-term bond is no longer a certain asset. Its payout at a

future date is fixed but the purchasing power of the payout is unknown. For investors some

important questions are; How to invest in nominal bonds in a world with inflation? Are long-

term bonds still safer than short-term bonds? When there are inflation-indexed bonds (IIBs)

on the market, what is the optimal portfolio containing the IIBs? This paper extends Merton’s

(1973) framework of intertemporal asset allocation to including a stochastic price index. The

focuses of this paper are the study of the impacts of inflation risk and of the inclusion of IIBs

on optimal investment strategies.

Inflation-indexed bonds are securities whose principal and coupon payments are adjusted with

respect to some price index. They provide certain purchasing power and can hedge inflation risk

for a long run investment plan. The US Treasury has been issuing Treasury Indexed-Protected

Securities (TIPS) since January 1997, these are securities whose payments are adjusted to the

Consumption Price Index. The outstanding amount of IIBs in 2004 was about $200bn in the

US and $500bn worldwide. Liquidity in the TIPS market is improving, with the daily trading

volume having doubled during 2002-2004 and amounting to about $5bn in 2004.1

Although there have been many contributions to the problem of intertemporal asset allocation

since the pioneering work of Merton, such as Kim and Omberg (1996), Brennan, Schwartz and

Lagnado (1997), Wachter (2002, 2003), Liu(2005) and others, models considering inflation risk

are still in the developmental stage. Campbell and Viceira (2001) solve the intertemporal asset

allocation problem of infinitely-lived agents with recursive utility under inflation risk. The no-

arbitrage constraint of their discrete-time model is represented by a pricing formula in terms of

a real stochastic discount factor (SDF). The continuous-time asset model provided by Brennan

and Xia (2002) suggests an analogous pricing scheme that uses a real pricing kernel. They
1Details see the source: http://www.treas.gov/offices/domestic-finance/key-initiatives/tips.shtml
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provide a solution solve for the optimal portfolio consisting of investment in one equity and

two nominal bonds but without IIBs. The application of the real pricing kernel still remains

many unexplored issues. The theoretical foundation for the pricing kernel is its equivalence to

the no-arbitrage constraint that is guaranteed by frictionless and efficient transactions on mar-

kets. Since all transactions on markets take place in nominal terms, the no-arbitrage constraint

should only be equivalent to a pricing kernel in nominal terms. A pricing kernel in real terms

seems to be unconvincing because it requires frictionless and efficient transactions in units of

goods.

In a world with inflation, it is more convincing to adopt the no-arbitrage constraint developed

by Jarrow and Yildirim (2003). They consider the “nominal world” and the “real world” as

two countries and the price index as the “exchange rate” based on the no-arbitrage constraint

for the two-country model proposed by Amin and Jarrow (1991). Invoking an argument anal-

ogous to that in the two-country model that the no-arbitrage constraint is satisfied on each

national financial market, Jarrow and Yildirim obtain the no-arbitrage constraint for the “nom-

inal world”. However, we do not adopt their model directly here because their nominal term

structure is based on a one-factor model, as in Munk et al. (2004). The shortcoming of such a

one-factor model is that usually the factor is the instantaneous nominal spot interest rate. It

then turns out that the inflation risk does not affect the nominal term structure. Furthermore,

it is well known that a one-factor bond model does not fit market data well. We would thus

expect to encounter difficulties in empirical applications of portfolio allocation rules based on

single-factor models.

The model we develop adopts the no-arbitrage condition of Jarrow and Yildirim (2003) but

we extend the one-factor nominal bond model framework to that of a two-factor model of the

type proposed by Richard (1978) where both the instantaneous real interest rate and the in-

stantaneous expected inflation rate are factors for the nominal term structure.
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There are mainly two approaches for solving the intertemporal decision problem under infla-

tion risk: the method of dynamic programming and the static variational method. The latter

approach was employed by Brennan and Xia (2002) which was developed for their bond pricing

model using the real pricing kernel. Since we have already argued above for a desire of more

deeper theoretical analysis for the application of the real pricing kernel, it is technically more

clear and direct to adopt the approach of dynamic programming. Munk et al. (2004) have

provided solutions using the dynamic programming approach for the intertemporal investment

problem under inflation risk. However, in their paper only the end solution is provided. We

amend some of the solution steps and extend the underlying bond pricing model to including

inflation expectations as one additional factor.

By including a stock with a constant risk premium, we end up considering an intertemporal

model whose investment opportunity set includes a stock, nominal bonds and IIBs. We in-

vestigate optimal investment strategies in this framework. In this paper, we make use of the

Feymann-Kac Formula to obtain the solution of the intertemporal portfolio choice problem,

both with and without the IIBs, in closed form.

In a world without inflation risk, Wachter (2003) has shown that the most risk averse agents

would only buy the nominal bond maturing at the end of the investment horizon. The reason-

ing for this investment strategy is that the nominal bond provides a certain payout at the end

of the investment horizon. On a world with inflation risk, however, the nominal bonds are no

longer safe assets. We provide the result that, under inflation risk, the most risk averse agents

now invest all their wealth in the IIBs maturing at the end of investment horizon if the IIB is

included in the investment opportunity set. This finding shares some sharing similar essence

with that of Wachter (2003). If there is no IIB in the investment opportunity set, investors can

hedge inflation risk only through the correlations between the asset return shocks and inflation

shocks. The most risk averse investors still prefer to invest in the long-term bond.
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The structure of this paper is organized as follows. Section 2 introduces the assets available for

investment. The novel feature here is the embedding of the two-factor nominal bond model of

Richard (1978) into the arbitrage model of Jarrow and Yildirim (2003). Section 3 solves the

intertemporal investment problem for the world with inflation risk by using the Feymann-Kac

formula. Any useful portfolio recommendation should be based on information reflected by

markets. Section 4 investigates current markets empirically and provides the required infor-

mation for the construction of the optimal intertemporal investment strategies. In Section 5,

both optimal intertemporal investment strategies with and without IIBs are provided based

real market situations. Section 6 draws conclusions and suggests future research directions.

The proofs of various technical results are gathered in the appendices.

The extension of Merton’s continuous-time framework for asset allocation in this paper is

carried out by considering a time-varying price index It modelled by the diffusion process

dIt

It
= πtdt + σIdWI

t , (1)

where WI
t is a Wiener process and πt is the anticipated instantaneous inflation rate 2. A price

index represents the price for a fixed basket of goods. The time-varying price index in our

model gives rise to two evaluation terms: the nominal terms value in terms of money and the

real terms value in terms of goods.
2See Richard (1978) .
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2 A Multi-Factor Model for Nominal and Inflation-Indexed

Bonds

Let Pn(t, T ) denote the zero-coupon nominal bond at t with maturity date T . The payout

of the nominal bond is normalized as one money unit so that

Pn(T, T ) = 1 . (2)

Following Richard (1978) we assume that the instantaneous real interest rate rt and the antic-

ipated instantaneous inflation rate πt are the two factors driving the nominal bond price. The

two factors are assumed to follow the Gaussian mean-reverting processes

drt = κr(r − rt)dt + grdW r
t , (3)

and

dπt = κπ(π − πt)dt + gπdW π
t . (4)

where W r
t and W π

t are correlated Wiener processes with the instantaneous variance dW r
t dW π

t =

ρrπdt.

In this framework, the bond pricing formula belongs to the exponential affine family (the

Duffie-Kan family)

Pn(rt, πt, t, T ) = exp
( − An(T − t) − Bnr(T − t)rt − Bnπ(T − t)πt

)
, (5)

where the Duffie-Kan coefficients An(τ), Bnr(τ) and Bnπ(τ) will be determined later by the

no-arbitrage condition (23). The coefficients, due to the normalization (2), have the terminal

conditions at maturity date given by

An(0) = 0 , Bnr(0) = 0 , Bnπ(0) = 0 . (6)

Applying Itô Lemma to (5), we can write the return of the nominal bond as

dPn(t, T, rt, πt)
Pn(t, T, rt, πt)

= μn(t, T − t)dt − Bnr(T − t)grdW r
t − Bnπ(T − t)gπdW π

t , (7)
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where (setting τ = T − t)

μn(t, τ) :=
d

dτ
An(τ) +

d

dτ
Bnr(τ)rt +

d

dτ
Bnπ(τ)πt (8)

−Bnr(τ)κr(r − rt) − Bnπ(τ)κπ(π − πt)

+
1
2

(
Bnr(τ)2g2

r + 2Bnr(τ)Bnπ(τ)σrσπρrπ + Bnπ(τ)2g2
π

)
.

The nominal yield is defined by3

Yn(t, T ) :=
− lnPn(t, T )

T − t
=

An(T − t)
T − t

+
Bnr(T − t)

T − t
rt +

Bnπ(T − t)
T − t

πt . (9)

The instantaneous nominal interest rate Rt is defined as the instantaneous yield, given by

Rt := lim
T↓t

Yn(t, T ) . (10)

Applying this last result to the yield formula (9), we then have the expression

Rt = A′
n(0) + B′

nr(0)rt + B′
nπ(0)πt , (11)

where A′ denotes the derivative of A. The nominal money account is defined as the accumu-

lation account

Mn(t) = exp(
∫ t

0
Rsds) . (12)

Let PI(t, T ) denote the price of the (zero-coupon) inflation-indexed bond (IIB) that is issued

at time 04 and matures at time T . The payout at the maturity date will be adjusted by the

price index IT , therefore

PI(T, T ) = IT . (13)

Define the real bond Pr(t, T ) := PI(t, T )/It as the normalized IIB with respect to the corre-

sponding price index. According to (13), we have Pr(T, T ) = 1, which means that the real

bond has a payout of one unit of consumption good at T . We assume that the real bond is
3Strictly speaking all bond prices and yields should have as arguments rt, πt, t, T . However when the contex

is clear we shall suppress the arguments rt, πt and mainly focus on the t, T dependence.
4We fix I0 = 1
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only affected by one factor, the instantaneous real interest rate rt which also follows the Duffie

and Kan dynamics

Pr(t, T ) = exp
( − Ar(T − t) − Brr(T − t)rt

)
, (14)

where the Duffie-Kan coefficients Ar(τ) and Brr(τ) will be determined later by the no-arbitrage

conditions (24) and (25).

The assumption (14) concerning the real bond implies the dynamics for PI(t, T ) that will

be showed below. The terminal condition (13) implies the conditions

Ar(0) = 0 , Brr(0) = 0 . (15)

The real yield is the constant interest rate of the real bond which is defined as

Yr(t, T ) :=
− lnPr(t, T )

T − t
=

Ar(T − t)
T − t

+
Brr(T − t)

T − t
rt . (16)

We denote a consumption good account Mr(t) as

Mr(t) := exp(
∫ t

0
rsds) ,

and MI(t) as the real money account, which gives the nominal value of the consumption good

account and is expressed as

MI(t) := Mr(t)It . (17)

To calculate return of the IIB, we apply Itô’s Lemma at first to the real bond price (14) and

obtain

dPr(t, T, rt)
Pr(t, T, rt)

= μr(t, T − t)dt − Brr(T − t)grdW r
t , (18)

where

μr(t, τ) =
d

dτ
Ar(τ) +

d

dτ
Brr(τ)rt − Brr(τ)κr(r − rt) +

1
2
Brr(T − t)2g2

r . (19)
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Next applying Itô’s Lemma to the expression for the IIB,

PI(t, T, rt, It) = Pr(t, T, rt)It ,

and recalling that the price index It follows the dynamics (1), we then obtain the return process

of the IIB, namely

dPI(t, T, rt, It)
PI(t, T, rt, It)

= μI(t, T − t)dt − Brr(T − t)grdW r
t + σIdWI

t , (20)

where

μI(t, T − t) := μr(t, T − t) + πt − Brr(T − t)grσIρIr , (21)

with ρIrdt := dW r
t dWI

t .

The return on the real money account MI(t) can be calculated easily from (17) to be

dMI(t)
MI(t)

= (rt + πt)dt + σIdWI
t . (22)

In order to obtain the bond price, we employ the standard no-arbitrage argument, see, for

example, Chiarella (2004)5. It requires that the excess return should be equal to risk premia

for the nominal bonds, the IIB and the real money account, so that we have the conditions

μn(t, τ) − Rt = −Bnr(τ)grλr − Bnπ(τ)gπλπ , ∀τ > 0 (23)

μI(t, τ) − Rt = −Brr(τ)grλr + λIσI , ∀τ > 0 (24)

πt + rt − Rt = λIσI , (25)

where μn(t, τ), μI(t, τ) as defined in equations (8) and (21) and λr, λπ, and λI are constants,

usually interpreted as the market prices of risk associated respectively with the sources of risk

W r
t , W π

t and WI
t .

We make two remarks concerning the no-arbitrage conditions (23) – (25). First, this sys-

tem of the no-arbitrage conditions (23) – (25) satisfies the no-arbitrage requirement in Jarrow
5Chapter 24. Interest Rate Derivatives-Spot Rate Models.
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and Yildirim (2003)) (see their equation (8)). However, our nominal bond model (5) has two

factors and is different from the single-factor model in Jarrow and Yildirim (2003)6. Com-

paring our conditions with theirs, the conditions given in (24) and (25) are equivalent to the

conditions given in their equations (10b) and (10c). Their condition (10a) in the HJM setting

is equivalent to the spot rate setting, see, Chiarella (2004)7

μn(t, τ) − Rt = −Bnn(τ)grλn .

From this condition, we can see clearly their single-factor structure for the nominal bond pricing

formula. Second, the usual signs (for positive excess return) for the market prices of risk are

given by λr < 0, λπ < 0 and λI > 0. Later we shall check for these in our empirical results.

Property 1 If the no-arbitrage equalities (23) – (25) are satisfied, then

(i) the coefficients An(τ), Bnr(τ), Bnπ(τ) for the nominal bond price (5) are solved as

Bnr(τ) =
1
κr

(
1 − e−κrτ

)
, (26)

Bnπ(τ) =
1
κπ

(
1 − e−κπτ

)
, (27)

An(τ)
τ

=
(
1 − 1

τκr
+

e−τκr

τκr

)
(r − grλr

κr
) +

(
1 − 1

τκπ
+

e−τκπ

τκπ

)
(π − gπλπ

κπ
)

− g2
r

2κ2
r

(
1 − 2

1 − e−κrτ

κrτ
+

1 − e−2κrτ

2κrτ

) − g2
π

2κ2
π

(
1 − 2

1 − e−κπτ

κπτ
+

1 − e−2κπτ

2κπτ

)

−grgπρrπ

κrκπ

(
1 − 1 − e−κrτ

κrτ
− 1 − e−κπτ

κπτ
+

1 − e−(κr+κπ)τ

(κr + κπ)τ
)

+ ξ0 . (28)

(ii) The coefficients Ar(τ), Br(τ) for the real yield (14) are solved as

Brr(τ) =
1
κr

(
1 − e−κrτ

)
(29)

Ar(τ)
τ

=
(
1 − 1

τκr
+

e−τκr

τκr

)
(r − gr

λr − σIρIr

κr
) (30)

− g2
r

2κ2
r

(
1 − 2

1 − e−κrτ

κrτ
+

1 − e−2κrτ

2κrτ

)
.

6The single-factor setting can be seen in the part “B. Volatility Parameters for the Nominal Forward Rates”

on p.351 in their paper.
7Chapter 25. The Heath-Jarrow-Morton Model
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Property 2 If the no-arbitrage equalities (23) – (25) are satisfied, then (i) the instantaneous

nominal interest rate is given by

Rt = ξ0 + rt + πt . (31)

(ii) When the IIBs are included in the investment set, then we have

ξ0 = −λIσI . (32)

3 Intertemporal Investment Strategies with Inflation Risk

3.1 The Investment Opportunity Set

The investment opportunity set includes five assets: the nominal money account, two nominal

bonds with different maturities T1, T2, one IIB maturing at T3 and one stock. The stock price

is assumed to follow the geometric Wiener process

dPS(t)
PS(t)

= (Rt + λSσS)dt + σSdWS
t , (33)

with σS > 0 a constant instantaneous standard deviation of stock returns and λS > 0 a con-

stant market price of risk associated with the uncertainty WS
t .

Summarizing all risky asset returns according to (7), (20) and (33) in vector form, we write

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dPn(t, T1)/Pn(t, T1)

dPn(t, T2)/Pn(t, T2)

dPI(t, T3)/PI(t, T3)

dPS(t)/PS(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= μtdt + ΣtdWt (34)
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where

μt = Rt1 + Σtλ , (35)

Σt :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−Bnr(T1 − t)gr −Bnπ(T1 − t)gπ 0 0

−Bnr(T2 − t)gr −Bnπ(T2 − t)gπ 0 0

−Brr(T − t)gr 0 σI 0

0 0 0 σS

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (36)

(37)

1 :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1

1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, dWt :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dW r
t

dW π
t

dWI
t

dWS
t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, and λ :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λr

λπ

λI

λS

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The equality (35) is because of the no-arbitrage conditions (23), (24) and the stock return

dynamics (33).

The four risks factors dW r
t , dW π

t , dWI
t , dWS

t are correlated with the correlation matrix RAAdt :=

dWtdW�
t . The correlation matrix between Wt and WI

t is denoted by RAIdt = dWtdWI
t .

3.2 The Model

Adopting Merton’s setting, we assume that there are identical agents who are endowed with

V0 units of wealth (nominal value) at time 0 and seek to maximize their expected final utility

at T ,

max
αt,t∈[0,T ]

E0

[
U(vT )

]
. (38)

The lower case vt represents the real wealth which is by definition given by vt := Vt/It. The

utility is of the constant relative risk aversion (CRRA) class,

U(ct) =
c1−γ
t

1 − γ
, (39)
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where γ > 0 represents the relative risk aversion (RRA) coefficient. The agents can revise their

investment decision αt without transaction costs for any time t ∈ [0, T ] where αt :=
(
αit

)
i=1,··· ,4

and each αit represents the investment proportion in the i-th risky asset. The investment

amount has to be balanced by the nominal money account Mn(t) so its proportion α0t turns

out to be equal to α0t = 1 − ∑4
i=1 αit.

Given the decisions αt, agents’ wealth evolves following the dynamics

dVt

Vt
=

4∑
i=0

αit
dPit

Pit
= Rtdt + α�

t

(
(μt − Rt1)dt + ΣtdWt

)
, (40)

where α�
t = (α1t, · · · , α4t), μt is the expected return vector and Σt is the volatility matrix

defined in (36).

To obtain the evolution of the real wealth vt = Vt/It, at first we apply Itô’s Lemma to the

inverse of the price index process (1) and obtain

d(
1
It

) =
1
It

( − πtdt + σ2
I dt − σIdWI

t

)
. (41)

Applying Itô’s Lemma again to vt = Vt/It and using the result of the nominal wealth evolution

(40), we obtain the evolution of the real wealth dynamics,

dvt

vt
=

(
Rt − πt + σ2

I

)
dt + α�

t

(
μt − Rt1 − σIΣtRI

)
dt (42)

+α�ΣtdWt − σIdWI
t .

Now, the agents’ investment decision problem is to find the optimal path αt for t ∈ [0, T ],

which maximizes the objective function (38) under the real budget constraint (42) and the

factor dynamics (3) and (4).

3.3 Solving via the method of dynamic programming

As mentioned in the introduction, we employ dynamic programming, as proposed by Merton

(1971), to solve the intertemporal decision problem in Section 3.2.
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The underlying factors affecting the asset return dynamics in this model are the instanta-

neous real interest rate rt and the instantaneous expected inflation rate πt. We use Xt to

denote these factors so that Xt =
(
rt, πt

)�. Summarizing the factor dynamics (3) and (4) in

vector form we write

dXt = Ftdt + GtdWX
t , (43)

where the functions F and G are defined by

Ft :=

⎛
⎜⎜⎝

κr(r − rt)

κπ(π − πt)

⎞
⎟⎟⎠ , Gt :=

⎛
⎜⎜⎝

gr 0

0 gπ

⎞
⎟⎟⎠ . (44)

Also, we have WX
t =

(
W r

t , W π
t

)� and the correlation matrix of which is denoted by RXXdt :=

dWX
t dWX�

t .

Let J(t, T, vt, Xt) denote value function (the optimized objective function) over a subperiod

[t, T ] with given initial real wealth vt and the given state of the factor Xt, that is8

J(t, T, vt, Xt) := e−δT max
αs,s∈[t,T ]

Et

[
U(vT )

]
. (45)

8The definition of the value function J(t, T, vt, Xt) is different from that given in (38). However, the discount

factor e−δT in equation (45) is only a constant so it does not affect the optimal path of the portfolio decision

αs, s ∈ [t, T ].
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The key result of the dynamic programming approach is that the value function has to satisfy

the Hamilton-Jacobi-Bellman(HJB) equation9

0 = max
αt

{ (
Rt − πt + σ2

I + α�
t (μt − Rt1 − ΣtRAIσI)

)
Jvvt

+
1
2
(
α�

t ΣtRAAΣ�
t αt − 2σIα

�
t ΣtRAI + σ2

I

)
Jvvv

2
t (47)

+
(
α�

t ΣtRAXG�
t − σIRIXG�

t

)
JvX vt

+F�
t JX +

1
2

2∑
i,j=1

GitRXXG�
jtJXiXj +

∂

∂t
J

}
,

where RXAdt := dWX
t dW�

t , RAIdt := dWtdWI
t , RXIdt := dWX

t dWI
t and Git denotes the i-th

row of the matrix Gt. The J written with subscript represents the relevant partial derivative.

We observe that the optimal portfolio αs, s ∈ [t, T ] is independent of the initial wealth level

vt because the CRRA utility function is homothetic10, and the dynamics dvs
vs

and dXs are

independent of vt. We note that

J(t, T, vt, Xt) = v1−γ
t e−δT max

αs;t≤s≤T

{
Et[U(

vT

vt
)]

}
= v1−γ

t J(t, T, 1, Xt) ,

and so we can decompose J(t, T, vt, Xt) into

J(t, T, vt, Xt) = e−δtU(vt)Φ(t, T, Xt)γ , (48)

where

Φ(t, T, Xt)γ := eδt(1 − γ)J(t, T, 1, Xt) . (49)
9The intuition behind the HJB equation lies in the infinitesimal decomposition

J(t, T, vt, Xt) = max
αt

˘
J(t + dt, T, vt+dt, Xt+dt)

¯
. (46)

See P.264-271 in Kamien and Schwartz (1991) for a heuristic discussion and Chapter 11 in Øksendal(2000) for a

rigorous derivation. Note that the intermediate consumption is not considered in the agents’ objective function

(38) therefore the intermediate consumption does not appear in the infinitesimal decomposition (46). The HJB

equation represents a necessary condition for the value function.
10A function is homothetic if it can be decomposed into an inner function that is monotonically increasing

and an outer function that is homogeneous of degree one.
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Applying the first order condition for αt to equation (47) and using the relation (48)11, we

obtain the expression of the optimal αt in terms of J and Φ:

α∗
t = (ΣtRAAΣ�

t )−1

(
− Jvvt

Jvvv2
t

(μt − Rt1) − 1
Jvvv2

t

ΣtRAXG�
t JvX vt

+
Jvvt + Jvvv

2
t

Jvvv2
t

σIΣtRAI

)
(50)

= (ΣtRAAΣ�
t )−1

(
1
γ

(μt − Rt1)︸ ︷︷ ︸
I. α

(M)
t

+ ΣtRAXG�
t

ΦX

Φ︸ ︷︷ ︸
II. α

(I)
t

+ (1 − 1
γ

)σIΣtRAI︸ ︷︷ ︸
III. α

(P )
t

)

= (Σ�
t )−1

(
1
γ
R−1

AAΣ−1
t (μt − Rt1) + R−1

AARAXG�
t

ΦX

Φ
− 1 − γ

γ
R−1

AARAIσI

)
.

We can interpret the optimal portfolio allocation as being determined through the trade-off

between the asset risks ΣtRAAΣ�
t and the ”benefits” denoted as I – III in the parenthesis. The

first term I refers to the utility increase due to expected excess return. Clearly (ΣtRAAΣ�
t )−1I

corresponds to the mean-variance efficient portfolio. Since it considers only the tradeoff be-

tween the expected return and the risk, it is also called the myopic portfolio. The second term

II appears only in an intertemporal model where the value function Φ depends on the level

of the factors Xt. In this case, a sophisticated portfolio decision can increase utility through

the correlation between the asset returns and the factor noise. Merton denoted this the in-

tertemporal hedging term. For example, suppose a high interest rate level is favored due to

more profit, so Jr > 0. For the case γ > 1 we have Φr < 012, then the intertemporal hedging
11from which we have:

∂

∂t
J = −δJ + γ

Φt

Φ
J ,

Jvv = (1 − γ)J ,

Jvvv2 = (1 − γ)(−γ)J ,

JX = γ
ΦX

Φ
J ,

JvXv = (1 − γ)γ
ΦX

Φ
J ,

JXiXj =
“
γ(γ − 1)

ΦXi

Φ

ΦXj

Φ
+ γ

ΦXiXj

Φ

”
J .

12This result is easily shown by taking the derivative of the both sides of equation (49).
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term in equation (50) will suggest to increase the holding in an asset whose return shock is

negatively correlated with interest rate shocks. For example, the intertemporal hedging term

will suggest to investors to increase the bond holding if the return shock of the bond is nega-

tively correlated with the interest rate shock, as is usually the case. The third term III is due

to the stochastic price index so we call this the inflation hedging term. In Brennan and Xia

(2002) and Munk et al. (2004) we can also find the same decomposition of the optimal portfolio.

Applying the expression (50) to the HJB equation (47), the HJB equation is transformed

into the form

0 =
∂

∂t
Φ + F�

t ΦX

+
(1 − γ

γ
GtRXAR−1

AAΣ−1
t (μt − Rt1) − (1 − γ)2

γ
GtRXAR−1

AARAIσI − (1 − γ)GtRXIσI

)�
ΦX

+
1
2

n∑
i,j=1

ΦXiXjGitRXXΣX�
jt (51)

+
1 − γ

2Φ

n∑
i,j=1

ΦXiΦXj

(
GitRXAR−1

AARAXΣX
jt − GitRXXΣX

jt

)

+ Φ
(
− δ

γ
+

1 − γ

γ
(Rt − πt + σ2

I ) +
1 − γ

2γ2
(μt − Rt1)�(ΣtRAAΣ�

t )−1(μ − Rt1)

+
(1 − γ)3

2γ2
σ2
I RIAR−1

AARAI − (1 − γ)2

γ2
(μt − Rt1)�Σ�−1

t R−1
AARAIσI − 1 − γ

2
σ2
I

)
.

3.4 Solving for the Intertemporal Portfolio

In general, if the factor innovation WX
t is a subset of the asset return risk Wt, then we can

obtain

RXAR−1
AARAX = RXX ,

and the nonlinear term in the fourth line in (51) becomes zero. As a consequence, the HJB

equation (51) reduces to a linear second order PDE and we can use the Feymann-Kac formula

as shown in the Appendix to solve the HJB equation. 13 This is exactly the case for our asset
13This reduction can be also found in Liu (2005) in the case without inflation risk.
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model and the solution for Φ(t, T, Xt) is then given by

Property 3

Φ(t, T, rt, πt) = e
1−γ

γ
Br(T−t)rtΨ(t, T ), (52)

where

Ψ(t, T )

= exp
(
j(T − t) +

1 − γ

γ

(
T − t − Br(T − t)

)(
r + ẑ1

gr

κr

)

+
1
2
(
1 − γ

γ
)2(

gr

κr
)2

(
T − t − 2Br(T − t) +

1 − e−2κr(T−t)

2κr

))
,

where

j = − δ

γ
+

1 − γ

2γ2
λ�R−1

AAλ +
(1 − γ)σ2

I

2γ2
− 1 − γ

γ2
λIσI (53)

z =
1 − γ

γ

⎛
⎜⎜⎝

λr − σIρIr

λπ − σIρIπ

⎞
⎟⎟⎠ , (54)

and

Br(T − t) =
1 − eκr(T−t)

κr
. (55)

The notation ẑ1 denotes the first element in ẑ where

ẑ :=

⎛
⎜⎜⎝

ẑ1

ẑ2

⎞
⎟⎟⎠ := C−1z

with C lower-triangular Cholesky decomposition of RXX (CC� = RXX). For this investment

environment described above, WX
t =

(
W r

t , W π
t

)�, so

RXX =

⎛
⎜⎜⎝

1 ρrπ

ρrπ 1

⎞
⎟⎟⎠ .

After having obtained the value function Φ, we still need to solve for the factor elasticity ΦX/Φ.
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Property 4 The factor elasticities are given by⎛
⎜⎜⎜⎜⎜⎜⎝

Φr

Φ

Φπ

Φ

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1−γ
γ

Br(T−t)
T−t

0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (56)

Property 4 is proved simply by differentiating Φ(t, T, rt, πt) given in (52).

The parameter κr here is the mean-reverting parameter for the real interest rate rt. It should

be noted that the value function Φ(t, T, rt, πt) does not depend exactly on the level of the

expected inflation rate πt, for which there is a simple explanation in the following. The agents’

objective function (38) depends on the real wealth they expect to achieve and the real wealth

evolution (42), according to the (no-arbitrage) condition (31), can be rewritten as

dvt

vt
=

(
rt + ξ0 + σ2

I

)
dt + α�

t

(
μt − Rt1 − σIΣtRI

)
dt

+α�ΣtdWt − σIdWI
t ,

where only the factor rt appears. In other words, the effect of the expected inflation is absorbed

into the real interest rate so only the real interest rate determines the real wealth evolution.

A more detailed and technical explanation can be found in the proof of Property 4 in the

Appendix.

Applying the result of Property 4 to the optimal portfolio formula (50), we obtain the optimal

strategies of the intertemporal investment plan.

Property 5 The optimal investment proportions are given by

αt :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1t

α2t

α3t

α4t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
1
γ

(Σ�
t )−1R−1

AAλ︸ ︷︷ ︸
I. α

(M)
t

+(1− 1
γ

) (Σ�
t )−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−gr
Br(T−t)

T−t

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
II. α

(I)
t

+(1− 1
γ

) (Σ�
t )−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

σI

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
III. α

(P )
t

, (57)
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where Br(T − t) is given by (55).

We remark that the order of the investment proportions
(
α1t α2t, α3t, α4t

)� is identical with

the order in the equation system (34) so that

α1t represents the investment proportion in the nominal bond maturing at T1,

α2t represents the investment proportion in the nominal bond maturing at T2,

α3t represents the investment proportion in the IIB maturing at T3, and

α4t represents the investment the stock,

respectively.

We lay out in more detail the intertemporal hedging term and the inflation hedging term in

the following property

Property 6 The intertemporal and inflation hedging portfolios can be expressed as

α
(I)
t =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D−1Bnπ(τ2)Br(τ)

−D−1Bnπ(τ1)Br(τ)

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, α
(P )
t =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−D−1Bnπ(τ2)Brr(τ3)

D−1Bnπ(τ1)Brr(τ3)

1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (58)

where τ = T − t, τi = Ti − t for i = 1, 2, 3 and

D := det

⎛
⎜⎜⎝

Bnr(τ1) Bnr(τ2)

Bnπ(τ1) Bnπ(τ2)

⎞
⎟⎟⎠ . (59)

Because all coefficients B∗∗(τi) are positive as given in Property 1, Property 6 implies that

the sign of the hedging positions in the intertemporal hedging portfolio α(I) and the inflation

hedging portfolio α(P ) depend on the sign of the determinant D. We can characterize the

conditions for the sign of the determinant D in Property 7

Property 7 For τ1 < τ2, we have

D
>

<

0 ⇐⇒
κr > κπ

κr < κπ

.
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We define the conservative portfolio as the sum of the intertemporal hedging and price hedging

terms,

Conservative Portfolio := α
(I)
t + α

(P )
t , (60)

so we obtain also the decomposition for the optimal portfolio αt:

αt =
1
γ

Myopic Portfolio + (1 − 1
γ

) Conservative Portfolio . (61)

The following property is directly obtained by applying Property 6.

Property 8 The conservative portfolio is given by

Conservative Portfolio =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It can be shown easily by adding up the two hedging portfolios.

This result means, in an investment environment with inflation risk, that the most risk averse

investors put all their wealth in the IIB which matures at the end of the investment horizon.

This is an extension of the case given in Wachter (2003) where the most conservative investors

only buy the nominal bond maturing at the end of the horizon when the investment environ-

ment is free from inflation risk. Those two results are based on the same intuition that the

most conservative investors require a certain payout at the end of the investment. It is clear

that the IIB, instead of the nominal bond, guarantees a certain payout when the investment is

exposed to inflation risk.

As a comparison we also provide the optimal intertemporal portfolio without an investment

opportunity in the IIBs.
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Property 9 The factor elasticities for the intertemporal investment decision without an in-

vestment opportunity in IIBs are identical to those given in (56) with an investment opportunity

in IIBs.

Property 9 asserts that the formulae for the factor elasticities for the value function are the

same regardless of the inclusion of the IIBs in the investment opportunity set. We can under-

stand this result using the same intuition as for Property 4 and more detailed and technical

details are provided in the proof of this Property.

Having obtained the formula of the factor elasticity, the solution of the optimal investment

weights is just followed.

Property 10 The optimal portfolio weights in the case without the investment opportunity in

the IIBs are given by

α∗
t =

1
γ

(Σ�
t )−1R−1

AA

⎛
⎜⎜⎜⎜⎜⎜⎝

λr

λπ

λS

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
I. α

(M)
t

+(1 − 1
γ

) (Σ�
t )−1

⎛
⎜⎜⎜⎜⎜⎜⎝

−gr
Br(T−t)

T−t

0

0

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
II. α

(I)
t

+(1 − 1
γ

) (Σ�
t )−1σIR−1

AA

⎛
⎜⎜⎜⎜⎜⎜⎝

ρrI

ρπI

ρSI

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
III. α

(P )
t

,

(62)

where Br(T − t) as same as (55).

Without the investment opportunity in the IIBs, the risk of the stochastic price index WI
t

can only be hedged by its correlations with the other risky assets, as shown in the third term

III.α(P ) in (62). Without the IIBs, the financial market exposed to inflation risk is incomplete,

no asset can give a certain payout. Therefore, there is no longer a riskless strategy for the

most risk averse agents and they can only partially hedge the systematic risk by utilization of

correlations of asset returns.
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Since the factor elasticity without IIB as given in Property 9 is same as that with IIB, and

since the intertemporal hedging term II.α(I) in the optimal portfolio (62) is closely related to

the factor elasticity, we can expect that the intertemporal hedging term in the case without

IIB is very similar to that with IIB.

Property 11 The intertemporal hedging portfolio in the case without IIB can be expressed by

α
(I)
t =

⎛
⎜⎜⎜⎜⎜⎜⎝

D−1Bnπ(τ2)Br(τ)

−D−1Bnπ(τ1)Br(τ)

0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (63)

where τ = T − t, τi = Ti − t for i = 1, 2 and D is defined as (59).

4 Model Estimation

This section undertakes three tasks. The first one is to estimate the parameters which are

required to implement the optimal intertemporal portfolio rules described above. The second

task is to use the Kalman filter to estimate the instantaneous real interest rate and the in-

stantaneous expected inflation rate that are not directly observed, but are reflected implicitly

in the evolution of the real and nominal term structures. The third task is a validation check

of the estimated results where the fitting errors of the market data should be small and the

estimation results should be economically reasonable.

The US Treasury provides daily data of real bond yields from 2003. These data allow us to

estimate the term structure in a new way. We can estimate the instantaneous real interest rate

directly from the market real yield data, whereas the conventional way of estimating the real

interest rate would require us to first estimate the expected rate of inflation. Once the real

interest rate has been estimated, we can utilize nominal bond yield data, which are considered

to bear inflation risk, to estimate the expected rate of inflation. This estimation procedure has

the advantage that although our nominal term structure has two unobservable state variables,
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rt and πt, we can still identify them and estimate them through the market data.

We set one time unit equal to one year. The time interval for daily data is 1/250 and for

monthly data 1/12.

4.1 The Term Structure of Real Yields

The real yield data are calculated based on the market returns of the Treasury inflation-

protected securities (TIPS) using the cubic spline method.14 Our data consist of daily real

yields with maturity horizons 5, 7, and 10 years from Jan. 02, 2003 until May 31, 2005

containing 603 observations in all. The time series of these yields are displayed in Fig. 1.

We employ the Kalman filter to estimate the factor Xt from the US data of the real yields.

By implementing the Kalman filter15, the observation equation is the real yield formula (16),

where the coefficients Ar(τ) and Brr(τ) have been solved and are given by (30) and (29), with

measurement errors. Thus, the observation equation here is given by

Yr(t, t + τ, rt) =
Ar(τ)

τ
+

Brr(τ)
τ

rt + ετ
t , (64)

where ετ
t denotes the measurement error which is assumed to be independently and identical

normal distributed with mean 0 and variance σετ . The state equation here is obtained by

discretizing factor dynamics of rt (3) using the Euler-Maruyama scheme. The discretized

process should be very close to the continuous-time process because the discretization interval

is 0.004 corresponding to one day.

The results of the parameter estimation are given in Table 1 and the estimated real interest

rate rt is plotted in Fig. 1.
14http://www.ustreas.gov/offices/domestic-finance/debt-management/interest-rate/
15See Appendix
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Log Likelihood = 10056.45

Estimate t-Stat.

κr 0.1248 7.31

r 0.0040 0.02

gr 0.0101 27.51

λ∗
r -0.5161 -0.22

στ
ε 0.0008 49.84

λ∗
r = λr − σIρIr

τ 5Y 7Y 10Y

Mean 1.16% 1.56% 1.90%

SD 0.25% 0.26% 0.23%

Ar(τ)
τ 1.14% 1.48% 1.89%

Brr(τ)
τ (Sensitivity) 74% 67% 57%

σ̂ετ 8.63e-4 5.83e-4 7.76e-4

σ̂ετ /SD 35.01% 22.52% 33.23%

Table 1: Upper Panel: estimated parameters for the real yield formula and Lower Panel:

statistics, fitting errors, and price sensitivities
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Year2003 2004 2005

-1%

0%

1%

2%

Real Bond Yields

Estimated rt

Figure 1: Time Series of Real Yields and the Estimated Real Rate

The average measurement errors of the real yields are given in the last row of Table 1. Com-

pared with the standard deviations of the real yields above, the model can explain around 70%

of the variation16 of the real yields.

The parameter κr is related to two features in the real bond model. The first feature is

the speed of mean-reversion of the factor rt as represented in the dynamics (3). The higher

this parameter value is the faster the factor rt comes back to its mean r and also the more often

the factor crosses the mean. The half decay time of the mean-reverting level κr is (ln 2)/κr.

Our estimation result of κr in Table 1 gives the half decay time around 5.55 years.

The second feature is the real yield sensitivity with respect to the change of the factor rt

as formulated in the real yield formula (64) where one can see that one unit change of rt leads

to a Brr(τ)
τ (= 1−e−κrτ

τ ) unit change of the bond yield Yr(t, t + τ, rt). According the estimation

result in the lower penal of Table 1, one unit change of rt leads to a change of the 5-year real

yield by 74% of a unit.
16The unexplained fraction is defined as σε

SD.
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4.2 The Term Structure of Nominal Yields

The market data of nominal yields are also provided by the US Treasury 17 and are calculated

based on the market nominal bond returns of Treasury Securities. We take daily nominal yields

with time to maturity one month, 3, 6 months, 1 year, 2, 3, 5, 7, 10 and 20 years, also over

the horizon Jan. 02, 2003 – May 31, 2005 containing 603 observations. As shown in Fig. 2

the short term nominal yields have an increasing trend after the 2nd Quarter 2004. During

this time, the Federal Open Market Committee (FOCM) conducted a strengthening monetary

policy by raising its target interest rate from 1% to 3%. In the same figure we also provide the

effective Federal Funds Rate (FFR). The observation equation is based on the yield formula

Year2003 2004 2005

1%

2%

3%

4%

5%

6%

Federal Fund Rate

Nominal Bond Yields

Figure 2: US Nominal Bond Yields and Federal Funds Rate (FFR)

(9) but in addition with the measurement error ετ
t , thus

Yn(t, t + τ, rt, πt) =
An(τ)

τ
+

Bnr(τ)
τ

rt +
Bnπ(τ)

τ
πt + ετ

t , (65)

where An(τ) is given by (28), Bnr(τ) and Bnπ(τ) are replaced by (26) and (27), and the mea-

surement errors ετ
t are identically and independently distributed for all t and τ . For the real

interest rate rt in equation (65) we adopt the previous estimated results because we assume

investors in the nominal bond market and the IIB market share the same belief on the instan-
17http://www.ustreas.gov/offices/domestic-finance/debt-management/interest-rate/
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taneous real rate. The instantaneous inflation expectation πt, however, is treated as unknown

and will be estimated by using the Kalman filter. So, the state equation for implementing the

Kalman filter is the discretized dynamics of the expected inflation rate πt given in (4) by the

Euler-Maruyama Scheme. The mean π is normalized to zero as discussed in Hsiao (2006). The

parameters are determined also by using the maximum likelihood method.

The estimation for the correlation coefficient ρrπ between the real interest rate shock W r
t and

the expected inflation shock W π
t requires an iterating estimation scheme due to the following

fact. In equation (28) ρrπ is a parameter to be determined through the maximum likelihood

estimation method. However, after ρrπ and all the other parameters have been estimated, we

can calculate the sample correlation coefficient based on the estimated residuals of (3) and (4),

that is

ΔŴ r
t =

1
gr

(
Δrt − κr(r − rt−Δ)Δ

)
,

ΔŴ π
t =

1
gπ

(
Δπt − κπ(π − πt−Δ)Δ

)
,

and

ρ̂rπ := E
[
ΔŴ r

t ΔŴ π
t

]
/Δ . (66)

where κr, r, κπ take values of the estimation results. These two estimates for ρrπ, have to be

consistent with each other. However, it is not usually the case. To gap this inconsistency of

estimating ρrπ, we implement the iterating estimation scheme: in the first step we fix ρrπ to

be a value ρ
(1)
rπ , say, 0, and estimate all other parameters by the maximum likelihood method

and then calculate the estimated sample correlation ρ̂
(1)
rπ as given in (66). Next, we compare

ρ
(1)
rπ and ρ̂

(1)
rπ , if they are close to each other, we stop the iteration scheme, otherwise we set

the initial value ρ
(2)
rπ = ρ̂

(1)
rπ for the second step and repeat the whole above process. Under

the assumption that the estimation model is true and the maximum likelihood estimator is

consistent, this iteration scheme provides a consistent estimator.

28



We implement the above iteration scheme with the initial correlation coefficient ρ
(1)
rπ = 0.

The sample correlation coefficient for the first iteration step is calculated as ρ̂
(1)
rπ = −0.5476.

Taking this value as the correlation coefficient for the second step, the sample correlation coef-

ficient is then calculated as ρ̂
(2)
rπ = −0.5250. We judge that these two values are closed enough

and stop the iteration scheme at the second step.

The estimation results of the parameters are summarized in Table 2. The mean-reverting

parameter κπ = 0.4016 means that the estimated πt with the dynamics (4) is a stationary

process. The estimate corresponds to a half-decay time around 1 and three quarter years (1.73

years). The πt-sensitivity based on the estimated value is listed with different time to maturity

in the lower panel in Table 2. It decreases with the time to maturity. The development of

the nominal term structure, which is characterized by the decreasing term premia (the yield

spread), can be explained mathematically by the increasing level represented by the term An(τ)
τ

and the decreasing sensitivity to the rising πt. When the sensitivity goes down, the upward

trend contributed by πt turns flatter as we can see in the time series of the long-term yields in

Figure 3.

Year2003 2004 2005

0%

1%

2%

3%

4%

5%

6%
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Estimated πt

Nominal Bond Yields

Figure 3: Nominal Yields and Estimated Factors
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In the lower penal of Table 2 we provide the estimate for the scale of the measurement error

σε for each bond and its relative fitting error σε/SD. It is satisfactory for the fitting of the

short-term yields, while there is still room for improvement for those of the long-term yields.

Figures 4 and 5 plot the estimated and the market nominal yields for one year and ten years

maturity respectively.
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Log-Likelihood = 27479.20

Estimates t-stat.

κπ 0.4016 34.44

gπ 0.0067 65.00

λπ -1.5680 -22.36

ξ0 -0.0012 -4.53

σ̂τ 0.0025 58.87

ρrπ -0.5476

τ 1M 3M 6M 1Y 2Y

Mean 1.37% 1.47% 1.63% 1.84% 2.26%

SD 0.59% 0.66% 0.75% 0.75% 0.75%

A(τ)
τ -0.05% 0.08% 0.27% 0.62% 1.23%

Bnπ(τ)
τ (Sensitivity) 98.34% 95.14% 90.60% 82.36% 68.74%

σε 0.31% 0.21% 0.13% 0.13% 0.24%

σε/SD 51.79% 31.45% 17.94% 17.08% 31.73%

τ 3Y 5Y 7Y 10Y 20Y

Mean 2.65% 3.31% 3.38% 4.17% 4.95%

SD 0.65% 0.47% 0.37% 0.32% 0.29%

A(τ)
τ 1.73% 2.52% 3.12% 3.77% 4.95%

Bnπ(τ)
τ (Sensitivity) 58.12% 43.11% 33.43% 24.45% 12.44%

σε 0.26% 0.27% 0.26% 0.25% 0.34%

σε/SD 39.80% 57.98% 71.86% 78.07% 117.34%

Table 2: Upper Panel:estimated parameters for nominal term structure; Lower Panel: statistics,

fitting errors, and yield sensitivity
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Figure 4: Estimated and Observed 1Y

yield
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Figure 5: Estimated and Observed 10Y

yield

As a validation check for the model estimation, we compare the instantaneous nominal interest

rate given by the formula (31) based on the estimation results, and the corresponding market

interest rates. We take the Federal Funds rate, which is not included in the model estimation.

The comparison is shown in Fig. 6 where we found the fitting is satisfactory after the fourth

Quarter 2003.

Year2003 2004 2005
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Market Rate

Estimated Rate

Figure 6: Federal Fund Rate and the Estimated Instantaneous Rate
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4.3 Estimation of Realized Inflation Dynamics

We estimate the price index dynamics (1) based on market data. We employ the Consumer

Price Index for all urban consumers (CPI-U) provided by he U.S. Department of Labor18,

which are used to adjust the US TIPS.

Using the Itô Lemma, we transform the dynamics (1) into

d ln It = (πt − σ2
I

2
)dt + σIdWI

t .

Discretising it by using the Euler-Maruyama scheme, we obtain

ln It+Δ − ln It = (πt − σ2
I

2
)Δ + σI(WI

t+Δ − WI
t ) , (67)

where we assume πt follows the dynamics (4).

The annualized realized inflation (ln It+Δ − ln It)/Δ is plotted in Fig. 7. To estimate the

Year2004 2005

10%

6%

2%

-2%

-6%

π

Figure 7: Realized and Filtered Annualized Inflation

unobservable process πt through the time-discrete observation of the price index It, we face a

filtering problem as encountered in the previous subsections. We still employ the Kalman filter
18http://www.bls.gov/cpi/home.htm
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method. In this case, the observation equation is given by the dynamics (67) and the state

equation is the dynamics (4) of πt.

The estimation results are given in Table 3.

Estimate t-stat.

κπ 0.4163 5.38

gπ 0.0000 0.00

π 0.0315 4.18

σI 0.0115 11.47

Table 3: Estimation Results for the CPIU

The estimation result gπ = 0.0 suggests clearly that the underlying factor πt should remain

constant at the level π = 3.149% instead of time-varying. We show this the expected πt = π,

for all t in Figure 7.

It is worthy remarking that the estimation result for the expected inflation rate πt here is

different from that given in Figure 3 previously based on the nominal term structure model.

The variable πt in the both models incorporates the (instantaneous) inflation expectation.

However, along the model context, the estimations for πt are based on different data set: the

estimation here is based on the current realized price index, while the previous estimation in

the nominal bond yield formula (9) is based on the nominal and real bond yields with the

time maturity stretching from one month until 20 years. Therefore, the variable πt might have

different interpretations. The result given in Figure 7 (constant π) reflects the development of

the current price level while the result shown in Figure 3 reflect a long-term development of

the market expectation for the inflation. We decide to keep both interpretations for πt within
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both contents.

Following the result (32), the market price of the price index risk λI is given by

λI = −ξ0

σI
=

0.0012
0.0115

= 0.1043 . (68)

Next we calculate the correlation between WI
t , W r

t , and W π
t . We remark that W r

t and W π
t are

obtained in a daily basis. while the estimated shock WI
t is in a monthly basis. To calculate

ρIr, ρIπ we accumulate W r
t and W π

t to monthly shocks by summing them up.

The sample correlations of the monthly shocks are calculated as ρIr = 0.0609 and ρIπ = −0.0688.

Both two correlations are quite low.

Having estimated the correlation ρIr and using the result for λ∗
r in Table 1, we can calculate

the market price of real interest rate risk by λr = λ∗
r − σIρIr = −0.5168.

4.4 Estimation of Stock Return Dynamics

For our intertemporal asset allocation problem, in addition to the bond assets modelled above,

we also one stock asset in the investment opportunity set. Applying the Itô formula to the

stock price dynamics (33), we obtain one equivalent expression

d lnPS(t) =
(
Rt + λSσS − σ2

S

2
)
dt + σSdWS

t . (69)

The estimation model is obtained by applying the Eular-Maruyama approximation method to

the continuous-time dynamics (33) where the discretization interval Δt = 1/250 for these daily

data. The estimation of the parameters in the dynamics (33) is based on data of the daily

S&P500 index from Jan. 02 2003 - May 31 2005 including 603 observations, which are plotted

in Figure 8. The data can be found in “Finance Yahoo”. For the riskless rate Rt we adopt the

Federal Funds rate. Figure 9 shows the time series of the daily excess stock returns and Figure
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10 shows their distribution.

Figure 8: SP500 Index

Year2003 2004 2005
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Figure 9: Daily Excess Returns(S&P500)

Figure 10: S&P500 Excess Daily Returns Distribution
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The parameters in (33) are estimated as σS = 0.1391 and λS = 0.8669.

For the asset allocation problem we still need to know the correlations between the shocks

WS
t and W r

t , W π
t and WI

t . Based on the estimation results, the sample correlations are given

by

ρSr = 0.1744 ρSπ = −0.0221 ρSI = −0.0587 .

The correlation between the shocks WS
t and WI

t is calculated in a monthly basis.

5 Optimal Portfolios

This section provides concrete investment recommendations for the strategies including invest-

ing IIBs. We are interested in studying hedging effect of the IIBs.

We consider for risky assets in the investment opportunity set: a three-year nominal bond

(NB3Y), a 10-year nominal bond (NB10Y), a 10-year IIB and a stock whose dynamics of the

returns are summarized in (34). The parameter values for this example are adopted from

the previous estimation results. We summarize the relevant parameter values for the optimal

investment strategies in Table 4.
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κr = 0.1241, r = 0.0040, gr = 0.0101

κπ = 0.4016, ξ0 = −0.0012, gπ = 0.0067

σS = 0.1391, σI = 0.0115,

λr = −0.5168, λπ = −1.5681,

λI = 0.1014, λS = 0.8669,

ρπr = −0.5082,

ρIr = 0.0609, ρIπ = −0.0688,

ρSr = 0.1744, ρSπ = −0.0221, ρSI = −0.0587

Table 4: Parameter summary

Figure 11 plots the optimal portfolio weights against the risk aversion parameter γ ∈

[4, 1000] . The investment horizon is ten years. In Fig. 11 all positions decrease in absolute

value when the agents’ risk aversion becomes larger with the only one exception of the IIB. To

understand this result we recall the portfolio decomposition (57) and present the weights of

each portfolio in Table 5. As the risk aversion γ increases, the optimal portfolio converges to

the conservative portfolio as shown in (61). According to Property 8, the conservative portfolio

invest all the wealth in the IIB. Further, we look at the intertemporal and inflation hedging

portfolios in the conservative portfolio. The sign of the intertemporal hedging position is ex-

plained by Properties 6 and 7. In our case we have κr < κπ from the estimation result, so

the intertemporal hedging portfolio prefers has long position in the long-term bond and short

position in the short-term bond. The exact amounts are given in Table 5.
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Risk Aversion γ
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Figure 11: Optimal Portfolio Weights, with IIB

I.α(M) II.α(I) III.α(P ) Conserv

NB3Y 477.72 -3.64 3.64 0.00

NB10Y -184.27 2.59 -2.59 0.00

IIB10Y 10.20 0.00 1.00 1.00

Stock 8.42 0.00 0.00 0.00

Money -311.08 2.04 -1.04 0.00

Table 5: Decomposition of Portfolio with IIB

Table 5 shows that the myopic portfolio I. α(M) have very extreme positions for the two

nominal bonds. This might be explained by the hight correlations between the bonds are quite

high as given in

Cor(NB3,NB10) = 0.92 Cor(NB3,IIB10)= 0.81 Cor(NB10,IIB10) = 0.97 .

The high correlation between the two nominal bond provide an excellent condition to get rid

the return risk by a ”long one and short the other” strategy. Although the IIB is also highly

correlated with the long-term nominal bond, it has a more moderate position as given in Table

5 because IIB is not only considered for hedging the return risk but also for hedging (realized)
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inflation risk.

The optimal portfolio strategies without the opportunity to invest in IIBs are shown in Fig.

12. The message from the figure is clear: without the investment opportunity in IIBs, more

risk averse agents go back to demand the long-term bond.

Risk Aversion γ
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-8
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8
NB3Y

NB10Y

Stock

Money

Figure 12: Optimal Portfolio Weights, without IIB

We give exact values of each portfolios in Table 6.

I/Myopic II III Conserv

NB3Y 442.17 -3.64 0.151 -3.49

NB10Y -115.60 2.59 -0.076 2.51

Stock 8.36 0.00 -0.006 -0.006

Cash -290.94 2.04 0.931 1.97

Table 6: Portfolio Decomposition without IIB

Comparing between the intertemporal and the inflation hedging portfolios, the first one

dominates in the conservative portfolio. The intertemporal hedging portfolio has a long posi-

tion in the long-term bond and a short-position in short-term bond because κr < κπ according

to Property 10 and Property 7. Recall Property 11, the holding amounts the two nominal bonds
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in the intertemporal hedging portfolio are just the same as those in the case with IIB given in

Property 6. The inflation hedging portfolio is relatively weak where without IIBs agents can

only hedge the (realized) inflation risk through the correlation between asset returns and the

price index change.

Both two examples in our imtertemporal framework, with and without IIBs, can explain the

investment puzzle raised by Canner, Mankiw and Weil (1997) where the bond-to-stock ratio

increases with risk aversion. In our examples, the stock has no hedging function at all in

the case with IIBs and a very week hedging function in the case without IIBs. Therefore the

investment portion in stock decreases by increasing risk aversion and the bond-to-stock ratio

goes up.

We also like to examine the investment horizon effect. The risk aversion is fixed at γ = 70 and

the investment horizon goes from 4 to 30 years. We let the IIB and the long-term nominal

bond maturing when the investment ends. Figures 13 shows that in the case with IIB, positions

in absolute value in the both nominal bonds decrease when the investment horizon increases,

while those in the IIB and stock remain constant. This fact can be explained by using the

formula for the optimal portfolio given in (57) and letting T approach infinity. We can also

obtain the limit positions αi where τ2 = ∞, τ3 = ∞ and they are given by

α1 = 5.16 α2 = −1.42 α3 = 1.13 α4 = 0.12 α5 = −3.99 .

The horizon effect for the case without IIB is shown in Figure 14. The amount of demanding

short-term bond decreases when the horizon increases. The stock demand is still kept as con-

stant while the position of the long-term bond turns his sigh when the horizon becomes longer.

We also provide the limit positions
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α1 = 2.30 α2 = 0.62 α3 = 0.11(stock) α4 = −2.03(money).

Our result is different to that of Brennan and Xia (2002) because they fixed the bond ma-

turity while varying the horizon length.
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Figure 13: Optimal Portfolio Weights, Horizon Effect, with IIB
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Figure 14: Optimal Portfolio Weights, Horizon Effect, without IIB

42



6 Conclusion

This paper has considered a multi-factor pricing model for nominal bonds as well as inflation-

indexed bonds, and used the classical (nominal) no-arbitrage restriction in order to solve the

optimal intertemporal portfolio problem with an investment opportunity including inflation-

indexed bonds under inflation risk. We have solved for the optimal intertemporal investment

strategies by applying the Feymann-Kac formula and have been able to obtain closed form

solutions. In the model calibration analysis, we have presented a new method for estimating

the real interest rate without first estimating inflationary expectations. Although there are two

unobservable variables in the model, the instantaneous real interest rate and the instantaneous

anticipated inflation rate, we have been able to estimate both of them successively with the

Kalman filter.

Overall, the risk aversion parameter turns out to be a main characteristic of the intertem-

poral optimal portfolio. The less risk averse agents are more concerned with the risk-return

trade off, while the more risk averse agents prefer certainty of the payout. Hedging strategies

are quite different with respect the presence of inflation risk. In a world without inflation risk,

the nominal bond maturing at the final day is an ideal hedging asset because it can provides a

certain payout when the investment ends, as mentioned in Wachter (2003). However, when the

investment is exposed to inflation risk, the role of the long-term nominal bond will be taken

over by the IIB maturing at the final day based on the same reasoning. Further, when the IIBs

are not available for hedging inflation risk, agents will revert to demanding the long-term bond

maturing at the final day in our case.

Similar to the results of Campbell and Viceira (2001), and Brennan and Xia (2002), the posi-

tions of the bond holding or the short positions are large, especially in the myopic portfolios.
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Such recommendations would not be practical because such an extreme investment strategy

sometimes over 100 times of the entire wealth, could not be accepted in real world situations.

These observations suggest that future research should focus on the inclusion into the intertem-

poral optimization problem of real market frictions, such as short-sale constraints, transaction

costs, and position limits, in order to obtain investment recommendations within a reasonable

range.

7 Appendix

Proof of Property 1

First we prove the second part. Using equation (21) and the no-arbitrage constraints (24) and

(25) we have

μI(t, τ) − Rt =
(
μr(t, τ) + πt − Brr(τ)grσIρIr

) − Rt (70)

=
(24)

−λrBrr(τ)gr + λIσI (71)

⇒ −Brr(τ)gr

(
λr − σIρIr

)
= μr(t, τ) − (

Rt − πt + λIσI

)

=
(25)

μr(t, τ) − rt .

Using the definition of μr in (19) we rewrite the equation above as

0 =
( d

dτ
Brr(τ) + Brr(τ)κr − 1

)
rt

+
d

dτ
Ar(τ) − Brr(τ)(κrr − λrgr) +

1
2
g2
rBrr(τ)2 . (72)

Since rt is a stochastic process, the equation above holds if and only if

d

dτ
Brr(τ) + Brr(τ)κr − 1 = 0 , (73)

d

dτ
Ar(τ) − Brr(τ)(κrr − λrgr) +

1
2
g2
rBrr(τ)2 = 0 . (74)

Then, Brr(τ) is solved as (29) and Ar(τ) is solved as (30). The solution process can be found,

for example in Chiarella (2004) .
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The first part the model is of a multi-factor Gaussian model. The solution is similar to the

second part. The solution process can be found, for example, for example, in Brigo and

Mercurio (2001) .

�

Property 12 Let (Xs)s∈[0,T ] be the solution of the the SDE (43). Let (zs)s∈[0,T ] and (hs)s∈[0,T ]

be the processes and (zs)s∈[0,T ] satisfies the Novikov condition

E
[
exp

( ∫ T

0
z�s R−1

XXzsds
)]

< ∞ . (75)

Then the function Φ(t, T, x) satisfying the PDE

0 =
∂

∂t
Φ +

(
Ft + Gtzt

)�ΦX +
1
2

n∑
i,j=1

ΦXiXjGitG
�
jt + Φht + ε1 . (76)

and the boundary condition

Φ(T, T, XT ) = 1 . (77)

is given by

Φ(t, T, x) = Et,x

[
e

R T
t hsdsΛT + ε1

∫ T

t
e

R s
t huduΛsds

]
, (78)

where

Λs := exp
( ∫ s

0
z�u R−1

XXdWX
u − 1

2

∫ s

0
z�u R−1

XXzudu
)

, (79)

for s ∈ [0, T ]. The expectation operator Et,x takes the expectation with respect to the process

(Xs)s∈[0,T ] with given initial position Xt = x.

Proof see Hsiao (2006).

�

Proof of Property 4

The key of the proof is to apply Property 12 above to the HJB equation (51) which the
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Φ(t, T, rt, πt) satisfies. Comparing the HJB equation (51) with the formula (76), we can apply

Property 12 when we identify the notations by

zt =
1 − γ

γ
RXAR−1

AAλ − (1 − γ)2

γ
RXAR−1

AARAIσI − (1 − γ)RXIσI , (80)

ht =
1 − γ

γ
rt + jt , (81)

jt = − δ

γ
+

1 − γ

γ
(ξ0 + σ2

I ) +
1 − γ

2γ2
λ�R−1

AAλ (82)

+
(1 − γ)3

2γ2
σ2
I RIAR−1

AARAI − (1 − γ)2

γ2
λ�R−1

AARAIσI − 1 − γ

2
σ2
I .

The last equation (82) is obtained using the no-arbitrage equality (31).

It is easy to observe that jt (82) and zt (80) are actually constants because of the constant

market price of risk and constant correlation matrices. To stress this, we omit the subindex t.

An remarkable feature of the solution structure is that the second factor πt does not appear in

the equations (81) and (80) anymore due to the replacement based on the arbitrage equality

(25). So we can expect that the value function Φ(t, T, rt, πt) will be independent of πt.

We note in (82) that RIAR−1
AARAI = 1 and λ�R−1

AARAIσI = λIσI . This is because

R−1
AARAX =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0

0 1

0 0

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, R−1
AARAI =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (83)

Recall the matrix RAA is the correlation matrix of uncertainty sources of the asset returns,

which are W r
t , W π

t , WI
t , W

S
t , and RAX is that of the asset returns and factors W r

t , W π
t , so RAX

consists of the first two columns of RAA and RAI is exactly the third columns of RAA. That

explains the equations (83).

Using the matrix identities above to rewrite (82), we can obtain the result (53).
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In the expression for z in (80) we have

RXAR−1
AAλ =

⎛
⎜⎜⎝

λr

λπ

⎞
⎟⎟⎠ ,

and

RXAR−1
AARAI = RXI =

⎛
⎜⎜⎝

ρrI

ρπI

⎞
⎟⎟⎠ .

Using these two equalities above we is obtain (54).

Because z is constant, the Radon-Nikodym derivative (79) can be rewritten as

Et[ΛT ] = exp
(
z�R−1

XX(WX
T − WX

t ) − 1
2
z�R−1

XXz(T − t)
)

. (84)

Using the notation CC� = RXX to rewrite (84) and letting

ẑ = C−1z =

⎛
⎜⎜⎝

ẑ1

ẑ2

⎞
⎟⎟⎠ , ŴX

t = C−1WX
t =

⎛
⎜⎜⎝

ŴX
1t

ŴX
1t

⎞
⎟⎟⎠ ,

we have

Et[ΛT ] = exp
(
ẑ�(ŴX

T − ŴX
t ) − 1

2
ẑ�ẑ(T − t)

)
.

Note that ŴX
t is an orthogonal Wiener process because Var[ŴX

1 ] = C−1RXXC−1� = In.

The solution for rt is given by19

rs = e−κr(s−t)rt + r(1 − e−κr(s−t)) + gr

∫ s

t
e−κr(s−u)dW r

u .

Using this solution and Fubini’s theorem, we calculate

∫ T

t
rsds = (rt − r)

∫ T

t
e−κ(s−t)ds + r(T − t) + gr

∫ T

t

∫ T

u
e−κ(s−u)dsdW r

u

= Br(t, T )rt + r(T − t − Br(t, T )) + gr

∫ T

t
Br(u, T )dW r

u , (85)

19See for example Kloeden and Platen (1992) .
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where

Br(t, T ) =
1
κr

(1 − e−κr(T−t)) .

Summarizing all the above calculations we can rewrite Φ(t, T, rt) as

Φ(t, T, rt) = Et,x

[
expY(t, T )

]
,

where

Y(t, T )

:=
1 − γ

γ
Br(T − t)rt +

1 − γ

γ
r
(
T − t − Br(T − t)

)
+ h(T − t) − 1

2
ẑ�ẑ(T − t)

+
∫ T

t
(
1 − γ

γ
grBr(T − u) + ẑ1)dŴX

1u + ẑ2(ŴX
2T − ŴX

1t) . (86)

Note that Y(t, T ) is normally distributed with the mean and the variance given by

Et,x[Y(t, T )] =
1 − γ

γ
Br(T − t)rt +

1 − γ

γ
r
(
T − t − Br(T − t)

)
+ h(T − t)

−1
2
ẑ�ẑ(T − t) ,

Vart,x[Y(t, T )] =
∫ T

t
(
1 − γ

γ
grBr(T − u) + ẑ1)2du + ẑ2

2(T − t) .

Using the equality

Et,x[exp
(Y(t, T )

)
] = exp

(
Et,x[Y(t, T )] +

1
2
Vart,x[Y(t, T )]

)
,

we obtain the result (52).

�

Proof of Property 5

The result is obtained directly by inserting the model specifications given by (35), (36), (44)

and Property 4 into the optimal portfolio solution (50).

�

Proof of Property 6
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This property can be easily proved by providing the inverse of the asset volatility matrix Σ�
t

given in (36)

(Σ�
t )−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−Bnπ(τ2)
grD

Bnr(τ2)
gπD −Brr(τ3)Bnr(τ2)

σID 0

−Bnπ(τ1)
grD

Bnr(τ1)
gπD −Brr(τ3)Bnr(τ1)

σID 0

0 0 1
σI

0

0 0 0 1
σS

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where

D := det

⎛
⎜⎜⎝

Bnr(τ1) Bnr(τ2)

Bnπ(τ1) Bnπ(τ2)

⎞
⎟⎟⎠ .

�

Proof of Property 9

The proof goes analogously to the proof of Property 4. The difference to the previous proof is

that now different correlation matrices RAA, RAI , and RAX are inserted in the expressions (81),

(82) and (80). The asset return innovations have now three sources W r
t , W π

t , and WS
t . The

innovation of the price index WI
t does not appear in the set of asset return uncertainty due to

the exclusion of the IIBs.

The substitution of the different correlation matrices leads a change of the constant j and

z given in (82) and (80) but not change the basic form given in (81) in terms of the factor rt.

So, the value function in this case will share the same form given in (52) and therefore has the

same expression of the factor elasticity (56).

�

Proof of Property 10

The result (62) is obtained simply by inserting the model specific constants into the general

solution (50) and then applying the result of Property (9).

�
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Proof of Property 11

This property can be easily proved by providing the inverse of the asset volatility matrix Σ�
t

(Σ�
t )−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−Bnπ(τ2)
grD

Bnr(τ2)
gπD 0

−Bnπ(τ1)
grD

Bnr(τ1)
gπD 0

0 0 1
σS

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where D is given in (59).

�

The Kalman Filter

We employ the maximum likelihood estimation based on the Kalman filter to estimate the

real interest rate.

The Kalman filter is applied to a model of state space expression20 which consists of a mea-

surement equation

yt = ZtXt + dt + εt , (87)

and a transition equation

Xt = TtXt−1 + ct + Rtηt . (88)

The variable of interest yt is observable and is explained by an observable component dt and

an unobservable state variable Xt which follows the dynamics (88). The Kalman filter is an

algorithm to formulate the best linear projection of Xt on the observed variables yt and dt.

20See Harvey(1990) or and Hamiltion(1994).
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