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Abstract

The existence of the growth optimal portfolio (GOP), also known as
Kelly portfolio, is vital for a financial market to be meaningful. The GOP,
if it exists, is uniquely determined by the market parameters of the pri-
mary security accounts. However, markets may develop and new security
accounts become tradable. What happens to the GOP if the original
market is extended? In this paper we provide a complete characterization
of market extensions which are consistent with the existence of a GOP.
We show that a three fund separation theorem applies for the extended
GOP. This includes, in particular, the introduction of a locally risk free
security, the savings account. We give necessary and sufficient conditions
for a consistent exogenous specification of the prevailing short rates.

Key words: growth optimal portfolio, market extension, three fund
separation theorem

1 Introduction

In Kelly [4] an important portfolio, the growth optimal portfolio (GOP), also
known as Kelly portfolio, has been discovered. It maximizes expected logarith-
mic utility from terminal wealth, see Karatzas and Shreve [3]. Long [5] pointed
out that the GOP is the numeraire portfolio that when used as numeraire leads
to the real world probability measure as pricing measure. As discussed in Platen
and Heath [7], the GOP plays a central role in finance. Its existence is vital for a
financial market to be meaningful. The GOP, if it exists, is uniquely determined
by the market parameters of the primary security accounts. However, markets
may develop and new security accounts become tradable. What happens to the
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GOP if the original market is extended? In this paper we provide a complete
characterization of market extensions which are consistent with the existence
of a GOP. We show that a three fund separation theorem applies for the com-
position of the extended GOP: it consists of the original GOP and a position
in the new security account, balanced by a position in the portfolio formed by
the original market which optimally replicates the new security account. Our
discussion includes, in particular, the introduction of a locally risk free security,
the savings account. We give necessary and sufficient conditions for a consistent
exogenous specification of the prevailing short rates.

The remainder of the paper is as follows. In Section 2 we introduce the
stochastic financial market model. The GOP is defined and characterized in
Section 3. In Section 4 we elaborate on the, so called, minimal variance portfolio
(MVP). Necessary and sufficient conditions are given for the MVP to be locally
risk free. In Section 5 we link the GOP to the numeraire portfolio (NP). We
infer that the GOP is currency invariant. Section 6 contains our main result: a
three fund separation theorem for the extended GOP. We then discuss several
special cases: fair valued and locally risk free security accounts, respectively. In
particular, we provide necessary and sufficient conditions on the original market
which allow a free exogenous specification of the short rate process. A simple
example further illustrates our findings. We conclude by Section 7. For the sake
of readability, the proof of our main theorem is postponed to the Appendix.

2 Financial Market Model

The uncertainty in the financial market is driven by an n-dimensional Brown-
ian motion Wt = (W 1

t , . . . ,Wn
t )T defined on some filtered probability space

(Ω,F , (Ft), P) with a finite time horizon T .
For matrices x and y, we write x · y for the matrix product of x and y, and

xT , im(x) and ker(x) for the transpose, image and kernel of x, respectively, see
any textbook on linear algebra, e.g. [2]. We denote 1 = (1, . . . , 1)T and write 0
for the zero matrix, where the dimension follows from the context.

We consider m primary security accounts with value processes St = (Si
t),

i = 1, . . . ,m, given as
dSt

St
= at dt + bt · dWt. (1)

Here we write dSt/St for the m-vector of stochastic differentials (dSi
t/Si

t), i =
1, . . . ,m. To avoid technicalities, we assume throughout that the processes
of appreciation rates at = (ai

t) and volatilities bt = (bij
t ), for i = 1, . . . ,m,

j = 1, . . . , n, satisfy the necessary measurability and integrability conditions
such that the following formal manipulations are meaningful.

A positive self-financing portfolio is described by its positive initial value
and the fractions of wealth πt = (πi

t), i = 1, . . . ,m, invested in the primary
security accounts. Its value process Sπ

t accordingly satisfies

dSπ
t

Sπ
t

= πT
t · dSt

St
= πT

t · at dt + πT
t · bt · dWt (2)
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while the self-financing condition πT
t · 1 = 1 holds.

3 Growth Optimal Portfolio

A growth optimal portfolio (GOP) is a positive self-financing portfolio Sπ which
maximizes the portfolio growth rate, that is, the drift of its logarithm

d lnSπ
t =

(
πT

t · at −
1
2
πT

t · bt · bT
t · πt

)
dt + πT

t · bt · dWt. (3)

This leads to the constrained m-dimensional quadratic optimization problem

max
{

πT
t · at −

1
2
πT

t · bt · bT
t · πt | πt ∈ Rm, πT

t · 1 = 1
}

. (4)

The portfolio strategy πt at time t is a solution for (4) if and only if it satisfies
the first order conditions

at − bt · bT
t · πt − λt1 = 0 (5)

πT
t · 1 = 1 (6)

for some Lagrange multiplier λt.
In matrix notation, (5)–(6) read

Mt ·
(

πt

λt

)
=

(
at

1

)
(7)

for the symmetric (m + 1)× (m + 1)-matrix

Mt :=
(

bt · bT
t 1

1T 0

)
.

Hence (4) has a solution if and only if(
at

1

)
∈ im(Mt). (8)

The following lemma gives a sufficient condition for (8) to be satisfied:

Lemma 3.1. The matrix Mt is non-singular if bt · bT
t is non-singular. In fact,

ker(Mt) = ker(bt · bT
t ) ∩ ker(1T )⊕ {0} = ker(bT

t ) ∩ ker(1T )⊕ {0}. (9)

Proof. Indeed, π ∈ ker(bt ·bT
t )∩ker(1T ) implies (πT , 0)T ∈ ker(Mt). Conversely,

let (πT , λ)T ∈ ker(Mt). Then bt · bT
t ·π +λ1 = 0 and πT ·1 = 0. Multiplying the

first equation by πT · and combining this with the second yields πT ·bt ·bT
t ·π = 0,

hence π ∈ ker(bT
t ), and λ = 0. Recall the fact, which can be found in any

textbook on linear algebra, e.g. [2], that ker(bT
t )⊕ im(bt) = Rm and hence

ker(bt · bT
t ) = ker(bT

t ). (10)

It follows that π ∈ ker(bt · bT
t ) ∩ ker(1T ), and (9) is proved.
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Now suppose (8) holds, and let (π∗
t , λ∗t ) be a solution of (7). There may be

other solutions of (7), but in view of the preceding arguments, λ∗t and

θt := bT
t · π∗

t (11)

are unambiguously determined through at and bt. In fact, by (5), the appreci-
ation rates of the primary security accounts satisfy

at = λ∗t 1 + bt · θt. (12)

Hence their value processes (1) can be represented as

dSt

St
= λ∗t 1 dt + bt · (θt dt + dWt)

and (2) takes the form

dSπ
t

Sπ
t

= λ∗t dt + πT
t · bt · (θt dt + dWt). (13)

In summary, we arrive at the following result:

Theorem 3.2. A GOP exists if and only if (8) holds for all t. In this case,
albeit the GOP strategy π∗ may not be unique, its value process S∗ := Sπ∗ is
unique, for some fixed initial value S∗

0 > 0, and of the form

dS∗
t

S∗
t

= λ∗t dt + θT
t · (θt dt + dWt). (14)

Henceforth, we identify the GOP with its unique value process, for some
fixed initial value S∗

0 > 0.

4 Minimal Variance and Locally Risk Free Port-
folio

A minimal variance portfolio (MVP) is a positive self-financing portfolio Sπ

which minimizes the instantaneous conditional variance, or the derivate of the
quadratic variation, πT

t · bt · bT
t · πt, of its logarithm (3). This leads to the

constrained m-dimensional quadratic optimization problem

min
{
πT

t · bt · bT
t · πt | πt ∈ Rm, πT

t · 1 = 1
}

. (15)

Obviously, (15) is equivalent to (4) with at set equal to zero. Hence π̂t is a
solution of (15) if and only if

Mt ·
(

π̂t

λ̂t

)
=

(
0
1

)
(16)
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for some Lagrange multiplier λ̂t. Even though π̂t may not be unique, by (10)
and using (16), we see that the process π̂T

t · bt is unambiguously determined
through bt. The value process S0 := Sπ̂ of a MVP, if it exists, is thus unique
and of the form

dS0
t

S0
t

= λ∗t dt + π̂T
t · bt · (θt dt + dWt), (17)

for some fixed initial value S0
0 > 0. From this we immediately derive the follow-

ing special case:

Theorem 4.1. There exists a locally risk free portfolio with unique value process

dS0
t

S0
t

= λ∗t dt, S0
0 = 1,

if and only if ker(bT
t ) 6= {0} (equivalently, im(bt) 6= Rm) and ker(bT

t ) 6= ker(1T )
for all t. In this case, λ∗t represents the prevailing short rate for this financial
market at time t.

We shall see in Corollary 6.4 below that the existence of a solution for (16) is
necessary for a consistent exogenous specification of the short rates via market
extension.

5 Numeraire Portfolio

A numeraire portfolio (NP) is a positive self-financing portfolio Sπ such that

the benchmarked primary security accounts
St

Sπ
t

are local martingales, (18)

see Long [5] and Becherer [1]. We emphasis that we do not assume the exis-
tence of an equivalent risk neutral probability measure for any of the markets
considered.

Let Sπ be a positive self-financing portfolio. Straightforward Itô calculus
yields

at − bt · bT
t · πt − (πT

t · at − πT
t · bt · bT

t · πt)1 (19)

for the drift part of the m-vector of stochastic differentials d(St/Sπ
t )/(St/Sπ

t ).
Hence (18) holds if and only if (19) is zero for all t. But (19) is zero if and only
if πt satisfies the first order condition (5) with λt = πT

t · at − πT
t · bt · bT

t · πt. We
have thus shown:

Theorem 5.1. A NP exists if and only if the GOP exists. In this case, the
GOP is the unique NP with the same initial value.

It is an obvious but fundamental remark that the NP property (18) is cur-
rency invariant: suppose all security account values are expressed in dollar and
let ξt denote the prevailing exchange rate for dollar against euro (1 dollar = ξt

5



euro). Then ξtSt are the primary security account values in euro. The respec-
tive euro denominated value of any positive self-financing portfolio strategy πt

is ξtS
π
t . From (18) we thus see that Sπ

t is the dollar denominated NP if and
only if ξtS

π
t is the euro denominated NP. Theorem 5.1 yields:

Corollary 5.2. The GOP is currency invariant: π∗ is a dollar denominated
GOP strategy if and only if π∗ is a euro denominated GOP strategy.

Remark 5.3. The existence of a NP is equivalent to the absence of some form
of “strong” arbitrage (see [6]). For any market model to be meaningful, the
existence of the GOP is thus vital.

6 Market Extensions

In this section we consider what happens to the GOP if the original market,
consisting of the primary security accounts (1), is extended by a new security
account with value process

dΣt

Σt
= αt dt + βT

t · dWt (20)

and some initial value Σ0 > 0.
Our main result is the following three fund separation theorem, the proof of

which we postpone to Section A.

Theorem 6.1. Suppose the GOP S∗ given by (14) for the original market
exists. The GOP S̃∗ for the extended market with primary security accounts
S1, . . . , Sm,Σ exists if and only if for all t at least one of the following two
conditions holds:

αt = λ∗t + βT
t · θt (21)

or (
bt · βt

1

)
∈ im(Mt). (22)

In this case, an extended GOP strategy is given by the three fund separation

π̃∗
t =

(
π∗

t

0

)
+ p∗t

(
0
1

)
− p∗t

(
x∗t
0

)
(23)

with unique extended GOP value process

dS̃∗
t

S̃∗
t

= λ̃∗t dt + θ̃T
t · (θ̃t dt + dWt) (24)

where

λ̃∗t = λ∗t − p∗t (βt − bT
t · x∗t )T · bT

t · x∗t (25)

θ̃t = θt + p∗t (βt − bT
t · x∗t ) (26)
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and (x∗T
t , p∗t ) ∈ Rm+1 are uniquely determined by the market parameters at, bt,

αt and βt. In fact, if (21) holds then

(x∗T
t , p∗t ) = 0, (27)

and if (22) holds then x∗t is a solution of the well posed minimization problem

min
{
‖βt − bT

t · xt‖2 | xt ∈ Rm, xT
t · 1 = 1

}
, (28)

with first order conditions

Mt ·
(

xt

yt

)
=

(
bt · βt

1

)
, (29)

and p∗t is determined by

p∗t ‖βt − bT
t · x∗t ‖2 = αt − λ∗t − βT

t · θt. (30)

Hence βt = bT
t · x∗t necessitates (21).

Remark 6.2. The economic interpretation of the three fund separation (23)
is as follows: suppose (22) holds. Then there exists a positive self-financing
portfolio Sx∗ in the original market which optimally replicates the new security
account Σ in the sense that it minimizes the instantaneous conditional variance
‖βt − bT

t · x∗t ‖2 of its unhedgeable return component dΣt/Σt − dSx∗

t /Sx∗

t , see
(28). The extended GOP is then obtained by investing in the original GOP and
holding a long (short) position p∗t in the new security account Σ, balanced by a
short (long) position −p∗t in the portfolio Sx∗ .

The case where (21) holds is degenerate in the sense that then the new
security account Σt does not contribute to the growth rate of the GOP (see
Corollary 6.3 below). Consequently, for forming the extended GOP no invest-
ment in Σt is needed, whence p∗t = 0.

For further illustration of Theorem 6.1 we discuss two special cases and an
example in Sections 6.1–6.3 below.

6.1 Special Case: Fair Valuation

Suppose the GOP S∗ given by (14) for the original market exists. The bench-
marked value process Σt/S∗

t satisfies

d(Σt/S∗
t )

Σt/S∗
t

= (αt − λ∗t − θT
t · βt) dt + (βT

t − θT
t ) · dWt. (31)

Combining this with Theorem 6.1 immediately yields the following special result:

Corollary 6.3. The benchmarked value process Σt/S∗
t is a local martingale if

and only if
αt − λ∗t − θT

t · βt = 0 for all t. (32)

In this case, the GOP remains the same for the extended market with primary
security accounts S1, . . . , Sm,Σ.
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Economically speaking, any additional security account Σ satisfying (32)
does not improve the performance of the GOP.

As an example for Corollary 6.3 we consider an FT -measurable claim H ≥ 0
due at date T satisfying

E
[

H

Sπ∗
T

]
< ∞. (33)

A consistent value at time t, denoted by Σt, is then given by the fair valuation
formula (see [6])

Σt

Sπ∗
t

= E
[

H

Sπ∗
T

| Ft

]
. (34)

If this positive martingale can be written as stochastic integral (e.g. if the fil-
tration Ft is generated by the Brownian motion W ),

d(Σt/S∗
t )

Σt/S∗
t

= (βt − θt)T · dWt, (35)

for some n-vector process βt, then we are in the situation of Corollary 6.3.
Hence a market extension by fair valued derivatives is indeed consistent with
the original GOP framework.

We remark that other market extensions under the original GOP framework
are possible, where the benchmarked value process Σt/S∗

t is a strict local mar-
tingale. An example is the savings account under the, so called, minimal market
model in [6].

6.2 Special Case: Locally Risk Free Account

As above suppose the GOP S∗ given by (14) for the original market exists.
Theorem 6.1 implies another special result:

Corollary 6.4. Suppose Σt is locally risk free, i.e. βt = 0 for all t, so that

dΣt

Σt
= αt dt.

Then the extended GOP (24) exists if and only if(
0
1

)
∈ im(Mt). (36)

In this case, the prevailing short rate can be exogenously set to any arbitrary
level λ̃∗t = αt different from λ∗t if and only if

ker(bT
t ) ⊂ ker(1T ). (37)

Proof. Only (37) needs some explanation. But this readily follows from (25)
and (30).
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Note that (37) is just the negation of the necessary and sufficient condition
for the existence of a locally risk free portfolio in the original market in Theo-
rem 4.1. On the other hand, (36) and (37) are in line with Theorem 4.1 applied
to the extended market S1, . . . , Sm,Σ with S0 = Σ.

Corollary 6.4 emphasizes the conditions under which a Central Bank is free
to set the short rate to any level that is economically appropriate without gen-
erating any arbitrage. This also means when modelling a short rate process
one has to mimic the actions of the Central Bank with respect to the changing
financial and economic conditions.

6.3 Example

We consider a financial market with a locally risk free and a risky primary
security account

dS1
t

S1
t

= r dt

dS2
t

S2
t

= µdt + σ dW 1
t

for some constants r, µ, σ ∈ R with σ 6= 0. Assuming n = 2 underlying indepen-
dent Brownian motions, Wt = (W 1

t ,W 2
t )T , we thus have in line with (1)

at =
(

r
µ

)
, bt =

(
0 0
σ 0

)
, bt · bT

t =
(

0 0
0 σ2

)
.

The GOP is given by the solution of (7),

π∗
t =

(
1− (µ− r)/σ2

(µ− r)/σ2

)
, λ∗t = r,

that is, θt = bT
t · π∗

t = ((µ− r)/σ, 0)T and

dS∗
t

S∗
t

=
(

r +
(µ− r)2

σ2

)
dt +

µ− r

σ
dW 1

t , (38)

as shown in (11) and Theorem 3.2.
Now introduce the new security account

dΣt

Σt
= α dt + ρ dW 2

t ,

for some constants α, ρ ∈ R. In line with (20), this reads βt = (0, ρ)T . Hence
bt · βt = 0. The extended GOP is given via the unique solution x∗t = (1, 0)T ,
y∗t = 0 of (29), which now reads 0 0 1

0 σ2 1
1 1 0

 ·

 x1
t

x2
t

yt

 =

 0
0
1

 . (39)
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Thus bT
t · x∗t = 0 and in view of (30), p∗t = (α − r)/ρ2. Note that ρ = 0

necessitates α = r and thus p∗t = 0. The extended GOP strategy (23) is

π̃∗
t =

 1− (µ− r)/σ2

(µ− r)/σ2

0

 + (α− r)/ρ2

 0
0
1

− (α− r)/ρ2

 1
0
0

 .

From (25) and (26), we obtain λ̃∗t = λ∗t = r and θ̃t = ((µ − r)/σ, (α − r)/ρ)T .
Hence the extended GOP value process is

dS̃∗
t

S̃∗
t

=
(

r +
(µ− r)2

σ2
+

(α− r)2

ρ2

)
dt +

µ− r

σ
dW 1

t +
α− r

ρ
dW 2

t . (40)

This example further illustrates the preceding special results:

(i) For α = r, we are in the situation of (32). Indeed, it is obvious from (38)
and (40) that S∗

t = S̃∗
t in this case. Hence the introduction of new traded

noise into the market does not yet necessarily change the GOP.

(ii) From (39) we see that (36) is satisfied here. But α has no impact on the
prevailing short rates λ̃∗t = r in the extended market. This is in line with
the failure of (37).

(iii) We could have started with S2 and Σ as the two primary security accounts,
assuming σ 6= 0 and ρ 6= 0. Straightforward calculations, following (7),
(11) and Theorem 3.2, give

λ∗t =
ασ2 + µρ2 − σ2ρ2

σ2 + ρ2

and the GOP

dS∗
t

S∗
t

=
(

λ∗t +
(µ− λ∗t )

2

σ2
+

(α− λ∗t )
2

ρ2

)
dt +

µ− λ∗t
σ

dW 1
t +

α− λ∗t
ρ

dW 2
t .

(41)
Since (36) and (37) are satisfied for this market, we know from Corol-
lary 6.4 that the prevailing short rate can be exogenously set to any
arbitrary level r. Indeed, this fact becomes obvious in our example by
comparing (41) with (40), where the latter is just the new GOP for the
original market, S2 and Σ, extended by the locally risk free account S1.

7 Conclusion

In this paper we have elaborated on the sensitivity of the growth optimal port-
folio (GOP) with respect to market extensions. We provided a complete charac-
terization of markets which can actually be extended in a consistent way. Our
results are normative as we provided a three fund separation for the extended
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GOP: it consists of holding the original GOP and a position in the new secu-
rity account, balanced by some portfolio formed by the original market which
optimally replicates the new security account. A special result allows Central
Banks to assess their possibilities of setting the short rate to any level that is
economically appropriate without generating any arbitrage.

A Proof of Theorem 6.1

From Theorem 3.2 we know that the extended GOP exists if and only if at

αt

1

 ∈ im(M̃t), (42)

for the symmetric (m + 2)× (m + 2)-matrix

M̃t :=

 bt · bT
t bt · βt 1

βT
t · bT

t βT
t · βt 1

1T 1 0

 .

The extended GOP strategy in (23) is then given as solution of the (m + 2) ×
(m + 2)-system of equations

M̃t ·

 π∗
t

0
λ∗t

 + pt

 0
1
0

− pt

 xt

0
yt

 =

 at

αt

1

 .

with corresponding Lagrange multiplier λ̃∗t = λ∗t − ptyt. Subtracting M̃t ·
(π∗T , 0, λ∗t )

T on both sides, using (11) and (12), yields the equivalent system of
equations

pt

 bt · βt

βT
t · βt

1

− ptM̃t ·

 xt

0
yt

 =

 0
αt − λ∗t − βT

t · θt

0

 . (43)

The (m + 1)-th equation in (43) reads

pt

(
βT

t · βt − βT
t · bT

t · xt − yt

)
= αt − λ∗t − βT

t · θt. (44)

Omitting the (m + 1)-th equation in (43) leaves us with the (m + 1)-system of
equations

ptMt ·
(

xt

yt

)
= pt

(
bt · βt

1

)
. (45)

Now suppose that (43) has a solution (x∗T
t , p∗t , y

∗
t ). If p∗t = 0, then (43)

implies (21). If p∗t 6= 0, then (45) implies (22).
Conversely, if (21) holds then (x∗T

t , p∗t , y
∗
t ) = 0 is a solution of (43). If (22)

holds then there exists a solution (x∗t , y
∗
t ) of (45) with arbitrary pt. It follows
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by inspection that (45) with pt = 1, or (29), are just the first order conditions
for (28). Hence x∗t is also solution of (28). Moreover, we have from (45) that
x∗T · 1 = 1 and thus

y∗t = x∗T
t · (y∗t 1) = x∗T

t · bt · βt − x∗T
t · bt · bT

t · x∗t . (46)

Plugging (46) in (44) gives (30), which determines p∗t . Note that bT
t · x∗t = βt

necessitates (21), whence (x∗T
t , p∗t , y

∗
t ) = 0 is a solution of (43), as shown above.

From (43), we derive λ̃∗t = λ∗t − p∗t y
∗
t , which combined with (46) proves (25).

Finally, (26) follows from (11). Hence Theorem 6.1 is proved.
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