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Abstract. In financial modelling, filtering and other areas
the underlying dynamics are often specified via stochastic dif-
ferential equations (SDEs) of jump-diffusion type. The class
of jump-diffusion SDEs that admits explicit solutions is rather
limited. Consequently, there is a need for the systematic use of
discrete time approximations in corresponding simulations. This
paper presents a survey and new results on strong numerical
schemes for SDEs of jump-diffusion type. These are relevant for
scenario analysis, filtering and hedge simulation in finance. It
provides a convergence theorem for the construction of strong
approximations of any given order of convergence for SDEs driven
by Wiener processes and Poisson random measures. The paper
covers also derivative free, drift-implicit and jump adapted strong
approximations. For the commutative case particular schemes are
obtained. Finally, a numerical study on the accuracy of several
strong schemes is presented.
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1 Introduction

There is compelling evidence that the dynamics of prices of financial instruments
exhibit jumps that cannot be adequately captured solely by diffusion processes,
see Merton (1976). Several empirical studies, including Jorion (1988), Bates
(1996) and Pan (2002), demonstrate the existence of jumps in stock markets, the
foreign exchange market and bond markets. Jumps constitute also a key feature
in the description of credit risk sensitive instruments. Therefore, models that
incorporate jumps have become increasingly popular in finance, see, for instance,
Merton (1976), Björk, Kabanov & Runggaldier (1997), Duffie, Pan & Singleton
(2000), Kou (2002), Schönbucher (2003) and Chiarella & Nikitopoulos-Sklibosios
(2004). Beyond finance there are many areas of application, including electrical
engineering and biotechnology, that use jump-diffusion models. Since only a
limited class of jump-diffusion SDEs admits explicit solutions, there is a strong
need for the development of numerical schemes. In the current paper we consider
the construction of strong discrete time approximations of SDEs driven by Wiener
processes and Poisson random measures.

A discrete time approximation Y ∆ converges strongly with order γ > 0 at time
T to the solution X of a given SDE if there exists a positive constant C and a
∆0 > 0 such that

ε(∆) =
√

E(|XT − Y ∆
T |2) ≤ C∆γ, (1.1)

for each maximum time step size ∆ ∈ (0, ∆0). Since strong approximations in-
dicate pathwise closeness, the above criterion is appropriate for the classification
of schemes for scenario analysis, filtering and hedge simulation. When the focus
is on approximating the expectation of a payoff function of the solution of the
underlying SDE, such as moments, derivative prices and risk measures, then a
weaker criterion is sufficient. We refer to Kloeden & Platen (1999) and Platen
(1999) for extensive surveys on both strong and weak approximations of SDEs in
the case of diffusion and jump-diffusion processes.

The literature on strong approximations of jump-diffusion SDEs driven by Wiener
processes and Poisson random measures is rather limited. Platen (1982a) de-
scribes a convergence theorem for strong schemes of any given strong order
γ ∈ {0.5, 1, 1.5, . . .} and also introduces jump adapted approximations. Magh-
soodi (1996, 1998) presents an analysis of some approximations up to strong
order γ = 1.5. Gardoǹ (2004) presents a convergence theorem for strong schemes
of any given order γ ∈ {0.5, 1, 1.5, . . .} similar to the one presented in Platen
(1982a), but limited to SDEs driven by Wiener processes and homogeneous Pois-
son processes and without considering jump adapted approximations. Higham
& Kloeden (2004) propose a class of implicit schemes of strong order γ = 0.5
for SDEs driven by Wiener processes and homogeneous Poisson processes. Addi-
tionally, the Euler scheme for the approximation of SDEs driven by more general
semimartingales has been studied by Jacod & Protter (1998).
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For general SDEs higher order strong schemes often require multiple stochastic
integrals that cannot be easily generated in an efficient manner. For special
classes of SDEs some multiple stochastic integrals cancel out, for instance, under
commutativity. Additionally, for important applications such as hidden Markov
chain filtering, see Elliott, Aggoun & Moore (1995), one can construct the required
multiple stochastic integrals directly from the data.

In this paper we present jump adapted approximations, as introduced by Platen
(1982a), for which the required multiple stochastic integrals do not involve any
Poisson measure. Therefore, these schemes are easier to implement and compu-
tationally efficient for SDEs with low intensity Poisson measures.

In this paper we also consider schemes that avoid the computation of deriva-
tives of the coefficient functions, which enhances the computational tractability.
Implicit schemes are derived that improve the numerical stability, as shown in
Hofmann & Platen (1996), Milstein, Platen & Schurz (1998) and Higham & Kloe-
den (2004). Moreover, along the analysis of the order 1.0 strong schemes with
mark independent jump size, we derive a commutativity condition that permits
to identify a class of jump-diffusion SDEs for which the computational efficiency
of the order 1.0 strong schemes is independent of the jump intensity level.

Finally, we present three convergence theorems that extend the ones in Platen
(1982a) to cover schemes of any given strong order for SDEs driven by Wiener
processes and Poisson random measures, including derivative free, drift-implicit
and jump adapted schemes. A numerical study on the accuracy of these strong
schemes on the Merton (1976) model will be presented.

2 Model Dynamics

Given a filtered probability space (Ω,AT ,A, P ) satisfying the usual conditions
and a mark space (E , B(E)) with E ⊆ Rr\{0}, for r ∈ {1, 2, . . .}, we define on
E × [0, T ] an A-adapted Poisson random measure pφ(dv × dt), where dv denotes
an n-dimensional vector, with intensity measure

qφ(dv × dt) = φ(dv)dt. (2.1)

We assume that the intensity λ = φ(E) < ∞ is finite. Thus, pφ = {pφ(t) :=
pφ(E × [0, t]), t ∈ [0, T ]} is a stochastic process that counts the number of jumps
occurring in the time interval [0, T ]. The Poisson random measure pφ(dv × dt)
generates a sequence of pairs {(τi, ξi), i ∈ {1, 2, . . . , pφ(T )} }, where {τi : Ω →
R+, i ∈ {1, 2, . . . , pφ(T )} } is a sequence of increasing nonnegative random vari-
ables representing the jump times of a standard Poisson process with intensity λ,
and {ξi : Ω → E , i ∈ {1, 2, . . . , pφ(T )} } is a sequence of i.i.d. random variables

with ξi ∼ φ(du)
φ(E)

. We can interpret τi as the time of the i-th event and the mark ξi

as its amplitude. For a more general presentation of random measures we refer
to Elliott (1982).
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For the dynamics of the underlying d-dimensional factors we consider the SDE

dXt = a(t,Xt)dt + b(t,Xt)dWt +

∫

E
c(t−, Xt−, v) pφ(dv × dt), (2.2)

for t ∈ [0, T ], with X0 ∈ Rd, and W = {Wt = (W 1
t , . . . , Wm

t )>, t ∈ [0, T ]}
an A-adapted m-dimensional Wiener process. Here a(t, x) and c(t, x, v) are d-
dimensional vectors of real valued functions on [0, T ]×Rd and on [0, T ]×Rd×E ,
respectively. Furthermore, b(t, x) is a d × m-matrix of real valued functions on
[0, T ]×Rd. Here and in the sequel for a given vector a we adopt the notation ai

to denote its i-th component. Similarly by bi,j we will denote the component of
the i-th row and j-th column of a given matrix b.

Moreover, we assume the Lipschitz conditions

|a(t, x)− a(t, y)|2 ≤ C1|x− y|2, |b(t, x)− b(t, y)|2 ≤ C2|x− y|2,
∫

E
|c(t, x, v)− c(t, y, v)|2φ(dv) ≤ C3|x− y|2, (2.3)

for every t ∈ [0, T ] and x, y ∈ Rd, and the linear growth conditions

|a(t, x)|2 ≤ K1(1 + |x|2), |b(t, x)|2 ≤ K2(1 + |x|2),
∫

E
|c(t, x, v)|2φ(dv) ≤ K3(1 + |x|2), (2.4)

for all t ∈ [0, T ] and x ∈ Rd. As shown in Ikeda & Watanabe (1989), under
conditions (2.3) and (2.4) the SDE (2.2) admits a unique strong solution.

In (2.2) we have defined the jump impact via a stochastic integral with respect
to a Poisson random measure as

∫ t

0

∫

E
c(s−, Xs−, v)pφ(dv × ds). (2.5)

This choice allows us to model a rather general jump behaviour. The only real
restriction we impose on the jump component is the finiteness of the intensity.

If we consider the special case d = m = r = 1 with the coefficient functions

a(t, x) = µx, b(t, x) = σx, c(t, x, v) = x (v − 1), (2.6)

and a Poisson measure pφ(dv × dt) with intensity measure φ(dv)dt = λf(v)dvdt,
where f(·) is the density function of a lognormal random variable, then the SDE
(2.2) reduces to

dXt = Xt−

(
µdt + σdWt +

∫

E
(v − 1) pφ(dv × dt)

)
, (2.7)
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for t ∈ [0, T ]. The SDE (2.7) admits the explicit solution

Xt = X0 e(µ− 1
2
σ2)t+σW (t)

pφ(t)∏
i=1

ξi, (2.8)

where ξi = eζi is the i-th lognormal realization of the mark, with ζi ∼ N (%, ς)
denoting an independent Gaussian random variable with mean % and variance ς.
Equation (2.8) represents a specification of the jump-diffusion asset price process
proposed in Merton (1976), known as Merton model. A simple case is obtained
when the lognormal random variable becomes degenerate and equals a positive
constant. If we assume a log-Laplace density f(·) instead of a lognormal one,
then we recover the Kou model proposed by Kou (2002).

To demonstrate the flexibility of the jump integral representation (2.5), we il-
lustrate in the following three typical examples. It is possible to specify a jump
component with time dependent intensity by choosing

c(t, x, v) = I{η1(t)≤v≤η2(t)}f(t, x), (2.9)

where η1 and η2 are deterministic functions of time. Here we obtain a jump
integral of the form

∫ t

0

∫ η2(s)

η1(s)

f(s−, Xs−)pφ(dv × ds). (2.10)

If in (2.9) we allow the functions η1(t) and η2(t) to depend also on the solution
Xt, thus permitting a feedback in the intensity, then we obtain the jump integral
with stochastic intensity

∫ t

0

∫ η2(s,Xs−)

η1(s,Xs−)

f(s−, Xs−)pφ(dv × ds). (2.11)

In the modelling and pricing of defaultable claims, models with jumps have been
proposed with the intensity being a stochastic process that is driven by a source
of risk independent of the one driving the asset price before default. We can
easily accommodate this feature with the two-dimensional SDE

dX1
t = a1(t,X1

t )dt + b1(t,X1
t )dW 1

t +

∫ η2(t,X2
t−)

η1(t,X2
t−)

f(t−, X1
t−)pφ(dv × dt)

dX2
t = a2(t,X2

t )dt + b2(t,X2
t )dW 2

t , (2.12)

where the first state variable X1
t represents the asset price and the second state

variable X2
t influences its jump intensity at time t. Furthermore, advanced credit

risk models with multiple obligors and correlated intensities, as presented in
Schönbucher (2003), can be specified via the SDE (2.2).
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3 Strong Approximations

In this section we consider, for simplicity, the autonomous one-dimensional SDE

dXt = a(Xt)dt + b(Xt)dWt +

∫

E
c(Xt−, v) pφ(dv × dt), (3.1)

for t ∈ [0, T ], with X0 ∈ R and W = {Wt, t ∈ [0, T ]} an A-adapted one-
dimensional Wiener process. We assume an A-adapted Poisson measure pφ(dv×
dt) with a one-dimensional mark space E ⊆ R\{0} and with intensity measure
φ(dv) dt = λ f(v) dv dt, where f(·) is a given probability density function. There-
fore, the SDE (3.1) can be written in integral form as

Xt = X0 +

∫ t

0

a(Xs)ds +

∫ t

0

b(Xs)dWs +

pφ(t)∑
i=1

c(Xτi−, ξi), (3.2)

where {(τi, ξi), i ∈ {1, 2 . . . , pφ(t)} } is the double sequence generated by the Pois-
son random measure pφ with pφ(t) = pφ(E × [0, t]) for t ∈ [0, T ].

In the following we will present several strong discrete time approximations of X
in terms of multiple stochastic integrals and coefficient functions. In general, it
is not obvious, especially for higher order schemes, how to efficiently obtain the
required multiple stochastic integrals. We point out that in filtering applications
it is possible to construct the required multiple stochastic integrals from the data.
Furthermore, hardware implementations for the generation of multiple stochastic
integrals may become available in the near future. It is therefore useful, in view of
this kind of applications and developments, to derive higher order strong schemes.

For most applications, such as scenario simulation, needed for instance to check
the performance of a hedging strategy, a discrete time approximation is imple-
mentable only if one is able to efficiently generate the involved multiple stochastic
integrals.

3.1 Strong Taylor Schemes

Let us consider an equidistant time discretisation with n-th discretisation time
tn = n∆, n ∈ {0, 1, . . . , N} and time step size ∆ = T

N
, on which we construct a

discrete time approximation Y ∆ = {Y ∆
n , n ∈ {0, 1, . . . , N} } of the solution X of

(3.2).

The simplest scheme is the well-known Euler scheme, given by

Yn+1 = Yn + a(Yn)∆ + b(Yn)∆Wn +

∫ tn+1

tn

∫

E
c(Yn, v) pφ(dv × ds)

= Yn + a(Yn)∆ + b(Yn)∆Wn +

pφ(tn+1)∑

i=pφ(tn)+1

c(Yn, ξi), (3.3)
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for n ∈ {0, 1, . . . , N − 1} with initial value Y0 = X0.

Here ∆Wn = Wtn+1−Wtn ∼ N (0, ∆) is the n-th increment of the Wiener process
W and pφ(s) = pφ(E × [0, s]), as defined in Section 2, is a Poisson distributed
random variable with mean λ s representing the number of jumps of the random
measure up to time s. It will be shown later that the Euler scheme (3.3) achieves,
in general, a strong order of convergence γ = 0.5.

When we have a mark independent jump size, that means c(x, v) = c(x), we
obtain the Euler scheme

Yn+1 = Yn + a(Yn)∆ + b(Yn)∆Wn + c(Yn)∆pn, (3.4)

where ∆pn = pφ(tn+1)− pφ(tn) can be sampled from a Poisson distribution with
mean λ∆. For the Merton model SDE (2.7) with jump coefficient c(t, x, v) = xβ,
with β ≥ −1, we obtain the Euler scheme

Yn+1 = Yn + µYn∆ + σYn∆Wn + Yn β∆pn. (3.5)

When accuracy and efficiency in a simulation are required, it is important to
be able to construct numerical methods with higher strong order of convergence.
This can be achieved by including more terms from the Wagner-Platen expansion,
see Platen (1982b), as will be shown later. It is possible to derive in this way the
order 1.0 strong Taylor scheme

Yn+1 = Yn + a(Yn)∆ + b(Yn)∆Wn +

∫ tn+1

tn

∫

E
c(Yn, v) pφ(dv × ds)

+b(Yn)b′(Yn)

∫ tn+1

tn

∫ s2

tn

dW (s1)dW (s2)

+

∫ tn+1

tn

∫

E

∫ s2

tn

b(Yn)c′(Yn, v)dW (s1)pφ(dv × ds2)

+

∫ tn+1

tn

∫ s2

tn

∫

E

{
b
(
Yn + c(Yn, v)

)− b
(
Yn

)}
pφ(dv × ds1)dW (s2)

+

∫ tn+1

tn

∫

E

∫ s2

tn

∫

E

{
c
(
Yn + c(Yn, v1), v2

)− c
(
Yn, v2

)}

× pφ(dv1 × ds1) pφ(dv2 × ds2), (3.6)

where

b′(x) :=
d b(x)

d x
and c′(x, v) :=

∂c(x, v)

∂x
. (3.7)

This scheme will be shown to achieve, in general, strong order γ = 1.0. In the
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case of mark independent jump size we obtain

Yn+1 = Yn + a(Yn)∆ + b(Yn)∆Wn + c(Yn)∆pn + b(Yn)b′(Yn) I(1,1)

+b(Yn) c′(Yn) I(1,−1) + {b(Yn + c(Yn))− b(Yn)} I(−1,1)

+{c (Yn + c(Yn))− c(Yn)} I(−1,−1), (3.8)

with multiple stochastic integrals

I(1,1) =

∫ tn+1

tn

∫ s2

tn

dW (s1)dW (s2),

I(1,−1) =

∫ tn+1

tn

∫

E

∫ s2

tn

dW (s1)pφ(dv × ds2),

I(−1,1) =

∫ tn+1

tn

∫ s2

tn

∫

E
pφ(dv × ds1)dW (s2),

I(−1,−1) =

∫ tn+1

tn

∫

E

∫ s2

tn

∫

E
pφ(dv1 × ds1)pφ(dv2 × ds2). (3.9)

The level of complexity of the scheme (3.6), even in the case (3.8) of mark in-
dependent jump size, is quite high when compared to the Euler scheme (3.4).
Indeed, it requires not only function evaluations of the drift, diffusion and jump
coefficients, but also of their derivatives. This problem can be overcome by con-
structing derivative free schemes that will be presented in Section 3.2.

In view of applications in scenario simulations, a main problem concerns the
generation of the multiple stochastic integrals appearing in (3.8). By application
of Itô’s lemma for jump-diffusion processes and the integration by parts formula,
we can express the four stochastic integrals appearing in (3.8) as

I(1,1) = 1
2

{
(∆Wn)2 −∆

}
, I(1,−1) =

pφ(tn+1)∑

i=pφ(tn)+1

Wτi
−∆pn Wtn ,

I(−1,1) = ∆pn ∆Wn − I(1,−1), I(−1,−1) =
1

2

{
(∆pn)2 −∆pn

}
. (3.10)

The generation of I(1,1) and I(−1,−1) is straightforward once we have generated the
random variables ∆Wn and ∆pn. The generation of the mixed multiple stochastic
integrals, I(1,−1) and I(−1,1), is more complex as it requires to keep track of the
jump times between discretisation points for the evaluation of Wτi

. Conditioned
on the number of jump events realized on the time interval (tn, tn+1], the jump
times are independent and uniformly distributed on this interval. Therefore,
once we have generated ∆pn, we can sample ∆pn independent random numbers
from a uniform distribution on (tn, tn+1] in order to obtain the exact location of
the jump times. However, from a computational point of view, this makes the
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efficiency of the algorithm heavily dependent on the level of the intensity of the
Poisson measure. Indeed, the number of operations involved in an algorithm as
the Euler scheme (3.4) seems not to depend on the level of the intensity. We are
here neglecting the additional time needed to sample from a Poisson distribution
with higher intensity. On the other hand, for the scheme (3.8) the number of
computations is proportional to the number of jumps, due to the generation of
the two double stochastic integrals I(1,−1) and I(−1,1). Therefore, this algorithm
is not very efficient for the simulation of jump-diffusion SDEs driven by high
intensity Poisson measures.

It is, in principle, possible to derive strong Taylor schemes of any given order, as
will be demonstrated in Section 6. However, the schemes become rather complex
and, in applications such as scenario simulation, the generation of the multiple
stochastic integrals is not straightforward. Moreover, as explained above, for
SDEs driven by high intensity Poisson measures, these schemes become inefficient.
For these reasons we will not present in this section any scheme with order of
strong convergence higher than γ = 1.0. For the construction of higher order
schemes we refer to Section 4, where we are going to present jump adapted
approximations that avoid all multiple stochastic integrals involving the Poisson
measure, making the schemes much easier to derive and implement.

3.1.1 Commutativity Condition

As discussed previously, higher order Taylor schemes, even with mark independent
jump size, become computationally inefficient when the intensity of the Poisson
measure is high. Here the number of operations involved is proportional to the
intensity level. Also the jump adapted schemes, to be presented in Section 4,
show a similar dependence on the intensity of the jumps.

Analyzing the multiple stochastic integrals required for the scheme (3.8), we
observe that the dependence on the jump times only affects the mixed multiple
stochastic integrals I(1,−1) and I(−1,1). However, since by (3.10) we have

I(−1,1) = ∆pn ∆Wn − I(1,−1), (3.11)

the sum of these integrals is obtained as

I(1,−1) + I(−1,1) = ∆pn ∆Wn, (3.12)

and thus independent of the particular jump times. Therefore, in the case of mark
independent jump size c(t, x, v) = c(t, x), for SDEs satisfying the commutativity
condition

b(t, x)
∂c(t, x)

∂x
= b

(
t, x + c(t, x)

)
− b

(
t, x

)
, (3.13)

for all t ∈ [0, T ] and x ∈ R, the order 1.0 strong Taylor scheme (3.8) does not
require to keep track of the exact location of the jump times. Hence, its com-
putational complexity is independent of the intensity level. This is an important
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observation from the practical point of view. If a given SDE satisfies the com-
mutativity condition, then considerable savings in computational time can be
achieved.

When we have a linear diffusion coefficient of the form

b(t, x) = a1(t) + a2(t) x, (3.14)

as it frequently occurs in finance, the commutativity condition (3.13) implies the
following ordinary differential equation for the jump coefficient

∂c(t, x)

∂x
=

a2(t) c(t, x)

a1(t) + a2(t) x
, (3.15)

for all t ∈ [0, T ]. Therefore, for linear diffusion coefficients of the form (3.14) the
class of SDEs satisfying the commutativity condition (3.13) is identified by mark
independent jump coefficients of the form

c(t, x) = eK(t)
(
a1(t) + a2(t) x

)
, (3.16)

where K(t) is an arbitrary function of time.

For instance, the SDE (2.7) with mark independent jump size c(t, x, v) = xβ,
with β ≥ −1, satisfies the commutativity condition (3.13) and the corresponding
order 1.0 strong Taylor scheme is given by

Yn+1 = Yn + µYn∆ + σYn∆Wn + β Yn ∆pn +
1

2
σ2 Yn {(∆Wn)2 −∆}

+σ β Yn∆pn∆Wn +
1

2
β2 Yn{(∆pn)2 −∆pn}. (3.17)

In Table 1 we present some diffusion coefficients from models proposed in the fi-
nance literature and corresponding jump coefficients that satisfy the commutative
condition (3.13).

b(t, x) c(t, x)

a1(t) K(t)
a1(t) + a2(t) x eK(t)(a1(t) + a2(t) x)

a3(t)
√

a1(t) + a2(t)x a2(t) eK(t) + 2e
K(t)

2

√
a1(t) + a2(t)x

a1(t)(1− e−x) log{1 + eK(t) − e−x+ K(t)}
a1(t) x

3
2

−2e
3K(t)

2 x
3
2 + 3eK(t)x2 − x3

e2K(t) − 2eK(t)x + x2

Table 1: Coefficients satisfying the commutativity condition.
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3.2 Derivative Free Schemes

Higher order schemes, as the order 1.0 strong Taylor scheme presented in Section
3.1, are rather complex as they involve the evaluation of derivatives of the drift
and diffusion coefficients at each time step. For the implementation of general
numerical routines for the approximation of jump-diffusion SDEs, that means
without assuming a particular form for the coefficients, this constitutes a serious
limitation, as one is required to include a symbolic differentiation in a numerical
algorithm. In this section we propose strong schemes that avoid the computation
of derivatives.

By replacing the derivatives in the scheme (3.6) with the corresponding difference
ratios it is possible to obtain a scheme, with the same strong order of convergence,
that does not require the evaluation of derivatives. However, to construct the
difference ratios we need supporting values of the coefficients at additional points.

The explicit order 1.0 strong Taylor scheme, which achieves a strong order γ =
1.0, is given by

Yn+1 = Yn + a(Yn)∆ + b(Yn)∆Wn +

∫ tn+1

tn

∫

E
c(Yn, v) pφ(dv × ds)

+
1√
∆

{
b(Y n)− b(Yn)

} ∫ tn+1

tn

∫ s2

tn

dW (s1) dW (s2)

+

∫ tn+1

tn

∫

E

∫ s2

tn

1√
∆

{
c(Y n, v)− c(Yn, v)

}
dW (s1) pφ(dv × ds2)

+

∫ tn+1

tn

∫ s2

tn

∫

E

{
b(Yn + c(Yn, v))− b(Yn)

}
pφ(dv × ds1) dW (s2)

+

∫ tn+1

tn

∫

E

∫ s2

tn

∫

E

{
c(Yn + c(Yn, v2), v1)− c(Yn, v1)

}

× pφ(dv1 × ds1) pφ(dv2 × ds2), (3.18)

with the supporting value

Y n = Yn + b(Yn)
√

∆. (3.19)

Even in the case of a mark independent jump size, the derivative free coefficient
of the multiple stochastic integral I(1,−1), which is

c(Y n)− c(Yn)√
∆

, (3.20)

depends on the time step size ∆, while the the coefficient of the multiple stochastic
integral I(−1,1),

b
(
Yn + c(Yn)

)
− b

(
Yn

)
, (3.21)

11



is independent of ∆. Therefore, it is not possible to derive commutativity condi-
tions similar to (3.13) that permit to identify special classes of SDEs for which the
computational efficiency is independent of the jump intensity level. For instance,
for the SDE (2.7) with mark independent jump size c(t, x, v) = xβ, with β ≥ −1,
the explicit order 1.0 strong Taylor scheme is given by

Yn+1 = Yn + µYn∆ + σYn∆Wn + β Yn ∆pn +
σ√
∆
{Y n − Yn}I(1,1)

+
β√
∆
{Y n − Yn}I(1,−1) + σ β Yn I(−1,1) + β2 YnI(−1,−1), (3.22)

with the supporting value

Y n = Yn + σYn

√
∆. (3.23)

Since the evaluation of the multiple stochastic integrals I(1,−1) and I(−1,1), as given
in (3.10), depends on the number of jumps, the computational efficiency of the
scheme (3.22)-(3.23) will depend on the intensity λ of the jump measure.

For the special class of mark independent SDEs characterized by the commuta-
tivity condition (3.13), using the relationship

I(1,−1) + I(−1,1) = ∆pn ∆Wn, (3.24)

and substituting it in (3.8), we first derive the order 1.0 strong Taylor scheme,
given by

Yn+1 = Yn + a(Yn)∆ + b(Yn)∆Wn + c(Yn)∆pn

+
b(Yn)b′(Yn)

2
{(∆Wn)2 −∆} + {b(Yn + c(Yn))− b(Yn)}∆pn ∆Wn

+
{c(Yn + c(Yn))− c(Yn)}

2
{(∆pn)2 −∆pn}. (3.25)

Then, by replacing the derivative b′ with the corresponding difference ratio, we
obtain an explicit order 1.0 strong Taylor scheme

Yn+1 = Yn + a(Yn)∆ + b(Yn)∆Wn + c(Yn)∆pn

+
{b(Y n)− b(Yn)}

2
√

∆
{(∆Wn)2 −∆} + {b(Yn + c(Yn))− b(Yn)}∆pn ∆Wn

+
{c(Yn + c(Yn))− c(Yn)}

2
{(∆pn)2 −∆pn}, (3.26)

with the supporting value

Y n = Yn + b(Yn)
√

∆, (3.27)

whose computational efficiency is independent on the intensity level.

For instance, for Merton’s SDE (2.7) with c(t, x, v) = xβ, with β ≥ −1, we can
derive the explicit order 1.0 strong Taylor scheme, which, due to the linearity of
the diffusion coefficient, is the same as the order 1.0 strong Taylor scheme (3.17).

12



3.3 Implicit Schemes

As shown in Hofmann & Platen (1996) for the case of SDEs driven only by Wiener
processes, when one has multiplicative noise explicit methods show narrow regions
of numerical stability. SDEs with multiplicative noise are often employed when
modelling asset prices in finance. They also arise in other important applications
such as hidden Markov chain filtering. In order to construct approximate filters,
one needs a strong discrete time approximation of an SDE with multiplicative
noise, the Zakai equation, see Elliott, Aggoun & Moore (1995). Moreover, in
filtering problems for large systems it is often not possible to employ small time
step sizes, as the computations may not be performed fast enough to keep pace
with the arrival of data. Therefore, for this kind of applications, higher order
schemes with wide regions of stability are crucial. To overcome some of these
problems, implicit schemes have been constructed that have good numerical sta-
bility properties.

In general, given an explicit scheme of strong order γ it is possible to obtain
a drift-implicit scheme of the same order. Since the reciprocal of a Gaussian
random variable does not have finite absolute moments, it is usually not possible
to introduce implicitness easily in the diffusion coefficient. Regions of stability
of drift-implicit schemes are typically wider than those of corresponding explicit
schemes. Therefore, the former are often more suitable to filtering problems than
corresponding explicit schemes.

In Higham & Kloeden (2004), a class of drift-implicit methods of strong order
γ = 0.5 for jump-diffusion SDEs has been proposed and analyzed. We will present
drift-implicit schemes of higher strong order for the jump-diffusion SDE (3.1).

From the Euler scheme (3.3), by introducing implicitness in the drift, we obtain
the drift-implicit Euler scheme,

Yn+1 = Yn + {θ a(Yn+1) + (1− θ) a(Yn)}∆ + b(Yn)∆Wn

+

∫ tn+1

tn

∫

E
c(Yn, v) pφ(dv × ds), (3.28)

where the parameter θ ∈ [0, 1] characterizes the degree of implicitness. This
scheme achieves a strong order of convergence γ = 0.5.

By comparing the drift-implicit Euler scheme (3.28) with the Euler scheme (3.3),
one notices that there is an additional computational effort required to solve an
algebraic equation at each time step. This can be performed, for instance, by a
Newton-Raphson method.

In a similar way as for the Euler scheme, by introducing implicitness in the drift
of the order 1.0 strong Taylor scheme (3.6), we obtain the drift-implicit order 1.0

13



strong Taylor scheme

Yn+1 = Yn + {θ a(Yn+1) + (1− θ) a(Yn)}∆ + b(Yn)∆Wn

+

∫ tn+1

tn

∫

E
c(Yn, v) pφ(dv × ds) + b(Yn)b′(Yn)

∫ tn+1

tn

∫ s2

tn

dW (s1)dW (s2)

+

∫ tn+1

tn

∫

E

∫ s2

tn

b(Yn)c′(Yn, v)dW (s1)pφ(dv × ds2)

+

∫ tn+1

tn

∫ s2

tn

∫

E

{
b(Yn + c(Yn, v))− b(Yn)

}
pφ(dv × ds1)dW (s2)

+

∫ tn+1

tn

∫

E

∫ s2

tn

∫

E

{
c(Yn + c(Yn, v1), v2)− c(Yn, v2)

}

× pφ(dv1 × ds1) pφ(dv2 × ds2), (3.29)

where the parameter θ ∈ [0, 1], characterizes again the degree of implicitness.
This scheme achieves a strong order of convergence γ = 1.0.

The commutativity condition (3.13), presented in Section 3.1.1, also applies to
drift-implicit schemes. Therefore, for the class of SDEs identified by the commu-
tativity condition (3.13) the computational efficiency of drift-implicit schemes of
order γ = 1.0 is not dependent on the intensity level of the Poisson measure. For
instance, for Merton’s SDE (2.7) with c(t, x, v) = xβ and β ≥ −1 it is possible
to derive drift-implicit schemes that are efficient also for a high intensity jump
measure.

4 Jump Adapted Approximations

In principle, by including enough terms from the Wagner-Platen expansion, to be
presented in Section 6, it is possible to derive schemes of any given strong order
of convergence. However, as noticed in Section 3.1, even for a one-dimensional
autonomous SDE, higher order schemes are quite complex in that they involve
multiple stochastic integrals with respect to the Wiener process and the Pois-
son random measure. In particular, when we have a mark dependent jump size,
the generation of the required multiple stochastic integrals involving the Pois-
son measure can be complicated. As noticed before, there are applications, such
as filtering, in which we are able to construct the multiple stochastic integrals
directly from data. In these cases the proposed strong schemes can be readily
applied. However, for scenario simulation we need to generate artificially the
multiple stochastic integrals. To avoid the generation of multiple stochastic in-
tegrals with respect to the Poisson jump measure, Platen (1982a) proposed the
so-called jump adapted approximations that significantly reduce the complexity of
higher order schemes. A jump adapted time discretisation makes these schemes
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easily implementable for scenario simulation also in the case of a mark dependent
jump size. Indeed, between the jump times the evolution of the SDE (2.2) is that
of a diffusion without jumps and can be approximated by standard schemes, as
presented in Kloeden & Platen (1999). At the jump time the prescribed jump is
performed. Therefore, as we will show in this section, it is possible to develop
tractable jump adapted higher order strong schemes also in the general case of
mark dependent jump sizes, as the required multiple stochastic integrals involve
only time and Wiener process integrations.

4.1 Jump Adapted Strong Schemes

We consider now a jump adapted time discretisation 0 = t0 < t1 < . . . < tN =
T , constructed by a superposition of the jump times {τ1, τ2, . . .} of the Poisson
measure pφ to a deterministic equidistant grid with maximum step size ∆ > 0.
This means that we add all the random jump times to an equidistant grid, as
the one presented in Section 3.1. In this way the maximum time step size of the
jump adapted discretisation is assured to be ∆.

Within this time grid we can separate the diffusive part from the jumps, because
the jumps can arise only at discretisation times. Therefore, we can approximate
between discretisation points the diffusive part with a strong Taylor scheme for
diffusion processes. We add the effect of a jump to the evolution of the approxi-
mate solution when we encounter a jump time as discretisation time. We remark
that with jump adapted schemes the approximation of SDEs with mark depen-
dent jump size becomes a trivial task. Therefore, in this section we consider the
general case of a jump-diffusion SDE with mark dependent jump size given in
(3.1). At first, note that we set Yn = Ytn and we define

Ytn+1− = lim
s→tn+1−

Ys,

where s < tn+1− in the almost sure limit.

We present the jump adapted Euler scheme given by

Ytn+1− = Ytn + a(Ytn)∆tn + b(Ytn)∆Wtn (4.1)

and

Ytn+1 = Ytn+1− +

∫

E
c(Ytn+1−, v) pφ(dv × {tn+1}), (4.2)

where ∆tn = tn+1 − tn and ∆Wtn = Wtn+1 − Wtn ∼ N (0, ∆tn). The impact of
jumps is simulated by (4.2). If tn+1 is a jump time, then

∫
E pφ(dv × {tn+1}) = 1

and ∫

E
c(Ytn+1−, v) pφ(dv × {tn+1}) = c(Ytn+1−, ξpφ(tn+1)), (4.3)

while if tn+1 is not a jump time one has Ytn+1 = Ytn+1−, as
∫
E pφ(dv×{tn+1}) = 0.

Therefore, the strong order of convergence of the jump adapted Euler scheme is
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γ = 0.5, resulting from the strong order of the approximation (4.1) of the diffusive
component.

As the order of convergence of jump adapted schemes is, in general, the one
induced by the approximation of the diffusive part, we can derive the jump adapted
order 1.0 strong Taylor scheme given by

Ytn+1− = Ytn + a(Ytn)∆tn + b(Ytn)∆Wtn +
b(Ytn)b′(Ytn)

2

(
(∆Wtn)2 −∆tn

)
(4.4)

and

Ytn+1 = Ytn+1− +

∫

E
c(Ytn+1−, v) pφ(dv × {tn+1}), (4.5)

which achieves strong order γ = 1.0.

The comparison of the jump adapted order 1.0 strong scheme (4.4)-(4.5) with
the order 1.0 strong Taylor scheme (3.6), shows that jump adapted schemes are
much simpler. These avoid the problem of the generation of multiple stochastic
integrals with respect to the Poisson measure. If we approximate the diffusive
part of the SDE (3.1) with the order 1.5 strong Taylor scheme, see Kloeden &
Platen (1999), we obtain the jump adapted order 1.5 strong Taylor scheme given
by

Ytn+1− = Ytn + a(Ytn)∆tn + b(Ytn)∆Wtn +
b(Ytn)b′(Ytn)

2

(
(∆Wtn)2 −∆tn

)

+a′(Ytn)b(Ytn)∆Ztn +
1

2

(
a(Ytn)a′(Ytn) +

1

2
(b(Ytn))2 a′′(Ytn)

)
(∆tn)2

+

(
a(Ytn)b′(Ytn) +

1

2
b(Ytn)2b′′(Ytn)

)
(∆Wtn∆tn −∆Ztn)

+
1

2
b(Ytn)

(
b(Ytn)b′′(Ytn) + (b′(Ytn))

2
)

×
{

1

3
(∆Wtn)2 −∆tn

}
∆Wtn , (4.6)

and

Ytn+1 = Ytn+1− +

∫

E
c(Ytn+1−, v) pφ(dv × {tn+1}), (4.7)

where

∆Ztn =

∫ tn+1

tn

∫ s2

tn

dWs1 ds2. (4.8)

One can show that ∆Ztn has a Gaussian distribution with mean E(∆Ztn) =
0, variance E((∆Ztn)2) = 1

3
(∆tn)3 and covariance E(∆Ztn ∆Wtn) = 1

2
(∆tn)2.

Therefore, with two independent N (0, 1) distributed standard Gaussian random
variables U1 and U2, we can obtain the required correlated random variables ∆Ztn
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and ∆Wtn by setting:

∆Wtn = U1

√
∆tn and ∆Ztn =

1

2
(∆tn)

3
2

(
U1 +

1√
3
U2

)
. (4.9)

For the SDE (2.7) the terms involving the random variable ∆Ztn cancel out, thus
yielding a rather simple jump adapted order 1.5 strong Taylor scheme.

Constructing strong schemes of higher order is, in principle, not difficult. How-
ever, as they involve multiple stochastic integrals of higher multiplicity, they can
become quite complex. Therefore, we will not present here any scheme of strong
order higher than γ = 1.5. Instead we refer to the convergence theorem to be
presented in Section 8 that provides the methodology for the construction of jump
adapted schemes of any given strong order.

4.2 Jump Adapted Derivative Free Schemes

As noticed in Section 3.2, it is convenient to develop higher order numerical
approximations that do not require the evaluation of derivatives of the coefficient
functions. With jump adapted schemes it is sufficient to replace the numerical
scheme of the diffusive part with an equivalent derivative free scheme. We refer
to Kloeden & Platen (1999) for derivative free schemes for diffusion processes.

The jump adapted explicit order 1.0 strong Taylor scheme, which achieves a strong
order γ = 1.0, is given by

Ytn+1− = Ytn + a(Ytn)∆tn + b(Ytn)∆Wtn

+
1

2
√

∆tn

{b(Y tn)− b(Ytn)} (
(∆Wtn)2 −∆tn

)
, (4.10)

and

Ytn+1 = Ytn+1− +

∫

E
c(Ytn+1−, v) pφ(dv × {tn+1}), (4.11)

with the supporting value

Y tn = Ytn + b(Ytn)
√

∆tn . (4.12)
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The jump adapted explicit order 1.5 strong Taylor scheme is given by

Ytn+1− = Ytn + b(Ytn)∆Wtn +
1

2
√

∆tn

{
a(Y

+

tn)− a(Y
−
tn)

}
∆Ztn

+
1

4

{
a(Y

+

tn) + 2a(Ytn) + a(Y
−
tn)

}
∆tn

+
1

4
√

∆tn

{
b(Y

+

tn)− b(Y
−
tn)

} (
(∆Wtn)2 −∆tn

)

+
1

2
√

∆tn

{
b(Y

+

tn) + 2b(Ytn) + b(Y
−
tn)

}
(∆Wtn∆tn −∆Ztn)

+
1

4
√

∆tn

[
b(Φ

+

tn)− b(Φ
−
tn)− b(Y

+

tn) + b(Y
−
tn)

]

×
{

1

3
(∆Wtn)2 −∆tn

}
∆Wtn , (4.13)

and

Ytn+1 = Ytn+1− +

∫

E
c(Ytn+1−, v) pφ(dv × {tn+1}), (4.14)

with
Y
±
tn = Ytn + a(Ytn)∆tn ± b(Ytn)∆Wtn , (4.15)

and
Φ
±
tn = Y

±
tn ± b(Y

+

tn)
√

∆tn . (4.16)

4.3 Jump Adapted Implicit Schemes

As discussed previously, for applications such as filtering it is crucial to construct
higher order schemes with wide regions of numerical stability. To achieve this
one needs to introduce implicitness into the schemes. For deriving jump adapted
drift-implicit schemes, it is sufficient to replace the explicit scheme for the diffusive
part by a drift-implicit one. We refer to Kloeden & Platen (1999) for drift-implicit
methods for SDEs driven by Wiener processes.

For the SDE (3.1) the jump adapted drift-implicit Euler scheme is given by:

Ytn+1− = Ytn +
{
θ a(Ytn+1) + (1− θ) a(Ytn)

}
∆tn + b(Ytn)∆Wtn , (4.17)

and

Ytn+1 = Ytn+1− +

∫

E
c(Ytn+1−, v)pφ(dv × {tn+1}), (4.18)

where the parameter θ ∈ [0, 1] characterizes the degree of implicitness.
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Using a drift-implicit order 1.0 strong Taylor scheme for the diffusive part, we
obtain the jump adapted drift-implicit order 1.0 strong Taylor scheme

Ytn+1− = Ytn +
{
θ a(Ytn+1) + (1− θ) a(Ytn)

}
∆tn + b(Ytn)∆Wtn

+
b(Ytn)b′(Ytn)

2

(
(∆Wtn)2 −∆tn

)
(4.19)

and

Ytn+1 = Ytn+1− +

∫

E
c(Ytn+1−, v) pφ(dv × {tn+1}), (4.20)

which achieves strong order γ = 1.0.

Finally, we present a jump adapted drift-implicit order 1.5 strong Taylor scheme
given by

Ytn+1− = Ytn +
1

2

{
a(Ytn+1) + a(Ytn)

}
∆tn + b(Ytn) ∆Wtn

+
b(Ytn)b′(Ytn)

2

(
(∆Wtn)2 −∆tn

)

+

(
a(Ytn)b′(Ytn) +

1

2
b(Ytn)2b′′(Ytn)

)
(∆Wtn∆tn −∆Ztn)

+a′(Ytn)b(Ytn)

{
∆Ztn −

1

2
∆Wtn∆tn

}

+
1

2
b(Ytn)

(
b(Ytn)b′′(Ytn) + (b′(Ytn))

2
)

×
{

1

3
(∆Wtn)2 −∆tn

}
∆Wtn , (4.21)

and

Ytn+1 = Ytn+1− +

∫

E
c(Ytn+1−, v)pφ(dv × {tn+1}). (4.22)

5 Numerical Results

In this section we present numerical results for the strong schemes presented
for the SDE (2.7) describing the Merton model. We select the following default
parameters: µ = −0.05, σ = 0.1, λ = 1, X0 = 1, T = 0.5. At first we consider
the case of a mark independent jump size. We consider the SDE (2.7) with
jump coefficient c(t, x, v) = x β and set β = 0.1. In the following we report the
strong error ε(∆), as defined in (1.1), when comparing the results of the strong
schemes with the closed form solution (2.8). In the corresponding plots we show
the logarithm log2(ε(∆)) of the strong error versus the logarithm log2(∆) of the
time step size. The number of simulations depends on the scheme implemented.
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Figure 5.1: Log-log plot of strong error versus time step size.

It will always be chosen such that the statistical errors become negligible when
compared to the systematic errors caused by the time discretisation.

In Figure 5.1, we report the results obtained from the Euler, jump adapted Eu-
ler, 1.0 Taylor, jump adapted 1.0 Taylor and jump adapted 1.5 Taylor schemes,
presented in Sections 3 and 4. We confirm that the two Euler schemes achieve
an order of strong convergence of about 0.5. The two 1.0 Taylor schemes achieve
an order close to 1.0 and the jump adapted 1.5 Taylor scheme shows an order
of strong convergence of about 1.5. These experimental results are consistent
with the previously described strong orders, as will be stated in the convergence
theorems to be presented in Section 6 and in Section 8. We also notice that
when comparing a strong Taylor scheme with the jump adapted scheme of the
same order, the jump adapted one is more accurate. This effect is due to the
more accurate simulation of the jump impact at the correct jump time within the
jump adapted schemes. However, as explained before, for higher intensity jump
adapted schemes may not be computationally efficient.

We consider now the mark dependent jump coefficient c(t, x, v) = x (v − 1),
with the marks drawn from a lognormal distribution with a mean of 1.1 and a
standard deviation of 0.02. As explained in Section 3, jump-diffusion SDEs with
mark dependent jump size can be handled efficiently by resorting to jump adapted
schemes. Therefore, in Figure 5.2 we compare the following jump adapted schemes:
Euler, implicit Euler, 1.0 Taylor, implicit 1.0 Taylor, 1.5 Taylor and implicit 1.5
Taylor. Again, the orders of strong convergence obtained from our numerical ex-
periments are the ones predicted by the theory. Comparing explicit with implicit
schemes, we report that for this choice of parameters the implicit schemes are
more accurate. Since the jump impact is simulated without creating extra errors,
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these differences are due to the approximation of the diffusive part. We remark
that implicit schemes, which offer wider regions of stability, are more suitable
for problems in which stability constitutes an important issue. This applies in
the areas of filtering and finance, where SDEs with multiplicative noise naturally
arise.
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Figure 5.2: Log-log plot of strong error versus time step size.

6 Convergence Theorems

To analyze the order of strong convergence of the proposed numerical schemes
we will exploit the Wagner-Platen expansion of the solution of the SDE (2.2), see
Platen (1982a, 1982b, 1999). We rewrite the SDE (2.2) in a way such that the
jump part will be expressed as a stochastic integral with respect to the compen-
sated Poisson measure

p̃φ(dv × dt) := pφ(dv × dt)− φ(dv)dt. (6.1)

By compensating the Poisson measure in the SDE (2.2) we obtain

dXt = ã(t,Xt)dt + b(t,Xt)dWt +

∫

E
c(t−, Xt−, v)p̃φ(dv × dt), (6.2)

where

ã(t, x) := a(t, x) +

∫

E
c(t, x, v)φ(dv), (6.3)

for t ∈ [0, T ] and x ∈ Rd.
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Theorems 6.1 and 7.1, to be presented, analyze the order of convergence of strong
approximations constructed with jump integrals with respect to the compensated
Poisson measure p̃φ. For computational convenience, we presented in Section 3
strong schemes with jump integrals with respect to the Poisson measure pφ. When
directly using the compensated Poisson measure p̃φ, as employed in the strong
Taylor schemes in Theorem 6.1 and in the strong Itô schemes in Theorem 7.1,
some differences between the resulting schemes may arise. These can be shown to
relate to terms of higher order, which do not affect the prescribed strong order of
convergence. Therefore the strong order of convergence of the schemes presented
in Section 3 can be derived from Theorems 6.1 and 7.1.

We now introduce a compact notation to express multiple stochastic integrals and
the corresponding stochastic expansions. We call a row vector α = (j1, j2, . . . , jl),
where ji ∈ {−1, 0, 1, . . . , m} for i ∈ {1, 2, . . . , l}, a multi-index of length l :=
l(α) ∈ {1, 2, . . .}. Here m represents the number of Wiener processes considered
in the SDE (2.2). Then for m ∈ N the set of all multi-indices α is denoted by

Mm = {(j1, . . . , jl) : ji ∈ {−1, 0, 1, 2, . . . , l}, i ∈ {1, 2, . . . , l} for l ∈ N} ∪ {v},
(6.4)

where v is the multi-index of length zero.

We write n(α) for the number of components of a multi-index α that are equal
to 0 and s(α) for the number of components of a multi-index α that equal −1.
Moreover, we write α− for the multi-index obtained by deleting the last compo-
nent of α and −α for the multi-index obtained by deleting the first component
of α. For instance, assuming m = 2,

l((0,−1, 1)) = 3 l((0, 1,−1, 0, 2)) = 5

n((0,−1, 1)) = 1 n((0, 1,−1, 0, 2)) = 2

s((0,−1, 1)) = 1 s((0, 1,−1, 0, 2)) = 1

(0,−1, 1)− = (0,−1) (0, 1,−1, 0, 2)− = (0, 1,−1, 0)

−(0,−1, 1) = (−1, 1) − (0, 1,−1, 0, 2) = (1,−1, 0, 2).

We shall define some functional spaces of predictable stochastic processes g =
{g(t), t ∈ [0, T ]} that are allowed to appear as integrands of the multiple stocha-
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stic integrals in the stochastic expansions to be presented. We define

Hv = {g : sup
t∈[0,T ]

E (|g(t, ω)|) < ∞}

H(0) = {g : E

(∫ T

0

|g(s, ω)|ds

)
< ∞}

H(−1) = {g : E

(∫ T

0

∫

E
|g(s, v, ω)|2φ(dv)ds

)
< ∞}

H(j) = {g : E

(∫ T

0

|g(s, ω)|2ds

)
< ∞}, (6.5)

for j ∈ {1, 2, . . . , m}. The set Hα for a multi-index α ∈ Mm with l(α) > 1 will
be defined below.

Let ρ and τ be two stopping times with 0 ≤ ρ ≤ τ ≤ T a.s. For a multi-index
α ∈ Mm and a predictable process g(·) ∈ Hα we define the multiple stochastic
integral Iα[g(·)]ρ,τ recursively by

Iα[g(·)]ρ,τ :=





g(τ) when l = 0 and α = v∫ τ

ρ
Iα−[g(·)]ρ,z dz when l ≥ 1 and jl = 0∫ τ

ρ
Iα−[g(·)]ρ,z dW jl

z when l ≥ 1 and jl ∈ {1, . . . , m}∫ τ

ρ

∫
E Iα−[g(·)]ρ,z− p̃φ(dv × dz) when l ≥ 1 and jl = −1,

(6.6)
where g(·) = g(·, v), with v ∈ Es(α), and with z− we denote the left hand limit of
z. For simplicity, when it is not strictly necessary, here and in the sequel, we will
omit the dependence of the integrand process g on one or more of the components
v1, . . . , vs(α) of the vector v expressing the marks of the Poisson jump measure.

The sets Hα, for every multi-index α = (j1, . . . , jl) ∈ Mm with l(α) > 1, are
defined recursively as the sets of predictable stochastic processes g = {g(t), t ≥ 0}
such that the integral process {Iα−[g(·)]ρ,t, t ∈ [0, T ]} satisfies

Iα−[g(·)]ρ,· ∈ H(jl). (6.7)

As defined in (6.6), in a multi-index α the components that equal 0 refer to an
integration with respect to time, the components that equal j ∈ {1, . . . , m} refer
to an integration with respect to the j-th component of the Wiener process, while
the components that equal −1 refer to an integration with respect to the Poisson
martingale measure p̃φ(dv × dt). For instance,

I(0,−1,1)[g(·)]ρ,τ =

∫ τ

ρ

∫ z3

ρ

∫

E

∫ z2−

ρ

g(z1, v1) dz1 p̃φ(dv1 × dz2) dW 1
z3

(6.8)

and

I(2,0)[g(·)]ρ,τ =

∫ τ

ρ

∫ z2

ρ

g(z1) dW 2
z1

dz2. (6.9)
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We need to define some sets of sufficiently smooth and integrable functions. L0

is the set of functions f(t, x, u) : [0, T ]× Rd × Es(α) −→ Rd for which

f
(
t, x + c(t, x, v), u

)− f(t, x, u)−
d∑

i=1

ci(t, x, v)
∂

∂xi
f(t, x, u) (6.10)

is φ(dv)-integrable for all t ∈ [0, T ], x ∈ Rd, u ∈ Es(α) and f(·, ·, u) ∈ C1,2. Note
that, according to the notation defined in Section 2, ci denotes the i-th component
of the jump coefficient vector c. With Lk, k ∈ {1, . . . , m}, we denote the set of
functions f(t, x, u) with partial derivatives ∂

∂xi f(t, x, u), i ∈ {1, . . . , d}. With L−1

we denote the set of functions for which
{
f
(
t, x + c (t, x, v) , u

)− f
(
t, x, u

)}2
(6.11)

is φ(dv)-integrable for all t ∈ [0, T ], x ∈ Rd and u ∈ Es(α).

Let us now define the following operators for a function f(t, x, u) ∈ Lk, with
k ∈ {−1, 0, 1, . . . , m}:

L(0)f(t, x, u) :=
∂

∂t
f(t, x, u) +

d∑
i=1

ai(t, x)
∂

∂xi
f(t, x, u)

+
1

2

d∑
i,r=1

m∑
j=1

bi,j(t, x)br,j(t, x)
∂2

∂xi∂xj
f(t, x, u)

+

∫

E

{
f
(
t, x + c

(
t, x, v

)
, u

)
− f

(
t, x, u

)}
φ(dv)

=
∂

∂t
f(t, x, u) +

d∑
i=1

ãi(t, x)
∂

∂xi
f(t, x, u)

+
1

2

d∑
i,r=1

m∑
j=1

bi,j(t, x)br,j(t, x)
∂2

∂xi∂xj
f(t, x, u)

+

∫

E

{
f
(
t, x + c

(
t, x, v

)
, u

)
− f

(
t, x, u

)

−
d∑

i=1

ci(t, x, v)
∂

∂xi
f(t, x, u)

}
φ(dv), (6.12)

L(k)f(t, x, u) :=
d∑

i=1

bi,k(t, x)
∂

∂xi
f(t, x, u), for k ∈ {1, . . . , m} (6.13)

and
L(−1)f(t, x, u) := f

(
t, x + c (t, x, v) , u

)− f(t, x, u), (6.14)
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for all t ∈ [0, T ], x ∈ Rd and u ∈ Es(α). Here the operator in (6.14) adds a new
dependence on the component v ∈ E , which we do not explicitly express in our
notation to simplify the presentation.

For all α = (j1, . . . , jl(α)) ∈ Mm and a function f : [0, T ]× Rd −→ Rd, we define
recursively the Itô coefficient functions

fα(t, x, u) :=





f
(
t, x

)
for l(α) = 0,

f
(
t, ã(t, x)

)
for l(α) = 1, j1 = 0,

f
(
t, bj1(t, x)

)
for l(α) = 1, j1 ∈ {1, . . . , m},

f
(
t, c(t, x, u)

)
for l(α) = 1, j1 = −1,

L(j1)f−α(t, x, u1, . . . , us(−α)) for l(α) ≥ 2, j1 ∈ {−1, 0, . . . , m}.
(6.15)

Here by bj1(t, x) we denote the d-dimensional vector of real valued functions on
[0, T ] × Rd obtained by extracting the j1-th column from the matrix b(t, x) of
coefficient functions. With u1, . . . , us(−α) we denote the components of the vector
u ∈ Es(−α). We assume that the coefficients of the SDE (2.2) and the function
f satisfy the smoothness and integrability conditions needed for the operators in
(6.15) to be well defined. For instance, with d = m = 1, if we choose the identity
function f(t, x) = x we get

f(−1,0)(t, x, u) = L(−1)ã(t, x) = ã(t, x + c(t, x, u))− ã(t, x), (6.16)

f(0,1)(t, x) = L(0)b(t, x)

=
∂

∂t
b(t, x) + a(t, x)

∂

∂x
b(t, x) +

1

2

(
b(t, x)

)2 ∂2

∂x2
b(t, x)

+

∫

E

{
b
(
t, x + c(t, x, v)

)− b
(
t, x

)
}

φ(dv)

=
∂

∂t
b(t, x) + ã(t, x)

∂

∂x
b(t, x) +

1

2

(
b(t, x)

)2 ∂2

∂x2
b(t, x)

+

∫

E

{
b
(
t, x + c(t, x, v)

)− b
(
t, x

)− c(t, x, v)
∂

∂x
b(t, x)

}
φ(dv)

(6.17)

and

f(−1,−1)(t, x, u) = L(−1)c(t, x, u1)

= c(t, x + c(t, x, u2), u1)− c(t, x, u1). (6.18)

To define a stochastic Taylor expansion we finally need to specify some particular
sets of multi-indices. A subset A ∈Mm is a hierarchical set if A is non-empty, the
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multi-indices in A are uniformly bounded in length, that means supα∈A l(α) < ∞,
and if −α ∈ A for each α ∈ A\{v}. We also define the remainder set B(A) of A
by

B(A) = {α ∈Mm\A : −α ∈ A}. (6.19)

Then the remainder set consists of all the next following multi-indices with respect
to the given hierarchical set.

Given two stopping times ρ and τ with 0 ≤ ρ ≤ τ ≤ T a. s., a hierarchical set
A ∈ Mm, and a function f : [0, T ] × Rd −→ Rd, we obtain the Wagner-Platen
expansion

f(τ,Xτ ) =
∑
α∈A

Iα[fα(ρ, Xρ)]ρ,τ +
∑

α∈B(A)

Iα[fα(·, X·)]ρ,τ , (6.20)

where we have assumed that the function f and the coefficients of the SDE (2.2)
are sufficiently smooth and integrable such that the coefficient functions fα are
well defined and all the multiple stochastic integrals exist.

By choosing as function f the identity functions f(t, x) = x we can represent the
process X = {Xt, t ∈ [0, T ]} as solution of the SDE (2.2) by the Wagner-Platen
expansion

Xτ =
∑
α∈A

Iα[fα(ρ,Xρ)]ρ,τ +
∑

α∈B(A)

Iα[fα(·, X·)]ρ,τ . (6.21)

Note that in (6.21) we have suppressed in the notation the dependence of fα on
u ∈ Es(α) and we will do so also in the following where no misunderstanding is
possible.

The proof of the Wagner-Platen expansion for jump-diffusion processes, which
is based on an iterative application of the Itô formula, can be found in Platen
(1982a, 1982b).

6.1 Strong Taylor Schemes

Let us consider a time discretization 0 ≤ t0 < t1 < . . . < tnT
≤ T on which we

will construct a discrete time approximation of the solution X of (2.2). We also
introduce for all t ∈ [0, T ] the index

nt = max{n ∈ {0, 1, . . .} : tn ≤ t} (6.22)

of the last discretization point before t. In the following we will assume a max-
imum step size ∆ ∈ (0, 1), that means for every n ∈ {0, 1, 2, . . . , nT − 1} the
discretisation time tn+1 is Atn-measurable and P (tn+1 − tn ≤ ∆) = 1. We also
require to have a finite number of time discretisation points, that means nt < ∞
almost surely for t ∈ [0, T ]. We abbreviate a time discretisation of the above type
by (t)∆.
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Moreover, for every γ ∈ {0.5, 1, 1.5, 2, . . .} we define the hierarchical set

Aγ = {α ∈M : l(α) + n(α) ≤ 2γ or l(α) = n(α) = γ +
1

2
}. (6.23)

For a time discretization with maximum step size ∆ ∈ (0, 1), we define the order
γ strong Taylor scheme by the vector equation

Y ∆
n+1 = Y ∆

n +
∑

α∈Aγ\{v}
Iα

[
fα(tn, Y

∆
n )

]
tn,tn+1

=
∑

α∈Aγ

Iα

[
fα(tn, Y

∆
n )

]
tn,tn+1

, (6.24)

for n ∈ {0, 1, . . . , nT−1}. Equation (6.24) gives us a numerical routine to generate
approximate values of the solution of the SDE (2.2) at the discretization points.

In order to asses the strong order of convergence of these schemes we define,
through a specific interpolation, the order γ strong Taylor approximation Y ∆ =
{Y ∆

t , t ∈ [0, T ]}, by

Y ∆
t =

∑
α∈Aγ

Iα[fα(tnt , Y
∆
tnt

)]tnt ,t (6.25)

for t ∈ [0, T ], starting from a given A0-measurable random variable Y0. This
approximation defines a stochastic process Y ∆ = {Y ∆

t , t ∈ [0, T ]}, whose values
coincide with the ones of the order γ strong Taylor scheme (6.24) on the discreti-
sation points. Between the discretisation points the multiple stochastic integrals
have constant coefficient functions but evolve randomly as a function of time, see
(6.25).

We can now formulate a convergence theorem that will enable us to construct a
strong Taylor approximation Y ∆ = {Y ∆

t , t ∈ [0, T ]} of any given strong order
γ = {0.5, 1, 1.5, 2, . . .}.

Theorem 6.1 For a given γ ∈ {0.5, 1, 1.5, 2, . . . }, let Y ∆ = {Y ∆
t , t ∈ [0, T ]}

be the order γ strong Taylor approximation defined in (6.25) corresponding to a
time discretisation with maximum step size ∆ ∈ (0, 1).

We assume that

E(|X0|2) < ∞ and E(|X0 − Y ∆
0 |2) ≤ K1∆

2γ. (6.26)

Moreover, suppose that the coefficient functions fα satisfy the following condi-
tions:

For α ∈ Aγ, t ∈ [0, T ], u ∈ Es(α) and x, y ∈ Rd the coefficient function fα

satisfies the Lipschitz type condition

|fα(t, x, u)− fα(t, y, u)| ≤ K1(u)|x− y|, (6.27)

where K1(u)2 is φ(du)-integrable.

For all α ∈ Aγ

⋃
B(Aγ) we assume

f−α ∈ C1,2 and fα ∈ Hα, (6.28)
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and for α ∈ Aγ

⋃B(Aγ), t ∈ [0, T ], u ∈ Es(α) and x ∈ Rd, we require

|fα(t, x, u)|2 ≤ K2(u)(1 + |x|2), (6.29)

where K2(u) is φ(du)-integrable.

Then the estimate
√

E( sup
0≤s≤T

|Xs − Y ∆
s |2 |A0) ≤ K3∆

γ (6.30)

holds, where the constant K3 does not depend on ∆.

The proof of the theorem will be given in Section 6.4.

We now present several results that are needed for the proof of the convergence
Theorem 6.1.

6.2 Moments of Multiple Stochastic Integrals

The following two lemmas provide estimates of multiples stochastic integrals that
will constitute the core of the proof of Theorem 6.1.

Lemma 6.2 Let α ∈Mm\{v}, g ∈ Hα, ∆ > 0 and ρ and τ denote two stopping
times with τ Aρ-measurable and t0 ≤ ρ ≤ τ ≤ ρ + ∆ ≤ T almost surely. Then

Fα
τ := E

(
sup

ρ≤s≤τ
| Iα[g(·)]ρ,s|2

∣∣∣∣∣Aρ

)
≤ 4l(α)−n(α)∆l(α)+n(α)−1

∫ τ

ρ

Vρ,z,s(α) dz,

(6.31)
where

Vρ,z,s(α) :=

∫

E
. . .

∫

E
E

(
sup

ρ≤t≤z
|g(t, v1, . . . , vs(α))|2

∣∣∣∣∣Aρ

)
φ(dv1) . . . φ(dvs(α)) < ∞

(6.32)
for z ∈ [ρ, τ ].

Proof: We will prove the assertion (6.31) by induction on l(α).

1. Let us assume that l(α) = 1 and α = (0). By the Cauchy-Schwarz inequality
we have the estimate

∣∣∣∣
∫ s

ρ

g(z) dz

∣∣∣∣
2

≤ (s− ρ)

∫ s

ρ

|g(z)|2 dz. (6.33)
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Therefore, we obtain

F (0)
τ = E

(
sup

ρ≤s≤τ

∣∣∣∣
∫ s

ρ

g(z) dz

∣∣∣∣
2
∣∣∣∣∣Aρ

)

≤ E

(
sup

ρ≤s≤τ
(s− ρ)

∫ s

ρ

|g(z)|2 dz

∣∣∣∣∣Aρ

)

= E

(
(τ − ρ)

∫ τ

ρ

|g(z)|2 dz

∣∣∣∣∣Aρ

)

≤ ∆ E

( ∫ τ

ρ

|g(z)|2 dz

∣∣∣∣∣Aρ

)

= ∆

∫ τ

ρ

E
(|g(z)|2|Aρ

)
dz

≤ ∆

∫ τ

ρ

E

(
sup

ρ≤t≤z
|g(t)|2

∣∣∣∣∣Aρ

)
dz

= 4l(α)−n(α) ∆l(α)+n(α)−1

∫ τ

ρ

Vρ,z,s(α) dz, (6.34)

where the interchange between expectation and integral holds byAρ-measurability
of τ and Fubini’s theorem.

2. When l(α) = 1 and α = (j) with j ∈ {1, 2, . . . , m}, we first observe that
the process

{Iα[g(·)]ρ,t, t ∈ [ρ, T ]} = {
∫ t

ρ

g(s) dW j
s , t ∈ [ρ, T ]} (6.35)

is a martingale. Therefore, applying Doob’s inequality and Itô’s isometry
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we have

F (j)
τ = E

(
sup

ρ≤s≤τ

∣∣∣∣
∫ s

ρ

g(z) dW j
z

∣∣∣∣
2
∣∣∣∣∣Aρ

)

≤ 4 E

(∣∣∣∣
∫ τ

ρ

g(z) dW j
z

∣∣∣∣
2
∣∣∣∣∣Aρ

)

= 4 E

(∫ τ

ρ

|g(z)|2dz

∣∣∣∣∣Aρ

)

= 4

∫ τ

ρ

E
(|g(z)|2|Aρ

)
dz

≤ 4

∫ τ

ρ

E

(
sup

ρ≤t≤z
|g(t)|2

∣∣∣∣∣Aρ

)
dz

= 4l(α)−n(α) ∆l(α)+n(α)−1

∫ τ

ρ

Vρ,z,s(α) dz, (6.36)

where again the interchange between expectation and integral holds by Aρ

measurability of τ and Fubini’s theorem.

3. Let us now consider the case with l(α) = 1 and α = (−1). The process

{Iα[g(·)]ρ,t, t ∈ [ρ, T ]} = {
∫ t

ρ

∫

E
g(s, v) p̃φ(dv × ds), t ∈ [ρ, T ]} (6.37)

is a martingale. Then, by Doob’s inequality and the isometry for jump
processes, we obtain

F (−1)
τ = E

(
sup

ρ≤s≤τ

∣∣∣∣
∫ s

ρ

∫

E
g(z, v) p̃φ(dv × dz)

∣∣∣∣
2
∣∣∣∣∣Aρ

)

≤ 4 E

(∣∣∣∣
∫ τ

ρ

∫

E
g(z, v) p̃φ(dv × dz)

∣∣∣∣
2
∣∣∣∣∣Aρ

)

= 4 E

( ∫ τ

ρ

∫

E
|g(z, v)|2 φ(dv) dz

∣∣∣∣∣Aρ

)

= 4

∫ τ

ρ

∫

E
E

(|g(z, v)|2|Aρ

)
φ(dv) dz

≤ 4

∫ τ

ρ

∫

E
E

(
sup

ρ≤t≤z
|g(t, v)|2

∣∣∣∣∣Aρ

)
φ(dv) dz

= 4l(α)−n(α) ∆l(α)+n(α)−1

∫ τ

ρ

Vρ,z,s(α) dz, (6.38)
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since s(α) = 1. This shows that the result of Lemma 6.2 holds for l(α) = 1.

4. Now, let l(α) = n + 1, where α = (j1, . . . , jn+1) and jn+1 = 0. Then, by
applying the Cauchy-Schwarz inequality we obtain

Fα
τ = E

(
sup

ρ≤s≤τ

∣∣∣∣
∫ s

ρ

Iα−[g(·)]ρ,z dz

∣∣∣∣
2
∣∣∣∣∣Aρ

)

≤ E

(
sup

ρ≤s≤τ
(s− ρ)

∫ s

ρ

|Iα−[g(·)]ρ,z|2 dz

∣∣∣∣∣Aρ

)

= E

(
(τ − ρ)

∫ τ

ρ

|Iα−[g(·)]ρ,z|2 dz

∣∣∣∣∣Aρ

)

≤ ∆ E

(∫ τ

ρ

|Iα−[g(·)]ρ,z|2 dz

∣∣∣∣∣Aρ

)

≤ ∆ E

(∫ τ

ρ

sup
ρ≤s≤τ

|Iα−[g(·)]ρ,s|2 dz

∣∣∣∣∣Aρ

)

= ∆ E

(∫ τ

ρ

dz × sup
ρ≤s≤τ

|Iα−[g(·)]ρ,s|2
∣∣∣∣∣Aρ

)

≤ ∆2 E

(
sup

ρ≤s≤τ
|Iα−[g(·)]ρ,s|2

∣∣∣∣∣Aρ

)
. (6.39)

Then, by the inductive hypothesis it follows that

F α
τ ≤ ∆2 4l(α−)−n(α−) ∆l(α−)+n(α−)−1

∫ τ

ρ

Vρ,z,s(α−) dz

= 4l(α)−n(α) ∆l(α)+n(α)−1

∫ τ

ρ

Vρ,z,s(α) dz, (6.40)

where the last line holds considering that l(α) = l(α−)+1, n(α) = n(α−)+1
and s(α) = s(α−).

5. Let us now consider the case when l(α) = n + 1, where α = (j1, . . . , jn+1)
and jn+1 ∈ {1, 2, . . . , m}. The process

{Iα[g(·)]ρ,t, t ∈ [ρ, T ]} (6.41)

is a martingale. Therefore, by Doob’s inequality and Itô’s isometry we
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obtain

Fα
τ = E

(
sup

ρ≤s≤τ

∣∣∣∣
∫ s

ρ

Iα−[g(·)]ρ,z dW jn+1
z

∣∣∣∣
2
∣∣∣∣∣Aρ

)

≤ 4 E

(∣∣∣∣
∫ τ

ρ

Iα−[g(·)]ρ,z dW jn+1
z

∣∣∣∣
2
∣∣∣∣∣Aρ

)

= 4 E

( ∫ τ

ρ

|Iα−[g(·)]ρ,z|2 dz

∣∣∣∣∣Aρ

)

≤ 4 E

(∫ τ

ρ

sup
ρ≤s≤τ

|Iα−[g(·)]ρ,s|2 dz

∣∣∣∣∣Aρ

)

= 4 E

(
(τ − ρ) sup

ρ≤s≤τ
|Iα−[g(·)]ρ,s|2

∣∣∣∣∣Aρ

)

≤ 4 ∆ E

(
sup

ρ≤s≤τ
|Iα−[g(·)]ρ,s|2

∣∣∣∣∣Aρ

)
. (6.42)

By the inductive hypothesis we have

Fα
τ ≤ 4 ∆ 4l(α−)−n(α−) ∆l(α−)+n(α−)−1

∫ τ

ρ

Vρ,z,s(α−) dz

= ∆l(α)+n(α)−1 4l(α)−n(α)

∫ τ

ρ

Vρ,z,s(α) dz, (6.43)

since l(α) = l(α−) + 1, n(α) = n(α−) and s(α) = s(α−).

6. Finally, let us suppose that l(α) = n + 1, where α = (j1, . . . , jn+1) and
jn+1 = −1. The process

{Iα[g(·)]ρ,t, t ∈ [ρ, T ]} (6.44)

is again a martingale. Therefore, by applying Doob’s inequality and the
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isometry for jump processes, we obtain

Fα
τ = E

(
sup

ρ≤s≤τ

∣∣∣∣
∫ s

ρ

∫

E
Iα−[g(·, vs(α))]ρ,z p̃φ(dvs(α) × dz)

∣∣∣∣
2
∣∣∣∣∣Aρ

)

≤ 4 E

(∣∣∣∣
∫ τ

ρ

∫

E
Iα−[g(·, vs(α))]ρ,z p̃φ(dvs(α) × dz)

∣∣∣∣
2
∣∣∣∣∣Aρ

)

= 4 E

(∫ τ

ρ

∫

E
|Iα−[g(·, vs(α))]ρ,z|2 φ(dvs(α)) dz

∣∣∣∣∣Aρ

)

≤ 4 E

(∫ τ

ρ

∫

E
sup

ρ≤s≤τ
|Iα−[g(·, vs(α))]ρ,s|2 φ(dvs(α)) dz

∣∣∣∣∣Aρ

)

= 4 E

(
(τ − ρ)

∫

E
sup

ρ≤s≤τ
|Iα−[g(·, vs(α))]ρ,s|2 φ(dvs(α))

∣∣∣∣∣Aρ

)

≤ 4 ∆

∫

E
E

(
sup

ρ≤s≤τ
|Iα−[g(·, vs(α))]ρ,s|2

∣∣∣∣∣Aρ

)
φ(dvs(α)). (6.45)

By the inductive hypothesis we have

Fα
τ ≤ 4 ∆ 4l(α−)−n(α−) ∆l(α−)+n(α−)−1

∫

E

∫ τ

ρ

Vρ,z,s(α−) dz φ(dvs(α))

= 4l(α)−n(α) ∆l(α)+n(α)−1

∫ τ

ρ

Vρ,z,s(α) dz, (6.46)

since l(α) = l(α−) + 1, n(α) = n(α−) and s(α) = s(α−) + 1, which
completes the proof of Lemma 6.2. ¤

Lemma 6.3 For a given multi-index α ∈ Mm\{v}, a time discretisation (t)∆

with ∆ ∈ (0, 1) and g ∈ Hα let

Vt0,u,s(α) :=

∫

E
. . .

∫

E
E

(
sup

t0≤z≤u
|g(z, v1, . . . , vs(α))|2

∣∣∣∣∣At0

)
φ(dv1) . . . φ(dvs(α)) < ∞

(6.47)
and

Fα
t := E


 sup

t0≤z≤t

∣∣∣∣∣
nz−1∑
n=0

Iα[g(·)]tn,tn+1 + Iα[g(·)]tnz ,z

∣∣∣∣∣

2 ∣∣∣∣∣At0


 . (6.48)

Then

Fα
t ≤

{
(t− t0) ∆2(l(α)−1)

∫ t

t0
Vt0,u,s(α) du when : l(α) = n(α)

4l(α)−n(α)+2 ∆l(α)+n(α)−1
∫ t

t0
Vt0,u,s(α) du when : l(α) 6= n(α)

almost surely, for every t ∈ [t0, T ].
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Proof:

1. By definition (6.22) of nz we get, for z ∈ [tn, tn+1), the relation tnz = tn.
Then, for a multi-index α = (j1, . . . , jn) with jn = 0, we have

nz−1∑
n=0

Iα[g(·)]tn,tn+1 + Iα[g(·)]tnz ,z

=
nz−1∑
n=0

∫ tn+1

tn

Iα−[g(·)]tn,sds +

∫ z

tnz

Iα−[g(·)]tnz ,sds

=
nz−1∑
n=0

∫ tn+1

tn

Iα−[g(·)]tns ,sds +

∫ z

tnz

Iα−[g(·)]tns ,sds

=

∫ z

t0

Iα−[g(·)]tns ,sds. (6.49)

The same type of equality holds analogously for every jn ∈ {−1, 0, 1, . . . ,m}.
2. Let us first consider the case with l(α) = n(α). By the Cauchy-Schwarz

inequality we have

Fα
t = E

(
sup

t0≤z≤t

∣∣∣∣
∫ z

t0

Iα−[g(·)]tnu ,u du

∣∣∣∣
2
∣∣∣∣∣At0

)

≤ E

(
sup

t0≤z≤t
(z − t0)

∫ z

t0

|Iα−[g(·)]tnu ,u|2 du

∣∣∣∣∣At0

)

≤ (t− t0) E

(∫ t

t0

|Iα−[g(·)]tnu ,u|2 du

∣∣∣∣∣At0

)

= (t− t0)

∫ t

t0

E
(|Iα−[g(·)]tnu ,u|2 |At0

)
du

≤ (t− t0)

∫ t

t0

E

(
sup

tnu≤z≤u
|Iα−[g(·)]tnu ,z|2

∣∣∣∣∣At0

)
du

= (t− t0)

∫ t

t0

E

(
E

(
sup

tnu≤z≤u
|Iα−[g(·)]tnu ,z|2

∣∣∣Atnu

)∣∣∣∣∣At0

)
du,

(6.50)

where the last line holds because t0 ≤ tnu a.s. and then At0 ⊆ Atnu
for

u ∈ [t0, t]. Therefore, applying Lemma 6.2 to

E

(
sup

tnu≤z≤u
|Iα−[g(·)]tnu ,z|2

∣∣∣∣∣Atnu

)
(6.51)
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yields

Fα
t ≤ (t− t0) 4l(α−)−n(α−)

×
∫ t

t0

E

(
(u− tnu)l(α−)+n(α−)−1

∫ u

tnu

Vtnu ,z,s(α−) dz

∣∣∣∣∣At0

)
du

≤ (t− t0) 4l(α−)−n(α−)

∫ t

t0

E
(
(u− tnu)l(α−)+n(α−) Vtnu ,u,s(α−)

∣∣∣At0

)
du

≤ (t− t0) 4l(α−)−n(α−)∆l(α−)+n(α−)

∫ t

t0

E
(
Vtnu ,u,s(α−)

∣∣∣At0

)
du, (6.52)

where the last line holds as (u − tnu) ≤ ∆ for u ∈ [t0, t] and t ∈ [t0, T ] .
Since At0 ⊆ Atnu

, we notice that for u ∈ [t0, t]

E
(
Vtnu ,u,s(α−)|At0

)

= E

(∫

E
. . .

∫

E
E

(
sup

tnu≤s≤u
|g(s, v1, . . . , vs(α−))|2

∣∣∣Atnu

)

×φ(dv1) . . . φ(dvs(α−))

∣∣∣∣∣At0

)

=

∫

E
. . .

∫

E
E

(
E

(
sup

tnu≤s≤u
|g(s, v1, . . . , vs(α−))|2

∣∣∣Atnu

)∣∣∣∣∣At0

)

×φ(dv1) . . . φ(dvs(α−))

=

∫

E
. . .

∫

E
E

(
sup

tnu≤s≤u
|g(s, v1, . . . , vs(α−))|2

∣∣∣At0

)
φ(dv1) . . . φ(dvs(α−))

≤
∫

E
. . .

∫

E
E

(
sup

t0≤s≤u
|g(s, v1, . . . , vs(α−))|2

∣∣∣At0

)
φ(dv1) . . . φ(dvs(α−))

= Vt0,u,s(α−). (6.53)

It then follows

Fα
t ≤ (t− t0) 4l(α−)−n(α−) ∆l(α−)+n(α−)

∫ t

t0

Vt0,u,s(α−) du

= (t− t0) ∆2(l(α)−1)

∫ t

t0

Vt0,u,s(α) du, (6.54)

since l(α−) = n(α−), s(α) = s(α−) and this completes the proof for the
case l(α) = n(α).

3. Let us now consider the case with a multi-index α = (j1, . . . , jl) with l(α) 6=
n(α) and jl ∈ {1, . . . , m}. In this case the multiple stochastic integral is a
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martingale. Hence, by Doob’s inequality, Itô’s isometry and Lemma 6.2 we
obtain

Fα
t = E

(
sup

t0≤z≤t

∣∣∣∣
∫ z

t0

Iα−[g(·)]tnu ,u dW jl
u

∣∣∣∣
2

∣∣∣∣∣At0

)

≤ 4 E

(∣∣∣∣
∫ t

t0

Iα−[g(·)]tnu ,u dW jl
u

∣∣∣∣
2

∣∣∣∣∣At0

)

≤ 4

∫ t

t0

E
(
|Iα−[g(·)]tnu ,u|2

∣∣∣At0

)
du

= 4

∫ t

t0

E

(
E

(
|Iα−[g(·)]tnu ,u |2

∣∣∣Atnu

)∣∣∣∣∣At0

)
du

≤ 4

∫ t

t0

E

(
E

(
sup

tnu≤z≤u
|Iα−[g(·)]tnu ,z|2

∣∣∣Atnu

)∣∣∣∣∣At0

)
du

≤ 4 4l(α−)−n(α−)

×
∫ t

t0

E

(
(u− tnu)l(α−)+n(α−)−1

∫ u

tnu

Vtnu ,z,s(α−) dz

∣∣∣∣∣At0

)
du

≤ 4 4l(α−)−n(α−) ∆l(α−)+n(α−)

∫ t

t0

Vt0,u,s(α−) du

= 4l(α)−n(α) ∆l(α)+n(α)−1

∫ t

t0

Vt0,u,s(α−) du

≤ 4l(α)−n(α)+2 ∆l(α)+n(α)−1

∫ t

t0

Vt0,u,s(α) du, (6.55)

where the last passage holds since s(α) = s(α−) and this completes the
proof in this case.

4. Let us now consider the case with a multi-index α = (j1, . . . , jl) with
l(α) 6= n(α) and jl = −1. The multiple stochastic integral is again a
martingale. Therefore, by Doob’s inequality, Lemma 6.2 and steps similar
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to the previous case we obtain

Fα
t = E

(
sup

t0≤z≤t

∣∣∣∣
∫ z

t0

∫

E
Iα−[g(·, vs(α))]tnu ,u p̃φ(dvs(α) × du)

∣∣∣∣
2
∣∣∣∣∣At0

)

≤ 4E

(∣∣∣∣
∫ t

t0

∫

E
Iα−[g(·, vs(α))]tnu ,u p̃φ(dvs(α) × du)

∣∣∣∣
2
∣∣∣∣∣At0

)

= 4

∫ t

t0

∫

E
E

(
|Iα−[g(·, vs(α))]tnu ,u|2

∣∣∣At0

)
φ(dvs(α)) du

= 4

∫ t

t0

∫

E
E

(
E

(
|Iα−[g(·, vs(α))]tnu ,u|2

∣∣∣Atnu

)∣∣∣∣∣At0

)
φ(dvs(α)) du

≤ 4

∫ t

t0

∫

E
E

(
E

(
sup

tnu≤z≤u
|Iα−[g(·, vs(α))]tnu ,z|2

∣∣∣Atnu

) ∣∣∣∣∣At0

)
φ(dvs(α)) du

≤ 4l(α−)−n(α−)+1

×
∫ t

t0

∫

E
E

(
(u− tnu)l(α−)+n(α−)−1

∫ u

tnu

Vtnu ,z,s(α−) dz

∣∣∣∣∣At0

)
φ(dvs(α)) du

≤ 4l(α−)−n(α−)+1 ∆l(α−)+n(α−)

∫ t

t0

∫

E
E

(
Vtnu ,u,s(α−)

∣∣∣At0

)
φ(dvs(α)) du.

(6.56)

Hence, using (6.53) we have

Fα
t ≤ 4l(α−)−n(α−)+1 ∆l(α−)+n(α−)

∫ t

t0

∫

E
Vt0,u,s(α−) φ(dvs(α)) du

= 4l(α)−n(α) ∆l(α)+n(α)−1

∫ t

t0

Vt0,u,s(α) du

≤ 4l(α)−n(α)+2 ∆l(α)+n(α)−1

∫ t

t0

Vt0,u,s(α) du (6.57)

since l(α) = l(α−)+1, n(α) = n(α−), s(α) = s(α−)+1 and this completes
the proof in this case.

5. Finally, we assume that α = (j1, . . . , jl) with l(α) 6= n(α) and jl = 0.
It can be shown that the discrete time process

{
k∑

n=0

Iα[g(·)]tn,tn+1 , k ∈ {0, 1 . . . , nT − 1}} (6.58)

is a discrete time martingale. See Lemma 5.7.1 in (Kloeden & Platen 1999)
for the diffusion case.
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Using Cauchy’s inequality we obtain

Fα
t = E


 sup

t0≤z≤t

∣∣∣∣∣
nz−1∑
n=0

Iα[g(·)]tn,tn+1 + Iα[g(·)]tnz ,z

∣∣∣∣∣

2 ∣∣∣∣∣At0




≤ 2 E


 sup

t0≤z≤t

∣∣∣∣∣
nz−1∑
n=0

Iα[g(·)]tn,tn+1

∣∣∣∣∣

2 ∣∣∣∣∣At0




+2 E

(
sup

t0≤z≤t

∣∣Iα[g(·)]tnz ,z

∣∣2
∣∣∣At0

)
. (6.59)

Applying Doob’s inequality to the first term of the equation (6.59) we get

E


 sup

t0≤z≤t

∣∣∣∣∣
nz−1∑
n=0

Iα[g(·)]tn,tn+1

∣∣∣∣∣

2 ∣∣∣∣∣At0




≤ 4 E




∣∣∣∣∣
nt−1∑
n=0

Iα[g(·)]tn,tn+1

∣∣∣∣∣

2 ∣∣∣∣∣At0




≤ 4 E

([∣∣∣
nt−2∑
n=0

Iα[g(·)]tn,tn+1

∣∣∣
2

+2
∣∣

nt−2∑
n=0

Iα[g(·)]tn,tn+1

∣∣ E
(
|Iα[g(·)]tnt−1,tnt

|
∣∣∣Atnt−1

)

+E
(
|Iα[g(·)]tnt−1,tnt

|2
∣∣∣Atnt−1

) ]∣∣∣∣∣At0

)

≤ 4 E

([
|

nt−2∑
n=0

Iα[g(·)]tn,tn+1|2

+E
(
|Iα[g(·)]tnt−1,tnt

|2
∣∣∣Atnt−1

) ]∣∣∣∣∣At0

)
, (6.60)

where the last line holds because, by the discrete time martingale property
of the involved stochastic integrals, E(Iα[g(·)]tnt−1,tnt

|Atnt−1) = 0.
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Then by applying Lemma 6.2 we obtain

E


 sup

t0≤z≤t

∣∣∣∣∣
nz−1∑
n=0

Iα[g(·)]tn,tn+1

∣∣∣∣∣

2 ∣∣∣∣∣At0




≤ 4 E

([
|

nt−2∑
n=0

Iα[g(·)]tn,tn+1|2

+4l(α)−n(α) ∆l(α)+n(α)−1

∫ tnt

tnt−1

Vtnt−1,u,s(α) du
]∣∣∣∣∣At0

)

≤ 4 E

([
|

nt−3∑
n=0

Iα[g(·)]tn,tn+1|2

+4l(α)−n(α) ∆l(α)+n(α)−1

∫ tnt−1

tnt−2

Vtnt−2,u,s(α) du

+4l(α)−n(α) ∆l(α)+n(α)−1

∫ tnt

tnt−1

Vtnt−1,u,s(α) du
]∣∣∣∣∣At0

)

≤ 4 E

([
|

nt−3∑
n=0

Iα[g(·)]tn,tn+1|2

+4l(α)−n(α) ∆l(α)+n(α)−1

∫ tnt−1

tnt−2

Vtnt−2,u,s(α) du

+4l(α)−n(α) ∆l(α)+n(α)−1

∫ tnt

tnt−1

Vtnt−2,u,s(α) du
]∣∣∣∣∣At0

)
, (6.61)

where the last passage holds since Vtnt−1,u,s(α) ≤ Vtnt−2,u,s(α). Applying this
procedure repetitively and using (6.53) we finally obtain

E


 sup

t0≤z≤t

∣∣∣∣∣
nz−1∑
n=0

Iα[g(·)]tn,tn+1

∣∣∣∣∣

2 ∣∣∣∣∣At0




≤ 4l(α)−n(α)+1 ∆l(α)+n(α)−1 E

(∫ t

t0

Vt0,u,s(α) du

∣∣∣∣∣At0

)

= 4l(α)−n(α)+1 ∆l(α)+n(α)−1

∫ t

t0

Vt0,u,s(α) du. (6.62)

For the second term of equation (6.59), by applying the Cauchy-Schwarz
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inequality, similar steps as the ones used previously and Lemma 6.2, we get

E

(
sup

t0≤z≤t

∣∣Iα[g(·)]tnz ,z

∣∣2
∣∣∣∣∣At0

)

= E

(
sup

t0≤z≤t

∣∣∣∣
∫ z

tnz

Iα−[g(·)]tnz ,u du

∣∣∣∣
2
∣∣∣∣∣At0

)

≤ E

(
sup

t0≤z≤t
(z − tnz)

∫ z

tnz

|Iα−[g(·)]tnz ,u|2 du

∣∣∣∣∣At0

)

≤ ∆

∫ t

t0

E

(
E

(
sup

tnu≤z≤u
|Iα−[g(·)]tnu ,z|2

∣∣∣Atnu

)∣∣∣∣∣At0

)
du

≤ ∆ 4l(α−)−n(α−) ∆l(α−)+n(α−)−1

∫ t

t0

E

(∫ u

tnu

Vtnu ,z,s(α−) dz

∣∣∣∣∣At0

)
du

≤ ∆ 4l(α−)−n(α−) ∆l(α−)+n(α−)−1 ∆

∫ t

t0

Vt0,u,s(α−) du

= 4l(α)−n(α) ∆l(α)+n(α)−1

∫ t

t0

Vt0,u,s(α) du, (6.63)

where the last passage holds since l(α) = l(α−) + 1, n(α) = n(α−) + 1 and
s(α) = s(α−).

Therefore, combining equations (6.62) and (6.63) we finally obtain

Fα
t ≤ 2

(
4l(α)−n(α)+1 ∆l(α)+n(α)−1

∫ t

t0

Vt0,u,s(α) du

+ 4l(α)−n(α) ∆l(α)+n(α)−1

∫ t

t0

Vt0,u,s(α) du

)

≤ 4l(α)−n(α)+2 ∆l(α)+n(α)−1

∫ t

t0

Vt0,u,s(α)du, (6.64)

which completes the proof of Lemma 6.3. ¤

6.3 Moment Estimates for the SDE

We finally need an estimate of the moments of the solution of the SDE (2.2) that
we shall use in the proof of Theorem 6.1.

Theorem 6.4 Suppose that the coefficient functions a(·), b(·) and c(·) of the SDE
(2.2) satisfy the Lipschitz conditions (2.3) and the linear growth conditions (2.4).
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Moreover, let
E(|Xt0|2) < ∞. (6.65)

Then the solution Xt of (2.2) satisfies

E

(
sup

t0≤s≤T
|Xs|2

∣∣∣∣∣At0

)
≤ C

(
1 + E

(|Xt0|2
) )

(6.66)

for t ∈ [t0, T ] with T < ∞, where C is a positive constant depending only on
(T − t0) and the linear growth bound.

A proof of this result, for the more general case of SDEs driven by semimartin-
gales, can be found in Protter (2003).

6.4 Proof of Theorem 6.1

We can now present the proof of our main result, the Theorem 6.1.

Proof:

1. With the Wagner-Platen expansion (6.21) we can represent the solution of
the SDE (2.2) as

Xτ =
∑

α∈Aγ

Iα[fα(ρ,Xρ)]ρ,τ +
∑

α∈B(Aγ)

Iα[fα(·, X·)]ρ,τ , (6.67)

for any two stopping times ρ and τ with 0 ≤ ρ ≤ τ ≤ T a.s. Therefore, we
can express the solution of the SDE (2.2) at time t ∈ [0, T ] as

Xt = X0 +
∑

α∈Aγ\{v}

{
nt−1∑
n=0

Iα[fα(tn, Xtn)]tn,tn+1 + Iα[fα(tnt , Xtnt
)]tnt ,t

}

+
∑

α∈B(Aγ)

{
nt−1∑
n=0

Iα[fα(·, X·)]tn,tn+1 + Iα[fα(·, X·)]tnt ,t

}
, (6.68)

where nt is defined as in equation (6.22).

We recall that the order γ strong Taylor approximation Y ∆ at time t ∈ [0, T ]
is given by

Y ∆
t = Y ∆

0 +
∑

α∈Aγ\{v}

{
nt−1∑
n=0

Iα[fα(tn, Y
∆
tn )]tn,tn+1 + Iα[fα(tnt , Y

∆
tnt

)]tnt ,t

}
.

(6.69)
From the estimate of Theorem 6.4 we have

E

(
sup

0≤s≤T
|Xs|2

∣∣∣∣∣A0

)
≤ C

(
1 + E

(|X0|2
) )

. (6.70)
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2. We can also show a similar bound for the approximation Y ∆. By definition
(6.69) we have

E

(
sup

0≤s≤T
|Y ∆

s |2
∣∣∣∣∣A0

)
≤ E

(
sup

0≤s≤T
(1 + |Y ∆

s |2)
∣∣∣∣∣A0

)

≤ E

(
sup

0≤s≤T

(
1 +

∣∣∣Y ∆
0 +

∑

α∈Aγ\{v}

{ ns−1∑
n=0

Iα[fα(tn, Y
∆
tn )]tn,tn+1

+Iα[fα(tns , Y
∆
tns

)]tns ,s

}∣∣∣
2 )∣∣∣∣∣A0

)

≤ E

(
sup

0≤s≤T

(
1 + 2 |Y ∆

0 |2 + 2
∣∣∣

∑

α∈Aγ\{v}

{ ns−1∑
n=0

Iα[fα(tn, Y ∆
tn )]tn,tn+1 + Iα[fα(tns , Y

∆
tns

)]tns ,s

}∣∣∣
2 )∣∣∣∣∣A0

)

≤ C1

(
1 +

∣∣Y ∆
0

∣∣2
)

+ 2 K
∑

α∈Aγ\{v}
E

(
sup

0≤s≤T

∣∣∣
ns−1∑
n=0

Iα[fα(tn, Y
∆
tn )]tn,tn+1 + Iα[fα(tns , Y

∆
tns

)]tns ,s

∣∣∣
2

∣∣∣∣∣A0

)
,

(6.71)

where K is a positive constant depending only on the strong order γ of the
approximation. By Lemma 6.3 and the linear growth condition (6.29) we
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obtain

E

(
sup

0≤s≤T
|Y ∆

s |2
∣∣∣A0

)
≤ C1(1 + |Y ∆

0 |2)

+2 K1

∑

α∈Aγ\{v}

{ ∫ T

0

∫

E
. . .

∫

E

×E

(
sup

0≤s≤u

∣∣fα(s, Y ∆
s )

∣∣2
∣∣∣∣∣A0

)
φ(dv1) . . . φ(dvs(α)) du

}

≤ C1

(
1 + |Y ∆

0 |2
)

+ 2 K1

×
∑

α∈Aγ\{v}

{ ∫

E
. . .

∫

E
K2(v

1, . . . , vs(α))φ(dv1) . . . φ(dvs(α))

×
∫ T

0

E

(
sup

0≤s≤u

(
1 + |Y ∆

s |2
)
∣∣∣∣∣A0

)
du

}

≤ C1

(
1 + |Y ∆(0)|2) + C2

∫ T

0

E

(
sup

0≤s≤u

(
1 + |Y ∆

s |2
)
∣∣∣∣∣A0

)
du.

(6.72)

Then by applying the Gronwall inequality we obtain

E
(

sup
0≤s≤T

|Y ∆
s |2

∣∣∣A0

)
≤ C (1 + |Y ∆

0 |2), (6.73)

where C is a positive finite constant.

3. Let us now analyze the mean square error of the order γ strong Taylor
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approximation Y ∆. By (6.68), (6.69) and Cauchy’s inequality we obtain

Z(t) := E

(
sup

0≤s≤t
|Xs − Y ∆

s |2
∣∣∣∣∣A0

)

= E

(
sup

0≤s≤t

∣∣∣X0 − Y ∆
0

+
∑

α∈Aγ\{v}

{ ns−1∑
n=0

Iα[fα(tn, Xtn)− fα(tn, Y ∆
tn )]tn,tn+1

+Iα[fα(tns , Xtns
)− fα(tns , Y

∆
tns

)]tns ,s

}

+
∑

α∈B(Aγ)

{ ns−1∑
n=0

Iα[fα(·, X·)]tn,tn+1 + Iα[fα(·, X·)]tns ,s

}∣∣∣
2

∣∣∣∣∣A0

)

≤ C3





∣∣X0 − Y ∆
0

∣∣2 +
∑

α∈Aγ\{v}
Sα

t +
∑

α∈B(Aγ)

Uα
t



 (6.74)

for all t ∈ [0, T ], where Sα
t and Uα

t are defined as

Sα
t := E

(
sup

0≤s≤t

∣∣∣
ns−1∑
n=0

Iα

[
fα(tn, Xtn)− fα(tn, Y

∆
tn )

]
tn,tn+1

+Iα

[
fα(tns , Xtns

)− fα(tns , Y
∆
tns

)
]
tns ,s

∣∣∣
2

∣∣∣∣∣A0

)
, (6.75)

Uα
t := E

(
sup

0≤s≤t

∣∣∣
ns−1∑
n=0

Iα[fα(·, X·)]tn,tn+1 + Iα[fα(·, X·)]tns ,s

∣∣∣
2

∣∣∣∣∣A0

)
.

(6.76)
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4. By using again Lemma 6.3 and Lipschitz condition (6.27) we obtain

Sα
t = E

(
sup

0≤s≤t

∣∣∣
ns−1∑
n=0

Iα

[
fα(tn, Xtn)− fα(tn, Y

∆
tn )

]
tn,tn+1

+Iα

[
fα(tns , Xtns

)− fα(tns , Y
∆
tns

)
]
tns ,s

∣∣∣
2

∣∣∣∣∣A0

)

≤ C4

∫ t

0

∫

E
. . .

∫

E
E

(
sup

0≤s≤u
|fα(tns , Xtns

)− fα(tns , Y
∆
tns

)|2
∣∣∣∣∣A0

)

×φ(dv1) . . . φ(dvs(α))du

≤ C4

∫

E
. . .

∫

E

(
K1(v

1, . . . , vs(α))
)2

φ(dv1) . . . φ(dvs(α))

×
∫ t

0

E

(
sup

0≤s≤u
|Xtns

− Y ∆
tns
|2

∣∣∣∣∣A0

)
du

≤ C5

∫ t

0

Z(u) du. (6.77)

Applying again Lemma 6.3 and the linear growth condition (6.29) we obtain

Uα
t = E

(
sup

0≤s≤t

∣∣∣
ns−1∑
n=0

Iα[fα(·, X·)]tn,tn+1 + Iα[fα(·, X·)]tns ,s

∣∣∣
2

∣∣∣∣∣A0

)

≤ C5 ∆ψ(α)

∫ t

0

∫

E
. . .

∫

E
E

(
sup

0≤s≤u
|fα(s,Xs)|2

∣∣∣∣∣A0

)
φ(dv1) . . . φ(dvs(α))du

≤ C5 ∆ψ(α)

∫

E
. . .

∫

E
K2(v

1, . . . , vs(α))φ(dv1) . . . φ(dvs(α))

×
∫ t

0

E

(
sup

0≤s≤u
(1 + |Xs|2)

∣∣∣∣∣A0

)
du

≤ C6 ∆ψ(α)

(
t +

∫ t

0

E
(

sup
0≤s≤u

|Xs|2
∣∣∣A0

)
du

)
, (6.78)

where

ψ(α) =

{
2l(α)− 2 : l(α) = n(α)

l(α) + n(α)− 1 : l(α) 6= n(α).

Since we are now considering α ∈ B(Aγ), we have that l(α) ≥ γ + 1 when
l(α) = n(α) and l(α)+n(α) ≥ 2γ +1 when l(α) 6= n(α), so that ψ(α) ≥ 2γ.

45



Therefore, applying estimate (6.66) of Theorem 6.4 we obtain

Uα
t ≤ C6 ∆2γ

(
t +

∫ t

0

C1(1 + |X0|2)du

)

≤ C7 ∆2γ (1 + |X0|2). (6.79)

5. Combining equations (6.74), (6.77) and (6.79) we obtain

Z(t) ≤ C8

{
|X0 − Y ∆

0 |2 + C9 ∆2γ
(
1 + |X0|2

)
+ C10

∫ t

0

Z(u)du

}
. (6.80)

By equations (6.70) and (6.73) Z(t) is bounded. Therefore, by the Gronwall
inequality we obtain

Z(T ) ≤ K4

(
1 + |X0|2

)
∆2γ + K5

(|X0 − Y ∆
0 |2

)
. (6.81)

Finally, by equation (6.26), we obtain

√
E( sup

0≤s≤T
|Xs − Y ∆

s |2 |A0) =
√

Z(T ) ≤ K3 ∆γ, (6.82)

which completes the proof of Theorem 6.1. ¤

7 General Strong Schemes

Now we consider more general strong schemes, the strong Itô schemes, constructed
with the same multiple stochastic integrals underlying the scheme (6.24), but with
different coefficients. Under particular conditions on these coefficients, the strong
Itô schemes converge to the solution X of the SDE (2.2) with the same strong
order γ of the corresponding strong Taylor schemes. Therefore, we can construct
more general strong approximations of any given order, in particular, derivative
free and implicit schemes.

For a time discretization with maximum step size ∆ ∈ (0, 1), as the one introduced
in Section 6.1, we define the order γ strong Itô scheme by the vector equation

Y ∆
n+1 = Y ∆

n +
∑

α∈Aγ\{v}
Iα [hα,n]tn,tn+1

+ Rn , (7.1)

with n ∈ {0, 1, . . . , nT −1}, if the coefficients hα,n are Atn-measurable and satisfy
the estimate

E

(
max

0≤n≤nT−1
|hα,n − fα(tn, Yn)|2

)
≤ C(u) ∆2γ−ψ(α), (7.2)

46



for all α ∈ Aγ\{v}, where C : Es(a) → R is a φ(du)- integrable function. Here

ψ(α) =

{
2l(α)− 2 : l(α) = n(α)

l(α) + n(α)− 1 : l(α) 6= n(α),

and the Rn satisfy

E


 max

1≤n≤nT

∣∣∣∣∣
∑

0≤k≤n−1

Rk

∣∣∣∣∣

2

 ≤ K ∆2γ. (7.3)

We can now formulate a convergence theorem that will enable us to construct
strong Itô approximations of any given strong order, including derivative free and
drift-implicit schemes.

Theorem 7.1 Let Y ∆ = {Y ∆
n , n ∈ {0, 1, . . . , nT}} be a discrete time approxi-

mation generated via the strong Itô scheme (7.1), for a given time discretisation
with maximum time step size ∆ ∈ (0, 1), and for γ ∈ {0.5, 1, 1.5, 2, . . .}. If the
conditions of Theorem 6.1 are satisfied, then

√
E

(
max

0≤n≤nT

|Xtn − Y ∆
n |2

)
≤ K ∆γ. (7.4)

Proof: Since we have already proved in Theorem 6.1 that the strong Taylor
scheme (6.24) converges with strong order γ, here it will be sufficient to show
that the Itô scheme (7.1) converges with strong order γ to the Taylor scheme.

With Ỹ ∆ we denote here the strong Taylor scheme (6.24). Let us also assume,

for simplicity, that Ỹ0 = Y0. Then applying Jensen’s inequality and Cauchy’s

47



inequality, we obtain for all t ∈ [0, T ] the estimate

Ht := E

(
max

1≤n≤nt

∣∣∣Ỹ ∆
n − Y ∆

n

∣∣∣
2
)

= E


 max

1≤n≤nt

∣∣∣∣∣∣

n−1∑

k=0

∑

α∈Aγ\{v}
Iα

[
fα(tk, Ỹ

∆
k )

]
tk,tk+1

−
n−1∑

k=0


 ∑

α∈Aγ\{v}
Iα [hα,k]tk,tk+1

+ Rn




∣∣∣∣∣∣

2 


≤ K1

∑

α∈Aγ\{v}



E


 max

1≤n≤nt

∣∣∣∣∣
n−1∑

k=0

Iα

[
fα(tk, Ỹ

∆
k )− fα(tk, Y

∆
k )

]
tk,tk+1

∣∣∣∣∣

2



+E


 max

1≤n≤nt

∣∣∣∣∣
n−1∑

k=0

Iα

[
fα(tk, Y

∆
k )− hα,k

]
tk,tk+1

∣∣∣∣∣

2







+K1 E


 max

1≤n≤nt

∣∣∣∣∣
n−1∑

k=0

Rn

∣∣∣∣∣

2

 . (7.5)

Applying Lemma 6.3, condition (7.3), the Lipschitz condition (6.27) and condition
(7.2) yields

Ht ≤ K2

∑

α∈Aγ\{v}

{ ∫ t

0

∫

E
. . .

∫

E

(
E

(
max

1≤n≤nu

|fα(tk, Ỹ
∆
k )− fα(tk, Y

∆
k )|2)

+E
(

max
1≤n≤nu

|fα(tk, Y
∆
k )− hα,n

)|2)
)
φ(dv1) . . . φ(dvs(α)) du

}
∆ψ(α) + K3∆

2γ

≤ K5

∫ t

0

E
(

max
1≤n≤nu

|Ỹ ∆
k − Y ∆

k |2
)
du×

∑

α∈Aγ\{v}
∆ψ(α) + K6 ∆2γ

≤ K7

∫ t

0

Hu du + K6 ∆2γ, (7.6)

where the last inequality holds since ∆ ∈ (0, 1). With the estimate of Theorem
6.4 and a similar estimate on the numerical solution Y ∆, one can show that Ht

is bounded. Therefore, by applying the Gronwall inequality to (7.6), we obtain

Ht ≤ K5 ∆2γ eK7t. (7.7)

Since we assume, for simplicity, Ỹ ∆
0 = Y ∆

0 , we have

E( max
0≤n≤nT

|Ỹ ∆
n − Y ∆

n |2 ) ≤ K ∆2γ. (7.8)
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Finally, by the estimate of Theorem 6.1 we obtain

√
E( max

0≤n≤nT

|Xtn − Y ∆
n |2 ) =

√
E( max

0≤n≤nT

|Xtn − Ỹ ∆
n + Ỹ ∆

n − Y ∆
n |2 ) ≤ K ∆γ,

(7.9)
which finalises the proof of Theorem 7.1. ¤

7.1 Derivative Free Schemes

The strong Itô scheme (7.1) and the related convergence Theorem 7.1 allow us to
asses the strong order of convergence of general approximations. In this section
we show how it is possible to rewrite derivative free schemes, as the ones presented
in Section 3.2, as strong Itô schemes.

We recall here that the explicit order 1.0 strong Taylor scheme, presented in
Section 3.2, is given as

Yn+1 = Yn + a(Yn)∆ + b(Yn)∆Wn +

∫ tn+1

tn

∫

E
c(Yn, v) pφ(dv × ds)

+
1√
∆

{
b(Y n)− b(Yn)

} ∫ tn+1

tn

∫ s2

tn

dW (s1) dW (s2)

+

∫ tn+1

tn

∫

E

∫ s2

tn

1√
∆

{
c(Y n, v)− c(Yn, v)

}
dW (s1) pφ(dv × ds2)

+

∫ tn+1

tn

∫ s2

tn

∫

E

{
b(Yn + c(Yn, v))− b(Yn)

}
pφ(dv × ds1) dW (s2)

+

∫ tn+1

tn

∫

E

∫ s2

tn

∫

E

{
c(Yn + c(Yn, v2), v1)− c(Yn, v1)

}

× pφ(dv1 × ds1) pφ(dv2 × ds2), (7.10)

with the supporting value

Y n = Yn + b(Yn)
√

∆. (7.11)

From the deterministic Taylor expansion, we obtain

b(Y n) = b(Yn) + b′(Yn)
{

Y n − Yn

}
+

b′′
(
Yn + θ(Y n − Yn)

)

2

{
Y n − Yn

}2

, (7.12)

and

c(Y n, v) = c(Yn, v) + c′(Yn, v)
{

Y n − Yn

}
+

c′′
(
Yn + θ(Y n − Yn), v

)

2

{
Y n − Yn

}2

,

(7.13)
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with

b′(x) :=
db(x)

dx
and b′′(x) :=

d2b(x)

dx2
, (7.14)

c′(x, v) :=
∂c(x, v)

∂x
and c′′(x, v) :=

∂2c(x, v)

∂x2
(7.15)

for every v ∈ E , where θ ∈ (0, 1).

Therefore, we can rewrite the scheme (7.10) as

Yn+1 = Yn + I(0)[h(0),n]tn,tn+1 + I(1)[h(1),n]tn,tn+1 + I(−1)[h(−1),n]tn,tn+1

+I(1,1)[h(1,1),n]tn,tn+1 + I(1,−1)[h(1,−1),n]tn,tn+1

+I(−1,1),n[h(−1,1),n]tn,tn+1 + I(−1,−1)[h(−1,−1),n]tn,tn+1 , (7.16)

with

h(0),n = a(Yn), h(1),n = b(Yn), h(−1),n = c(Yn, v),

h(1,−1),n =

{
c(Y n, v)− c(Yn, v)

}
√

∆
, h(−1,1),n = b

(
Yn + c(Yn, v)

)
− b

(
Yn

)
,

h(−1,−1),n = c
(
Yn + c(Yn, v2), v1

)
− c

(
Yn, v1

)
, h(1,1),n =

{
b(Y n)− b(Yn)

}
√

∆
.

(7.17)

The coefficients hα,n are different from the coefficients fα,n of the order 1.0 strong
Taylor scheme (3.6), only for α = (1, 1) and α = (1,−1). Therefore, to prove that
the scheme (7.10) is an order 1.0 strong Itô scheme, it remains to check condition
(7.2) for these two coefficients.

By the linear growth condition (6.29) of Theorem 6.1, we have

∣∣∣b(Yn)2b′′
(
Yn + θ b(Yn)

√
∆

)∣∣∣
2

≤ K1(1 + |Yn|4) K2

(
1 + |Yn|2

)

= C1

(
1 + |Yn|2 + |Yn|4 + |Yn|6

)
. (7.18)

In a similar way we also obtain

∣∣∣b(Yn)2c′′
(
Yn + θ b(Yn)

√
∆, v

)∣∣∣
2

≤ C2(v)
(
1 + |Yn|2 + |Yn|4 + |Yn|6

)
, (7.19)

where C2(v) : E → R is a φ(dv)- integrable function.

Following similar steps as the ones used in the first part of the proof of Theorem
6.1, we can show that

E

(
max

0≤n≤nT−1
|Yn|2 q

)
≤ K

(
1 + E(|Y0|2q)

)
, (7.20)
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for q ∈ N. Therefore, assuming E(|Y0|6) < ∞, by conditions (7.18), (7.19), and
(7.20), we obtain

E

(
max

0≤n≤nT−1

∣∣h(1,1),n − f(1,1)(tn, Yn)
∣∣2

)
≤ E

(
max

0≤n≤nT−1

∣∣∣∣
b(Yn)2b′′(Yn)

2

√
∆

∣∣∣∣
2
)

≤ K∆
(
1 + E(|Y0|6)

)

≤ C ∆2 γ−ψ(α). (7.21)

We also have

E

(
max

0≤n≤nT−1

∣∣h(1,−1),n − f(1,1)(tn, Yn)
∣∣2

)
≤ C(v) ∆2 γ−ψ(α), (7.22)

where C(v) : E → R is a φ(dv)- integrable function, which shows that the scheme
(7.10) is a strong Itô scheme of order γ = 1.0.

7.2 Implicit Schemes

As explained in Section 3.3, for any strong Taylor scheme of order γ it is possible
to obtain a drift-implicit scheme of the same strong order of convergence. To
avoid problems due to the reciprocal of Gaussian random variables, one can, in
general, introduce implicitness only in the drift terms. Drift-implicit schemes of
order γ can be derived by an application of the Wagner-Platen expansion to the
drift terms of a correspondent strong Taylor scheme of order γ. If we apply the
Wagner-Platen expansion to the drift term a(x) we can write

a(Xt) = a(Xt+∆)− L0a(Xt)∆− L1a(Xt) (W (t + ∆)−W (t))

−L−1a(Xt) (pφ(t + ∆)− pφ(t))−R1(t), (7.23)

where

R1(t) =

∫ t+∆

t

{∫ s

t

L0L0a(Xu)du +

∫ s

t

L1L0a(Xu)dWu

+

∫ s

t

∫

E
L−1L0a(Xu)pφ(dv × du)

}
ds

+

∫ t+∆

t

{∫ s

t

L0L1a(Xu)du +

∫ s

t

L1L1a(Xu)dWu

+

∫ s

t

∫

E
L−1L1a(Xu)pφ(dv1 × du)

}
dWs

+

∫ t+∆

t

{∫ s

t

L0L−1a(Xu)du +

∫ s

t

L1L−1a(Xu)dWu

+

∫ s

t

∫

E
L−1L−1a(Xu)pφ(dv1 × du)

}
pφ(dv2 × ds), (7.24)
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and the operators L0, L1 and L−1 are defined in (6.12), (6.13) and (6.14), respec-
tively.

For any θ ∈ [0, 1], we can rewrite the Euler scheme (3.3) as

Yn+1 = Yn + {θ a(Yn) + (1− θ) a(Yn)}∆ + b(Yn)∆Wn

+

∫ tn+1

tn

∫

E
c(Yn, v) pφ(dv × ds), (7.25)

and by replacing the first drift coefficient a(Yn) with its implicit expansion (7.23),
we obtain

Yn+1 = Yn +
{

θ a(Yn+1) + (1− θ) a(Yn)
}

∆ + b(Yn)∆Wn

+

∫ tn+1

tn

∫

E
c(Yn, v)pφ(dv × ds)

−
{

L0a(Yn)∆ + L1a(Yn)∆Wn + L−1a(Yn)∆pn + R1(t)
}

θ ∆.

(7.26)

However, the terms in the last line of equation (7.26) are not necessary for a
scheme with strong order γ = 0.5. Therefore, they can be discarded when deriving
the implicit Euler scheme (3.28).

By applying the same procedure to every time integral appearing in a higher
order strong Taylor scheme it is possible to derive higher order implicit schemes
as, for instance, the drift-implicit order 1.0 strong scheme (3.29).

To prove the strong order of convergence of drift-implicit schemes it is sufficient
to show that one can rewrite these as strong Itô schemes. The drift-implicit Euler
scheme, for instance, can be written as an order 0.5 strong Itô scheme given by

Yn+1 = Yn + I(0)[h(0),n]tn,tn+1 + I(1)[h(1),n]tn,tn+1 + I(−1)[h(−1),n]tn,tn+1 + Rn (7.27)

with
h(0),n = a(Yn), h(1),n = b(Yn), h(−1),n = c(Yn, v), (7.28)

and
Rn = θ ∆ (a(Yn+1)− a(Yn)) . (7.29)

Since the coefficients hα,n are the same as the ones employed in the Euler scheme
(3.3), we have only to check condition (7.3) for the remainder term Rn. Following
similar steps as the ones used in the first part of the proof of Theorem 6.1, we
can show that

E

(
max

0≤n≤nT−1
|Yn|2

)
≤ K

(
1 + E(|Y0|2)

)
. (7.30)
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By applying Jensen’s inequality, the Chauchy-Schwarz inequality, the linear growth
condition (2.4) and the estimate (7.30), we obtain

E


 max

1≤n≤nT

∣∣∣∣∣
∑

0≤k≤n−1

Rk

∣∣∣∣∣

2

 = E


 max

1≤n≤nT

∣∣∣∣∣
∑

0≤k≤n−1

θ ∆
(
a(Yk+1)− a(Yk)

)
∣∣∣∣∣

2



≤ K ∆2 E

(
max

1≤n≤nT

∑

0≤k≤n−1

(
2 |a(Yk+1)|2 + 2 |a(Yk)|2

))

≤ K ∆2

{
K1 + E

( ∑

0≤k≤nT−1

(
2 |Yk+1|2 + 2 |Yk|2

))}

≤ K∆2
(
1 + E(|Y0|2)

)

≤ C ∆2γ. (7.31)

Therefore, the convergence of the drift-implicit Euler scheme follows from The-
orem 7.1 since we have shown that it can be rewritten as a strong Itô scheme
of order 0.5. In a similar way it is possible to show that the drift-implicit order
γ = 1.0 strong Taylor scheme (3.29) can be rewritten as an order γ = 1.0 strong
Itô scheme.

8 Jump Adapted Schemes

In this section we present a convergence theorem for jump adapted approxima-
tions that allows us to asses the strong order of convergence of the schemes
presented in Section 4.

We consider here a jump adapted time discretisation 0 = t0 < t1 < . . . < tN =
T with maximum step size ∆ ∈ (0, 1) as suggested in Platen (1982a). The
term “jump adapted” means that the time discretisation includes all the jump
times {τ1, τ2, . . .} of the Poisson measure pφ. A maximum step size ∆ ∈ (0, 1),
means that for every n ∈ {0, 1, 2, . . . , nT − 1} P (tn+1 − tn ≤ ∆) = 1 and, if the
discretisation time tn+1 is not a jump time, then tn+1 is Atn-measurable. We also
require to have a finite number of time discretisation points, that means nt < ∞
a.s. for t ∈ [0, T ], where nt is defined in (6.22). For instance, the superposition
of the jump times to an equidistant time discretisation, as presented in Section
4, satisfies these assumptions.

As explained in Section 4, by construction the jumps arise only at discretisation
points. Therefore, between discretisation points we can approximate the stocha-
stic process X with a strong Taylor scheme for diffusions. For this reason we use
here a slightly modified notation from the one introduced in Section 6, as will be
outlined below.
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For m ∈ N the set of all multi-indices α that do not include components equal
to −1 is now denoted by

Mm = {(j1, . . . , jl) : ji ∈ {0, 1, 2, . . . , l}, i ∈ {1, 2, . . . , l} for l ∈ N} ∪ {v}, (8.1)

where v is the multi-index of length zero.

Let L0
be the set of functions f(t, x) : [0, T ] × Rd −→ Rd from C1,2 and Lk

, for
k ∈ {1, . . . , m}, the set of functions f(t, x) with partial derivatives ∂

∂xi f(t, x), i ∈
{1, . . . , d}. We also introduce the following operators for a function f(t, x) ∈ Lk

,
with k ∈ {0, 1, . . . , m}:

L
(0)

f(t, x) :=
∂

∂t
f(t, x) +

d∑
i=1

ai(t, x)
∂

∂xi
f(t, x)

+
1

2

d∑
i,r=1

m∑
j=1

bi,j(t, x)br,j(t, x)
∂2

∂xi∂xj
f(t, x) (8.2)

and

L
(k)

f(t, x) :=
d∑

i=1

bi,k(t, x)
∂

∂xi
f(t, x), for k ∈ {1, . . . , m} (8.3)

for all t ∈ [0, T ] and x ∈ Rd.

For all α = (j1, . . . , jl(α)) ∈ Mm and a function f : [0, T ]× Rd −→ Rd, we define

recursively the Itô coefficient functions fα

fα(t, x) :=





f
(
t, x

)
for l(α) = 0,

f
(
t, a(t, x)

)
for l(α) = 1, j1 = 0,

f
(
t, bj1(t, x)

)
for l(α) = 1, j1 ∈ {1, . . . , m},

L
(j1)

f−α(t, x) for l(α) ≥ 2, j1 ∈ {0, . . . , m},

(8.4)

assuming that the coefficients of the SDE (2.2) satisfy the conditions of smooth-
ness and integrability needed for the operators in (8.4) to be well defined.

Given a set A ⊂Mm, we also define the remainder set B(A) of A by

B(A) = {α ∈Mm\A : −α ∈ A}. (8.5)

Moreover, for every γ ∈ {0.5, 1, 1.5, 2, . . .} we define the hierarchical set

Aγ = {α ∈M : l(α) + n(α) ≤ 2γ or l(α) = n(α) = γ +
1

2
}. (8.6)

Then for a jump adapted time discretisation, with maximum time step size ∆ ∈
(0, 1), we define the jump adapted order γ strong Taylor scheme by

Y tn+1− = Y tn +
∑

α∈Aγ\{v}
fα(tn, Y tn)Iα (8.7)
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and

Y tn+1 = Y tn+1− +

∫

E
c(tn−, Y tn+1−, v) pφ(dv × {tn+1}), (8.8)

where Iα is the multiple stochastic integral of the multi-index α over the time
period (tn, tn+1] and n ∈ {0, 1, . . . , nT − 1}.
As in Section 6.1, to asses the order of strong convergence of these schemes, we
define through a specific interpolation the jump adapted order γ strong Taylor
approximation by

Y t =
∑

α∈Aγ\{v}
Iα[fα(tnt , Y tnt

)]tnt ,t (8.9)

since there are no jumps between grid points. We can now formulate a conver-
gence theorem for jump adapted schemes.

Theorem 8.1 For a given γ ∈ {0.5, 1, 1.5, 2, . . . }, let Y
∆

= {Y ∆

t , t ∈ [0, T ]} be
the order γ jump adapted strong Taylor approximation corresponding to a jump
adapted time discretisation with maximum step size ∆ ∈ (0, 1). We assume that

E(|X0|2) < ∞ and E(|X0 − Y
∆

0 |2) ≤ C ∆2γ. (8.10)

Moreover, suppose that the coefficient functions fα satisfy the following condi-
tions:

For α ∈ Aγ, t ∈ [0, T ] and x, y ∈ Rd, the coefficient fα satisfies the Lipschitz type
condition ∣∣fα(t, x)− fα(t, y)

∣∣ ≤ K1 |x− y|. (8.11)

For all α ∈ Aγ

⋃
B(Aγ) we assume

f−α ∈ C1,2 and fα ∈ Hα, (8.12)

and for α ∈ Aγ

⋃B(Aγ), t ∈ [0, T ] and x ∈ Rd, we require

∣∣fα(t, x)
∣∣2 ≤ K2 (1 + |x|2). (8.13)

Then the estimate
√

E( sup
0≤s≤T

|Xs − Y
∆

s |2 |A0) ≤ K3 ∆γ (8.14)

holds, where the constant K3 does not depend on ∆.
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Proof: Since the jump adapted time discretisation contains all jump points of
the solution X of the SDE (2.2), with the aid of the Wagner-Platen expansion
for diffusion processes we can write

Xt = X0 +
∑

α∈Aγ\{v}

{ nt−1∑
n=0

Iα[fα(tn, Xtn)]tn,tn+1 + Iα[fα(tnt , Xtnt
)]tnt ,t

}

+
∑

α∈B(Aγ)

{ nt−1∑
n=0

Iα[fα(·, X·)]tn,tn+1 + Iα[fα(·, X·)]tnt ,t

}

+

∫ t

0

∫

E
c(tns−, Xtns−, v) pφ(dv × ds), (8.15)

for t ∈ [0, T ].

The jump adapted order γ strong Taylor scheme can be written as

Y t = Y 0 +
∑

α∈Aγ\{v}

{ nt−1∑
n=0

Iα[fα(tn, Y tn)]tn,tn+1 + Iα[fα(tnt , Y tnt
)]tnt ,t

}

+

∫ t

0

∫

E
c(tns−, Y tns−, v) pφ(dv × ds), (8.16)

for every t ∈ [0, T ].

From the estimate of Theorem 6.4 we have

E

(
sup

0≤s≤T
|Xs|2

∣∣∣A0

)
≤ C

(
1 + E

(|X0|2
) )

. (8.17)

Moreover, with similar steps as the ones used in the first part of the proof of
Theorem 6.1, we can show the following estimate

E

(
sup

0≤s≤T
|Y ∆

s |2
∣∣∣A0

)
≤ C

(
1 + E

(
|Y ∆

0 |2
))

. (8.18)
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The mean square error is given by

Z(t) := E

(
sup

0≤s≤t
|Xs − Y

∆

s |2
∣∣∣∣∣A0

)

= E

(
sup

0≤s≤t

∣∣∣X0 − Y
∆

0

+
∑

α∈Aγ\{v}

{ ns−1∑
n=0

Iα[fα(tn, Xtn)− fα(tn, Y
∆

tn)]tn,tn+1

+Iα[fα(tns , Xtns
)− fα(tns , Y

∆

tns
)]tns ,s

}

+
∑

α∈B(Aγ)

{ ns−1∑
n=0

Iα[fα(·, X·)]tn,tn+1 + Iα[fα(·, X·)]tns ,s

}

+

∫ s

0

∫

E

{
c(tnu−, Xtnu−, v)− c(tnu−, Y tnu−, v)

}
pφ(dv × du)

∣∣∣
2

∣∣∣∣∣A0

)

≤ C3





∣∣∣X0 − Y
∆

0

∣∣∣
2

+
∑

α∈Aγ\{v}
Sα

t +
∑

α∈B(Aγ)

Uα
t + Pt



 (8.19)

for all t ∈ [0, T ], where Sα
t , Uα

t and Pt are defined by

Sα
t := E

(
sup

0≤s≤t

∣∣∣
ns−1∑
n=0

Iα

[
fα(tn, Xtn)− fα(tn, Y

∆

tn)
]

tn,tn+1

+Iα

[
fα(tns , Xtns

)− fα(tns , Y
∆

tns
)
]

tns ,s

∣∣∣
2

∣∣∣∣∣A0

)
, (8.20)

Uα
t := E

(
sup

0≤s≤t

∣∣∣
ns−1∑
n=0

Iα[fα(·, X·)]tn,tn+1 + Iα[fα(·, X·)]tns ,s

∣∣∣
2

∣∣∣∣∣A0

)
,

(8.21)

and

Pt := E

(
sup

0≤s≤t

∣∣∣
∫ s

0

∫

E

{
c(tnu−, Xtnu−, v)− c(tnu−, Y tnu−, v)

}
pφ(dv × du)

∣∣∣
2

∣∣∣∣∣A0

)
.

(8.22)

Therefore, the terms Sα
t and Uα

t can be estimated as in the proof of Theorem 6.1,
while for Pt, applying Jensen’s and Doob’s inequalities, Itô’s isometry for jump
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processes, the Chauchy-Schwarz inequality and the Lipschitz condition (2.3), we
obtain

Pt = E

(
sup

0≤s≤t

∣∣∣∣
∫ s

0

∫

E

{
c(tnu−, Xtnu−, v)− c(tnu−, Y tnu−, v)

}
p̃φ(dv × du)

+

∫ s

0

∫

E

{
c(tnu , Xtnu−, v)− c(tnu , Y tnu−, v)

}
φ(dv)du

∣∣∣∣
2
∣∣∣∣∣A0

)

≤ 8 E

(∣∣∣∣
∫ t

0

∫

E

{
c(tnu−, Xtnu−, v)− c(tnu−, Y tnu−, v)

}
p̃φ(dv × du)

∣∣∣∣
2
∣∣∣∣∣A0

)

+2 E

(
sup

0≤s≤t

∣∣∣∣
∫ s

0

∫

E

{
c(tnu , Xtnu−, v)− c(tnu , Y tnu−, v)

}
φ(dv)du

∣∣∣∣
2
∣∣∣∣∣A0

)

≤ 8 E

(∫ t

0

∫

E

∣∣c(tnu , Xtnu−, v)− c(tnu , Y tnu−, v)
∣∣2 φ(dv) du

∣∣∣∣∣A0

)

+2 λ tE

(∫ t

0

∫

E

∣∣c(tnu , Xtnu−, v)− c(tnu , Y tnu−, v)
∣∣2 φ(dv) du

∣∣∣∣∣A0

)

≤ K E

(∫ t

0

∣∣Xtnu− − Y tnu−
∣∣2 du

∣∣∣∣∣A0

)

≤ C

∫ t

0

Z(u)du. (8.23)

Therefore, since by (8.17) and (8.18) Z(t) is bounded, applying the Gronwall
inequality to (8.19) we can complete the proof of Theorem 8.1. ¤
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