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log-returns of the world stock index (WSI) when these are expressed in
units of different currencies. By searching for a best fit in the class of
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distribution. This is confirmed on a high significance level under the
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1 Introduction

Starting with papers by Mandelbrot (1963) and Fama (1963) and in a subsequent
stream of literature, a vast amount of empirical studies estimating the distribu-
tions of log-returns for financial securities has been accumulated. Until about the
1987 stock market crash the standard assumption of portfolio managers, finan-
cial decision makers and traders was that log-returns are Gaussian distributed
for most securities. However, at least after this event it became clear that this is
a rough and for certain risk management areas rather dangerous assumption. In
reality, extreme log-returns are more probable than suggested by the Gaussian
distribution.

Based on a wide range of statistical techniques the majority of authors in the
recent literature overwhelmingly agrees on the conclusion that the assumption on
normality for log-returns of stocks and exchange rates has to be strongly rejected.
The most obvious empirical characteristic, which contradicts the normality as-
sumption, is the large excess kurtosis that is often observed. There is substantial
evidence that supports leptokurtic log-return densities, which exhibit heavier tails
and are more peaked than would be expected from a Gaussian distribution. A
distribution that generally fits log-returns of stock indices has so far not been
widely agreed upon.

In the two papers of Markowitz & Usmen (1996a, 1996b), S&P500 log-returns
were analyzed statistically in a Baysian framework. They studied twenty years
of daily S&P500 data covering the period from 1963 until 1983. Within the well-
known family of Pearson distributions, see, for instance, Stuart & Ord (1994),
they identified the Student t distribution with about 4.5 degrees of freedom as
the best fit to observed daily log-returns of the S&P500 US stock index. The
Pearson family includes as special cases, for instance, the normal, chi-square,
gamma, beta, Student t, uniform, Pareto and exponential distributions.

An independent empirical study on the log-return distribution of the S&P500
and other stock indices, including those of Switzerland, Germany, Japan and
Australia was undertaken in Hurst & Platen (1997). This paper searched in
a large family of normal-variance mixture distributions for the best fit of daily
stock index log-returns covering the period from 1982 until 1996. The considered
family of distributions included many that were suggested by different researchers
in the literature, covering the normal, see Samuelson (1957) and Black & Scholes
(1973), the alpha-stable, see Mandelbrot (1963), the normal-lognormal mixture,
see Clark (1973), the Student t, see Praetz (1972) and Blattberg & Gonedes
(1974), the normal inverse Gaussian, see Barndorff-Nielsen (1995), the hyperbolic,
see Eberlein & Keller (1995) and Küchler et al. (1995), the variance gamma, see
Madan & Seneta (1990) and the symmetric generalized hyperbolic distribution,
see Barndorff-Nielsen (1978). This list indicates that many authors proposed a
number of important asset price models that correspond to rather different types
of log-return distributions. In Hurst & Platen (1997) a maximum likelihood
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methodology, as described in Rao (1973), was employed to identify the most
likely distributions for stock index log-returns. For all major stock indices that
were analyzed for the period from 1982–1996 the Student t distribution was here
identified as the best fit to the available data with estimated degrees of freedom
between 3.0 and 4.5. These results confirm by a different statistical methodology
the previously mentioned findings in Markowitz & Usmen (1996b) on S&P500 log-
returns. There exist further studies, including Theodossiou (1998), that observed
Student t distributed log-returns for asset prices.

The current paper aims to test the Student t conjecture for log-returns of a
globally diversified world stock index over the rather long period from 1970 until
2004. To use a world index instead of local stock market indices is motivated by
the benchmark approach developed in Platen (2002, 2004c). Instead of a typical
statistical analysis of log-returns of stocks, exchange rates or local indices we
choose to analyze the log-returns of a global benchmark representing the world
stock index (WSI). The log-returns of this index are studied for different currency
denominations. As described in Platen & Stahl (2003), the denomination of the
WSI in units of a given currency reflects the general market risk with respect to
this currency. We will see that the WSI shows a particular and rather typical log-
return distribution. The following study will confirm with high significance that
a Student t distribution of about four degrees of freedom appears to be typical.
This agrees with theoretical predictions of Student t distributed log-returns of
the WSI with four degrees of freedom, which we describe in the last section.

The paper is organized as follows. Section 2 introduces a class of leptokurtic log-
return distributions and forms the WSI. In Section 3 the implemented maximum
likelihood ratio test is described. Section 4 tests the densities of log-returns of the
WSI in different currencies. Finally, Section 5 derives the minimal market model,
see Platen (2002, 2004c), which potentially explains the Student t property of
log-returns.

2 A Class of Log-Return Densities

2.1 The World Stock Index as Benchmark

In the following we apply the benchmark approach proposed in Platen (2002,
2004c). As benchmark we use a world stock index (WSI), which we construct as
a self-financing portfolio of stock market accumulation indices. The weights for
the market capitalization chosen are given in the last column of Table 1 which
approximate the market capitalization of the included markets. There are only
minor changes in the estimated parameters if one uses different weightings as long
as the index is broadly diversified. For instance, the MSCI world accumulation
index provides very similar results. As shown in Platen (2004b, 2004c), such
a diversified portfolio is robust against variations in weightings as long as the
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Country Currency m̂y σ̂y β̂y κ̂y Weights
Argentina ARS 0.000495 0.009705 4.971980 170.049000 0.0023
Australia AUD 0.000403 0.008815 -0.372951 14.051762 0.0017
Austria ATS, EUR 0.000367 0.008716 -0.489599 13.406629 0.0161
Belgium BEF, EUR 0.000332 0.009387 -0.443605 13.231579 0.0061
Brazil BRL 0.001392 0.011284 2.330662 79.025855 0.0013
Canada CAD 0.000404 0.007831 -0.579593 18.075123 0.0251
Denmark DKK 0.000356 0.009526 -0.394520 14.431344 0.0037
Finland FIM, EUR 0.000396 0.010612 0.238200 70.189255 0.0032
France FRF, EUR 0.000376 0.009332 -0.416397 13.655084 0.0302
Germany DEM, EUR 0.000285 0.009417 -0.483043 13.632198 0.0342
Greece GRD, EUR 0.000569 0.009454 0.841563 35.815507 0.0012
Hong Kong HKD 0.000421 0.008000 -0.446156 17.986618 0.0231
Hungary HUF 0.000476 0.008578 -0.184216 17.086200 0.0023
India INR 0.000542 0.013561 -0.131696 78.892868 0.0047
Indonesia IDR 0.000571 0.008906 -0.118789 19.917163 0.0201
Ireland IRP, EUR 0.000373 0.009033 -0.507152 13.844893 0.0055
Italy ITL, EUR 0.000373 0.008957 -0.535339 16.379118 0.0132
Japan JPY 0.000238 0.009033 -0.638245 14.427542 0.1550
Korea KRW 0.000439 0.009636 -0.139465 57.088739 0.0072
Malaysia MYR 0.000398 0.008500 -0.616024 18.996454 0.0158
Mexico MXN 0.001152 0.020686 3.860894 278.762521 0.0016
Netherlands NLG, EUR 0.000300 0.009358 -0.472830 13.914414 0.0193
Norway NOK 0.000373 0.009196 -0.340799 14.541824 0.0029
Philippines PHP 0.000460 0.009009 -0.354508 19.339190 0.0041
Portugal PTE, EUR 0.000391 0.008810 -0.452567 13.152174 0.0013
Singapore SGD 0.000353 0.007991 -0.554040 17.215279 0.0079
Spain ESP, EUR 0.000464 0.010334 1.079021 48.935156 0.0124
Sweden SEK 0.000421 0.009195 0.214018 19.355551 0.0124
Switzerland CHF 0.000239 0.010097 -0.407918 11.406303 0.0206
Taiwan TWD 0.000357 0.007900 -0.558432 17.784127 0.0141
Thailand THB 0.000450 0.009285 0.628255 36.231337 0.0049
Turkey TRL 0.001029 0.011354 5.010563 155.199258 0.0018
UK GBP 0.000414 0.009141 -0.482534 13.541676 0.0846
US USD 0.000374 0.007724 -0.613548 18.808550 0.4301

Table 1: Empirical moments for log-returns of WSI.
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weight of each contributing stock remains reasonably small.

We cover with this benchmark more than 95% of the world stock market capi-
talization for the period from 1970 until 2004. In our study weekends and other
nontrading days at the US and European exchanges are excluded.

0

10

20

30

40

50

60

70

1970 1980 1990 2000

GBP
USD
DEM
CHF
JPY

Figure 1: WSI in units of different currencies.

In Figure 1 we plot the resulting WSI for the observation period when denom-
inated in units of US dollar, British Pound, Swiss Franc, Japanese Yen and
Deutsche Mark. For convenience, we normalized the initial values to one. We will
study the distribution of log-returns of the WSI when denominated in 34 curren-
cies. This will provide some distributional characterization of the general market
risk for the respective currency denominations. This is of theoretical significance
but also important, for instance, for Value at Risk calculations, see Platen &
Stahl (2003).

We deliberately do not adjust for any changes in the parameter over time, market
crashes or other influences that may have affected the data. Some methods of
data analysis discard extreme values of observations as outliers. But this would
be inappropriate in a financial context because it is most important for proper
risk management to accurately measure the probability of extreme log-returns.
For daily log-returns of the WSI for the period from 1970 until 2004 in 34 currency
denominations the first four empirical moments yield the average empirical mean
m̂y = 0.000486, average standard deviation σ̂y = 0.009789, average skewness

β̂y = 0.460316 and average kurtosis κ̂y = 44.485182.

For each currency let us now centralize the log-returns, that is shift these to
a zero mean. Furthermore, we scale the resulting log-returns with respect to
the variance. The centralized and scaled log-returns of the WSI in different
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denominations have then zero sample mean and unit sample variance. We then
combine all observed centralized and scaled log-returns in one sample. In Figure 2
we show the logarithm of the resulting histogram for the log-returns together with
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Figure 2: Log-histogram of WSI log-returns.

the logarithm of the Student t density with 3.64 degrees of freedom. One notes
the excellent visual fit of this Student t density. Given this good fit it will be our
aim to analyze parametrically for each currency denomination the distribution of
the log-return in a wide class that contains the Student t distribution.

By considering the relatively small skewness observed in Table 1 the empirical
log-return density appears on average still to be fairly symmetrical. The find-
ings in Markowitz & Usmen (1996a, 1996b) for S&P500 log-returns, as well as
those in Hurst & Platen (1997) for other stock index log-returns, reported also
only a minor skew. Therefore, to simplify our analysis and to focus fully on the
identification of the tail properties of the log-return densities we assume that the
theoretical densities that we will compare with the empirical density are sym-
metric, that is we assume, zero skewness. Note that due to the small observation
time step size of one day this assumption relates to a higher order effect. It does
only marginally influence the empirical results that we obtain. We underline that
the following study focuses on the shape of the log-return densities. We avoid to
rely on particular moment properties because certain moments may not exist. In
particular, the kurtosis of Student t distributed log-returns with four degrees of
freedom is known to be infinite.
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2.2 Normal-Variance Mixture Densities

For capturing the typical features of log-return distributions let us study a class
of normal-variance mixture densities, see Feller (1968), which allows us to keep
the empirical analysis rather general. We model the daily log-return yti of a WSI
denominated in a given currency at the ith observation time ti as

yti = µti ∆ + σti

√
∆ ξi, (2.1)

i ∈ {0, 1, . . .}. For the small length ∆ of typically one day of the observation time
interval the first term on the right hand side of equation (2.1) has on average
a much smaller absolute value than those that appear typically in the second
term. Since the first term is of higher order with respect to ∆, and therefore
not of much relevance to our study, we assume, for simplicity, a constant mean
parameter µti∆ = µ on the log-returns. It does not change much our empirical
results if we set µ simply equal to zero.

To model a normal-variance mixture density for the log-return yti we use for
all i ∈ {0, 1, . . .} an independent identically distributed random volatility σi =
σti

√
∆, together with some independent, standard Gaussian distributed random

variable ξi. The squared volatility σ2
i , i ∈ {0, 1, . . .}, is assumed to be dis-

tributed according to a given density fσ2 . The generality of the resulting class
of normal-variance mixture log-return densities follows from the freedom to ad-
just the squared volatility density fσ2 . One obtains the normal-variance mixture
density function of the log-return yti , i ∈ {0, 1, . . .}, in the form

fy(x) =
1√
2 π

∫ ∞

0

1√
u

exp

{
−(x− µ )2

2 u

}
fσ2(u) du (2.2)

for x ∈ < as long as this integral exists. The log-return has then the mean
my = µ, the variance vy = mσ2 , the skewness βy and the kurtosis

κy = 3

(
1 +

vσ2

m2
σ2

)
. (2.3)

Here the squared volatility σ2
i , i ∈ {0, 1, . . .}, has mean mσ2 and variance vσ2 .

Samuelson (1957), Osborne (1959) and subsequently many other authors have
modeled asset price increments by lognormal random variables, where the log-
returns are modeled by Gaussian random variables. The corresponding Gaussian
log-return density for the lognormal model results from (2.2) when the density of
the squared volatility degenerates to that of a constant σ2

i = c2, i ∈ {0, 1, . . .}.
The Gaussian density is a two parameter density, where µ is a location parameter
and c is a scale parameter. The Gaussian log-return hypothesis has been clearly
rejected in the literature for indices, exchange rates and equities by a variety of
statistical methods. Therefore, we avoid any further consideration of a Gaus-
sian log-return density and analyze instead a rich class of analytically tractable
densities covering a wide range of possible tail shapes.
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2.3 Symmetric Generalized Hyperbolic Density

Noticeably, many authors have proposed important log-return models involving
the class of generalized hyperbolic densities. This class of densities was extensively
examined by Barndorff-Nielsen (1977, 1978) and Barndorff-Nielsen & Blaesild
(1981). Since we have assumed zero skewness we consider in the following the
symmetric generalized hyperbolic (SGH) density as a possible log-return density.
This density results when the density of the squared random volatility σ2

i , i ∈
{0, 1, . . .}, is a generalized inverse Gaussian density.

One can show by (2.2) and (2.5) that the SGH density function of the log-return
yti is

fy(x) =
1

δ Kλ(α δ)

√
α δ

2 π

(
1 +

(x− µ)2

δ2

) 1
2(λ− 1

2)
Kλ− 1

2

(
α δ

√
1 +

(x− µ)2

δ2

)
(2.4)

for x ∈ <, where λ ∈ < and α, δ ≥ 0. We set α 6= 0 if λ ≥ 0 and δ 6= 0 if λ ≤ 0.
The probability density function of σ2

i in the normal-variance mixture density
(2.2) is here of the form

fσ2(x) =
αλ

2 δλKλ(α δ)
xλ−1 exp

{
−1

2

(
δ2

x
+ α2x

)}
, (2.5)

where Kλ(·) is the modified Bessel function of the third kind with index λ.

The SGH density is a four parameter density. The two shape parameters are
λ and ᾱ = α δ, defined so that they are invariant under scale transformations.
The parameter µ is a location parameter. The other parameters contribute to
the scaling of the density. We define the parameter c as the scale parameter such
that mσ2 = c2, that is

c2 =





2 λ
α2 if δ = 0 for λ > 0, ᾱ = 0,

δ2 Kλ+1(ᾱ)

ᾱ Kλ(ᾱ)
otherwise.

(2.6)

The variance of σ2
i is

vσ2 = c4

(
Kλ(ᾱ) Kλ+2(ᾱ)

Kλ+1(ᾱ)2 − 1

)
. (2.7)

Consequently, the log-return yti has mean my = µ, variance vy = c2, skewness
βy = 0 and kurtosis

κy =
3 Kλ(ᾱ) Kλ+2(ᾱ)

Kλ+1(ᾱ)

2

. (2.8)

Furthermore, it can be shown that as λ → ±∞ or ᾱ → ∞ the SGH density
asymptotically approaches the Gaussian density.

To discriminate between certain candidate log-return densities within the class
of SGH densities we will describe in the following four special cases of the SGH
density that coincide with the log-return densities of important asset price models.
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2.4 Student t Density

Praetz (1972) and Blattberg & Gonedes (1974) proposed for log-returns a Stu-
dent t density with degrees of freedom ν > 0. This is also the log-return density
of the minimal market model derived in Platen (2001, 2002, 2004c), which we
derive in Section 5. This density follows from the above SGH density for the
shape parameters λ = −1

2
ν < 0 and ᾱ = 0, that is α = 0 and δ = ε

√
ν. Using

these parameter values the Student t density function for the log-return yti has
then the form

fy(x) =
Γ(1

2
ν + 1

2
)

ε
√

π ν Γ(1
2
ν)

(
1 +

(x− µ)2

ε2 ν

)− 1
2

ν− 1
2

(2.9)

for x ∈ <, where Γ(·) is the gamma function. Equation (2.9) expresses the
well-known probability density of a Student t distributed random variable with ν
degrees of freedom. The squared volatility σ2

i is here inverted gamma distributed.
The log-return yti has mean my = µ. The variance vy = ε2 ν

ν−2
= c2 is finite only

for ν > 2 and the kurtosis κy = 3 (ν−2)
ν−4

only exists for ν > 4. The Student t
density is a three parameter density. The degree of freedom ν = −2λ is the
shape parameter, with smaller ν implying larger tail heaviness for the density.
Furthermore, when the degrees of freedom increase, that is ν → ∞, then the
Student t density asymptotically approaches the normal density.

2.5 Normal-Inverse Gaussian Density

Barndorff-Nielsen (1995) proposed log-returns to follow a normal-inverse Gaus-
sian mixture distribution. The corresponding density arises from the SGH density
when the shape parameter λ = −1

2
is chosen. For this parameter value the vari-

ance σ2
i is inverse Gaussian distributed and it follows by (2.4) that the probability

density function of the log-return yti is then

fy(x) =

√
ᾱ exp{ᾱ}

c π

(
1 +

(x− µ)2

ᾱ c2

)− 1
2

K1

(
ᾱ

√
1 +

(x− µ)2

ᾱ c2

)
(2.10)

for x ∈ <, where c2 = δ2

ᾱ
. Here yti has kurtosis κy = 3 (1 + 1

ᾱ
). The normal-

inverse Gaussian density is a three parameter density. The parameter ᾱ is the
shape parameter with smaller ᾱ implying larger tail heaviness. Furthermore,
when ᾱ → ∞ the normal-inverse Gaussian density asymptotically approaches
the normal density.

2.6 Hyperbolic Density

Eberlein & Keller (1995) and Küchler et al. (1995) proposed models, where log-
returns appear to be hyperbolicly distributed. This occurs for the choice of the
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shape parameter λ = 1 in the SGH density. Using this parameter value the
probability density function of the log-return yti is

fy(x) =
1

2 δ K1(ᾱ)
exp

{
−ᾱ

√
1 +

(x− µ)2

δ2

}
(2.11)

for x ∈ <, where δ2 = c2 ᾱ K1(ᾱ)
K2(ᾱ)

. Here yti has kurtosis κy = 3 K1(ᾱ) K3(ᾱ)

K2(ᾱ)2
. The

hyperbolic density is a three parameter density. The parameter ᾱ is the shape
parameter with smaller ᾱ implying larger tail heaviness. Furthermore, when
ᾱ →∞ the hyperbolic density asymptotically approaches the normal density.

2.7 Variance Gamma Density

Madan & Seneta (1990) and Geman, Madan & Yor (2001) proposed log-returns
to be distributed with a normal-variance gamma mixture distribution. This case
is obtained when the shape parameters are such that λ > 0 and ᾱ = 0, that

is, δ = 0 and α =
√

2 λ
c

. With these parameter values the variance σ2
i is gamma

distributed and the probability density function of yti is

fy(x) =

√
λ

c
√

π Γ(λ) 2λ−1

(√
2 λ

|x− µ |
c

)λ− 1
2

Kλ− 1
2

(√
2 λ

|x− µ |
c

)
(2.12)

for x ∈ <. Here yti has kurtosis κy = 3 (1 + 1
λ
). The variance gamma density is a

three parameter density. The parameter λ is the shape parameter with smaller λ
implying larger tail heaviness. Furthermore, when λ → ∞ the variance gamma
density asymptotically approaches the normal density.

3 Maximum Likelihood Ratio Test

The class of SGH densities that we introduced in Section 2.3 represents a rich
class of leptokurtic densities. To reject on a given significance level the hypothesis
that any of the four previously described SGH densities is not the true underlying
density we need to perform a proper statistical test. To discriminate between the
various candidate densities we proceed in a well-established manner by using the
classical maximum likelihood ratio test, see Rao (1973). We define the likelihood
ratio in the form

Λ =
Lmodel

LSGH

. (3.1)

Here Lmodel represents the maximized likelihood function of a given specific nested
log-return density, for instance, the Student t density. With respect to this density
the maximum likelihood estimate for the parameters have been computed and are
then used to obtain the corresponding likelihood function Lmodel. On the other
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hand, LSGH denotes the maximized likelihood function for the SGH density, which
is the nesting density that has been similarly obtained. It can be shown, see Rao
(1973), that the test statistic

Ln = −2 ln(Λ) (3.2)

is for increasing number of observations n → ∞ asymptotically chisquare dis-
tributed. Here the degrees of freedom equal the difference between the number
of parameters of the nesting density and the nested density. The nesting density,
which is the SGH density, is a four-parameter density and the nested densities
are the Student t, normal-inverse Gaussian, hyperbolic and variance-gamma den-
sities, which are three-parameter densities. Therefore, in the above cases Ln is
for n →∞ asymptotically chisquare distributed with one degree of freedom.

It can be asymptotically shown as n →∞ that

P
(
Ln < χ2

1−α,1

) ≈ Fχ2(1)

(
χ2

1−α,1

)
= 1− α, (3.3)

where Fχ2(1) denotes the chisquare distribution with one degree of freedom and
χ2

1−α,1 is its 100(1−α)% quantile. One can then check, say, for a 99% significance
level whether or not the test statistic Ln is in the 1% quantile of the chisquare
distribution with one degree of freedom. If the relation

Ln < χ2
0.01,1 ≈ 0.000157 (3.4)

is not satisfied, then we reject on a 99% significance level the hypothesis that
the suggested density is the true underlying density. To be more accurate one
can, if possible, also compare the test statistic Ln with the 0.1% quantile of the
chisquare distribution with one degree of freedom, where

Ln < ξ2
0.001,1 ≈ 0.000002. (3.5)

When (3.5) is satisfied, then on a 99.9% significance level one cannot reject the
considered hypothesis.

The above maximum likelihood methodology offers a natural definition of a best
fit. We call the density with the smallest test statistic Ln the best fit in the given
class of SGH densities. This density maximizes the likelihood ratio Λ given in
(3.1).
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Inverse Variance Degrees of
Country Student t Gaussian Hyperbolic Gamma Freedom

Argentina 0.000000 137.566726 377.265316 414.030946 3.215953
Australia 0.000000 24.403096 54.527486 73.900060 4.618187
Austria 1.272478 10.533450 43.923596 63.696828 4.177998
Belgian 0.000000 15.755730 41.664530 59.922270 4.639238
Brazil 0.000000 132.348986 430.843576 444.117392 2.937178
Canada 0.000000 42.829996 80.784298 110.357598 4.927523
Denmark 0.000000 29.607334 72.807340 96.852868 4.328256
Finland 0.000000 130.807532 286.692740 326.546792 3.707350
France 0.303708 12.578282 42.737860 61.753332 4.329017
Germany 0.000000 17.945998 45.546996 64.739532 4.620013
Greece 0.000000 60.072066 120.786456 150.578024 4.340990
Hong Kong 0.000000 31.399542 84.191740 111.611116 4.080899
Hungary 0.002812 33.488642 102.407366 132.556744 3.827598
India 0.000000 218.752194 1096.862148 962.798700 2.283747
Indonesia 0.000000 54.595328 121.131360 148.098694 4.062652
Ireland 0.031796 16.660834 53.818850 76.062630 4.187040
Italy 0.002606 19.207820 60.267448 83.332082 4.172936
Japan 0.000000 24.017652 60.214094 81.351358 4.392711
Korea S. 0.000000 129.955438 386.626152 425.311040 3.265655
Malaysia 0.000000 56.525498 149.299592 189.659002 3.786499
Mexico 0.000000 440.818300 2132.850298 1746.118774 2.207160
Netherlands 0.000000 15.802518 41.848016 60.873070 4.611005
Norway 0.000000 27.920608 71.785758 96.835862 4.256095
Philippine 0.017290 52.048754 167.407546 199.781080 3.458544
Portugal 1.582056 13.129484 54.154638 76.914946 4.071114
Singapore 0.000000 30.656496 73.326620 99.354034 4.396040
Spain 0.000000 70.602362 139.884600 165.163122 4.206288
Sweden 0.000000 66.852560 130.642934 166.827332 4.468983
Switzerland 0.144462 15.390592 46.179620 67.726852 4.471172
Taiwan 0.000000 33.290522 82.900518 110.434774 4.224246
Thailand 0.000000 100.851126 282.814096 314.709524 3.298124
Turkey 0.000000 152.625500 493.285862 506.466162 2.893205
UK 0.000000 21.124390 47.980512 68.613654 4.868241
US 0.000000 31.352956 75.539480 102.259640 4.323809

Table 2: The Ln test statistic for log-returns of the WSI in different currencies.
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4 World Stock Index in Different Currencies

We study the log-returns of the above constructed world stock index when de-
nominated in units of major currencies. We use daily data from 1970 until 2004
provided by Thomson Financial. In Table 2 we display the Ln test statistics
for log-returns of the WSI in 34 different currency denominations. It is rather
apparent that the Student t density shows in all cases the smallest test statistic.
For 25 of the 34 currencies one cannot reject on a 99.9% significance level the
hypothesis that the Student t density is the true density. The inverse Gaussian
density seems to be the second best choice but can be rejected on a 99.9% sig-
nificance level for all currency denominations. In the last column of Table 2 one
finds the estimated degrees of freedom for the Student t density for each of the
currency denominations. One notes that the degrees of freedom are in the range
from 2.2 to 4.8. We emphasize that the average estimated value 3.9899 of the
degrees of freedom for log-returns of WSI currency denominations is very close
to four, which is predicted by the minimal market model, see Section 5.

For the denomination of the WSI in units of different major currencies Table 2
confirms for the long period from 1970 until 2004 a Student t property of their log-
returns, similar to that discovered in Markowitz & Usmen (1996a) for log-returns
of the S&P500.

To visualize further the distributional nature of the WSI log-returns the estimated
values of the shape parameters ᾱ and λ from the SGH density are displayed
in Figure 3 in an (ᾱ, λ)-scatter plot for the 34 WSI denominations in different
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-2.2

-2

-1.8

-1.6

-1.4
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-1

0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 3: (ᾱ, λ)-plot for log-returns of WSI in different currencies.

currencies. Interestingly, the estimated (ᾱ, λ) points are approximately localized
near the negative lambda axis. It is the Student-t density that arises for (ᾱ, λ)-
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parameter points near the negative λ-axis, whereas a variance-gamma density is
obtained for (ᾱ, λ)-parameter points near the positive λ-axis. One notes that the
cluster for the estimated parameter points is concentrated close to the point with
coordinates ᾱ = 0 and λ = −2. This parameter choice refers to the Student t
distribution with four degrees of freedom. For comparison, the normal-inverse
Gaussian density refers in Figure 3 to the horizontal line with λ = −0.5. The
hyperbolic density would give estimated parameters at the horizontal line λ = 1.0.
Figure 3 visually confirms what already Table 2 revealed: The observed log-
returns are likely to be Student t distributed and probably not normal-inverse
Gaussian, hyperbolic or variance gamma distributed.

5 A Derivation of the Minimal Market Model

5.1 Continuous Benchmark Model

To explain our statistical findings we give in the following a derivation of the
minimal market model (MMM) along the lines as described in Platen (2001, 2002,
2004a). For the modeling of a financial market we rely on a filtered probability
space (Ω,AT ,A, P ) with finite time horizon T ∈ (0,∞), satisfying the usual
conditions, see Karatzas & Shreve (1991). The trading uncertainty is expressed
by the independent standard Wiener processes W k = {W k

t , t ∈ [0, T ]} for k ∈
{1, 2, . . . , d}.
We consider a continuous financial market that comprises d + 1 primary security
accounts, d ∈ {1, 2, . . .}. These include a savings account S(0) = {S(0)(t), t ∈
[0, T ]}, which is a locally riskless primary security account whose value at time t
is given by

S(0)(t) = exp

{∫ t

0

r(s) ds

}
(5.1)

for t ∈ [0, T ], where r = {r(t), t ∈ [0, T ]} denotes the adapted short rate process.
They also include d nonnegative, risky primary security account processes S(j) =
{S(j)(t), t ∈ [0, T ]}, j ∈ {1, 2, . . . , d}, each of which contains units of one type of
stock with all proceeds reinvested.

To specify the dynamics of primary securities in the given financial market we
assume that the jth primary security account value S(j)(t), j ∈ {1, 2, . . . , d},
satisfies the stochastic differential equation (SDE)

dS(j)(t) = S(j)(t)

(
r(t) dt +

d∑

k=1

bj,k(t)
(
θk(t) dt + dW k

t

)
)

(5.2)

for t ∈ [0, T ]. Here θk(t) denotes the market price of risk with respect to the
kth Wiener process. We assume that the volatility matrix b(t) = [bj,k(t)]dj,k=1
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is invertible for Lebesgue-almost every t ∈ [0, T ] with inverse matrix b−1(t) =
[b−1 j,k(t)]dj,k=1.

We call a predictable stochastic process δ = {δ(t) = (δ(0)(t), δ(1)(t), . . . , δ(d)(t))>,
t ∈ [0, T ]} a strategy if for each j ∈ {0, 1, . . . , d} the Itô stochastic integral

∫ t

0

δ(j)(s) dS(j)(s) (5.3)

exists, see Karatzas & Shreve (1991). Here δ(j)(t), j ∈ {0, 1, . . . , d}, is the number
of units of the jth primary security account that are held at time t ∈ [0, T ] in
the corresponding portfolio. We denote by

S(δ)(t) =
d∑

j=0

δ(j)(t) S(j)(t) (5.4)

the time t value of the portfolio process S(δ) = {S(δ)(t), t ∈ [0, T ]}. A strategy δ
and the corresponding portfolio S(δ) are said to be self-financing if

dS(δ)(t) =
d∑

j=0

δ(j)(t) dS(j)(t) (5.5)

for t ∈ [0, T ]. In what follows we consider only self-financing strategies and
portfolios and will therefore omit the phrase “self-financing”.

Let S(δ) be a portfolio process whose value S(δ)(t) at time t ∈ [0, T ] is nonzero.

In this case it is convenient to introduce the jth fraction π
(j)
δ (t) of S(δ)(t) that is

invested in the jth primary security account S(j)(t), j ∈ {0, 1, . . . , d}, at time t.
This fraction is given by the expression

π
(j)
δ (t) = δ(j)(t)

S(j)(t)

S(δ)(t)
(5.6)

for j ∈ {0, 1, . . . , d}. Note that fractions can be negative and always sum to one,
that is

d∑
j=0

π
(j)
δ (t) = 1 (5.7)

for t ∈ [0, T ]. By (5.5), (5.2) and (5.6) we get for a nonzero portfolio value S(δ)(t)
the SDE

dS(δ)(t) = S(δ)(t)

(
r(t) dt +

d∑

k=1

d∑
j=1

π
(j)
δ (t) bj,k(t)

(
θk(t) dt + dW k

t

)
)

. (5.8)

For a strictly positive portfolio S(δ) we obtain for ln(S(δ)(t)) the SDE

d ln(S(δ)(t)) = gδ(t) dt +
d∑

k=1

bk
δ (t) dW k

t (5.9)
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with portfolio growth rate

gδ(t) = r(t) +
d∑

k=1




d∑
j=1

π
(j)
δ (t) bj,k(t) θk(t)− 1

2

(
d∑

j=1

π
(j)
δ (t) bj,k(t)

)2

 (5.10)

for t ∈ [0, T ]. A strictly positive portfolio process S(δ∗) = {S(δ∗)(t), t ∈ [0, T ]}
is called a growth optimal portfolio (GOP) if, for all t ∈ [0, T ] and all strictly
positive portfolios S(δ), the inequality

gδ∗(t) ≥ gδ(t) (5.11)

holds almost surely.

By using the corresponding first order conditions one can determine the optimal
fractions

π
(j)
δ∗ (t) =

d∑

k=1

θk(t) b−1 j,k(t) (5.12)

for all t ∈ [0, T ] and j ∈ {1, 2, . . . , d}, which maximize the portfolio growth rate
(5.10). It is straightforward to show in the given continuous financial market,
see Long (1990), Karatzas & Shreve (1998) or Platen (2002), that a GOP value
S(δ∗)(t) satisfies the SDE

dS(δ∗)(t) = S(δ∗)(t)

(
r(t) dt +

d∑

k=1

θk(t)
(
θk(t) dt + dW k

t

)
)

(5.13)

for t ∈ [0, T ] with S(δ∗)(0) > 0. From now on we use a GOP as benchmark and
refer to the above financial market model as continuous benchmark model.

5.2 Optimal Portfolios

Given a strictly positive portfolio S(δ), its discounted value

S̄(δ)(t) =
S(δ)(t)

S(0)(t)
(5.14)

satisfies by (5.1), (5.8) and an application of the Itô formula the SDE

dS̄(δ)(t) =
d∑

k=1

ψk
δ (t)

(
θk(t) dt + dW k

t

)
(5.15)

with

ψk
δ (t) =

d∑
j=1

δ(j)(t)
S(j)(t)

S(0)(t)
bj,k(t) (5.16)
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for k ∈ {1, 2, . . . , d} and t ∈ [0, T ]. By (5.15) and (5.16) S̄(δ) has discounted drift

αδ(t) =
d∑

k=1

ψk
δ (t) θk(t) (5.17)

at time t ∈ [0, T ]. The trading uncertainty of S̄(δ) at time t ∈ [0, T ] can be
measured by its aggregate diffusion coefficient

γδ(t) =

√√√√
d∑

k=1

(
ψk

δ (t)
)2

. (5.18)

We call a strictly positive portfolio S(δ̃) optimal, if for all t ∈ [0, T ] and all strictly
positive portfolios S(δ) when

γδ̃(t) = γδ(t) (5.19)

we have
αδ̃(t) ≥ αδ(t). (5.20)

An optimal portfolio provides a characterization of the fact that investors prefer
always more to less.

Let us introduce the total market price of risk

|θ(t)| =
√√√√

d∑

k=1

(θk(t))2, (5.21)

where we assume |θ(t)| ∈ (0,∞) almost surely for all t ∈ [0, T ]. In Platen (2002)
it has been shown that the value S̄(δ)(t) at time t of a discounted, optimal portfolio
satisfies the SDE

dS̄(δ)(t) = S̄(δ)(t)
bδ(t)

|θ(t)|
d∑

k=1

θk(t)
(
θk(t) dt + dW k

t

)
, (5.22)

with optimal fractions

π
(j)
δ (t) =

bδ(t)

|θ(t)| π
(j)
δ∗ (t) (5.23)

for all j ∈ {1, 2, . . . , d} and t ∈ [0, T ]. By (5.23) any optimal portfolio value
can be decomposed into a fraction of wealth that is invested in the GOP and a
remaining fraction that is held in the savings account.

We assume the existence of n ∈ {1, 2, . . .} investors who hold all investable
wealth in the market and form each an optimal portfolio with their wealth. The
optimal portfolio of investable wealth of the `th investor is denoted by S(δ`),
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` ∈ {1, 2, . . . , n}. The portfolio S(δMP)(t) of the total investable wealth of all
investors is then the market portfolio (MP)

S(δMP)(t) =
n∑

`=1

S(δ`)(t) (5.24)

at time t ∈ [0, T ]. To identify the SDE of the MP we assume for all t ∈ [0, T ]

that S(δMP)(t) > 0 almost surely and π
(0)
δ∗ (t) 6= 1.

The discounted MP S̄(δMP)(t) at time t is then determined by the SDE

dS̄(δMP)(t) =
n∑

`=1

(
S̄(δ`)(t)− δ

(0)
` (t)

)
(
1− π

(0)
δ∗ (t)

)
d∑

k=1

θk(t) (θk(t) dt + dW k
t )

= S̄(δMP)(t)

(
1− π

(0)
δMP

(t)
)

(
1− π

(0)
δ∗ (t)

)
d∑

k=1

θk(t) (θk(t) dt + dW k
t ) (5.25)

for t ∈ [0, T ]. Consequently, the MP S(δMP)(t) has the SDE of an optimal port-
folio, which always holds a fraction of the wealth in the GOP and the remaining
wealth in the savings account. If one assumes that at least in two different cur-
rency denominations the MP is an optimal portfolio, then it is straightforward to
show that the MP must equal the GOP.

5.3 Minimal Market Model

We consider now the world stock index (WSI) S(δWSI) of all investable stocks in
the market. We have for the WSI zero holdings in the savings account, that is,

π
(0)
δWSI

(t) = 0 (5.26)

almost surely, for all t ∈ [0, T ]. The WSI can be formed by a combination of
holdings in the MP and the savings account. Therefore, the WSI satisfies the
SDE of an optimal portfolio, which has by (5.22) and (5.25) the form

dS̄(δWSI)(t) = S̄(δWSI)(t)
1

1− π
(0)
δ∗ (t)

d∑

k=1

θk(t)
(
θk(t) dt + dW k

t

)
(5.27)

for all t ∈ [0, T ].

Now, we introduce the discounted WSI drift

αδWSI
(t) = S̄(δWSI)(t)

|θ(t)|2
1− π

(0)
δ∗ (t)

, (5.28)
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see (5.17), as the average change per unit of time of the underlying value of the
discounted WSI. We get then the total market price of risk in the form

|θ(t)| =
√

αδWSI
(t) (1− π

(0)
δ∗ (t))

S̄(δWSI)(t)
. (5.29)

This yields by (5.27) and (5.29) for the discounted WSI the SDE

dS̄(δWSI)(t) = αδWSI
(t) dt +

√
S̄(δWSI)(t) αδWSI

(t)

(1− π
(0)
δ∗ (t))

dWt, (5.30)

where

dWt =
1

|θ(t)|
d∑

k=1

θk(t) dW k
t (5.31)

is the stochastic differential of a standard Wiener process W for t ∈ [0, T ]. The
solution of the SDE (5.30) is a time transformed squared Bessel process of dimen-
sion

ν(t) = 4 (1− π
(0)
δ∗ (t)), (5.32)

see Revuz & Yor (1999). Its transformed time ϕ(t) equals the accumulated un-
derlying value of the discounted WSI and is at time t given by the expression

ϕ(t) = ϕ(0) +

∫ t

0

αδWSI
(s) ds (5.33)

with ϕ(0) ≥ 0.

Let us now introduce the normalized WSI

Y (t) =
S̄(δWSI)(t)

αδWSI
(t)

, (5.34)

which satisfies by the Itô formula the SDE

dY (t) = dt+Y (t) αδWSI
(t) d

(
1

αδWSI
(t)

)
+

√
Y (t)

(1− π
(0)
δ∗ (t))

dWt+d

〈
S̄(δWSI),

1

αδWSI

〉

t

(5.35)
for t ∈ [0, T ]. We now make the reasonable assumption that we have a net growth
rate

ηt = −αδWSI
(t)

d

dt

(
1

αδWSI
(t)

)

and zero covariation 〈
S̄(δWSI),

1

αδWSI

〉

t

= 0

for all t ∈ [0, T ]. Then Y = {Y (t), t ∈ [0, T ]} is a square root process with SDE

dY (t) = (1− ηt Y (t)) dt +

√
Y (t)

(1− π
(0)
δ∗ (t))

dWt (5.36)
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with dimension ν(t) as given in (5.32).

In the case when the net growth rate ηt and the fraction π
(0)
δ∗ (t) are constant,

the square root process Y is known to have as stationary density a gamma den-
sity with ν(t) degrees of freedom, see Karatzas & Shreve (1991). The squared
volatility of the WSI equals then by (5.30) and (5.34) the expression

1

Y (t) (1− π
(0)
δ∗ (t))

,

which has as stationary distribution an inverse gamma distribution with ν(t) =

4(1 − π
(0)
δ∗ (t)) degrees of freedom. Consequently, the mixing distribution for the

variance of the log-returns of the WSI is an inverse gamma distribution. For
a sufficiently long period of WSI log-return observations one obtains then the
Student t distribution as estimated normal-variance mixture distribution with
4(1−π

(0)
δ∗ (t)) degrees of freedom. This is what we have also found in our empirical

study.

Moreover, we have estimated on average the degrees of freedom 3.9899 ≈ 4.0.
For the case ν(t) = 4.0 it follows from (5.32) that π

(0)
δ∗ (t) = 0. This then tells us

that the WSI equals the GOP in this case. Therefore, the holdings in the savings
account for the market portfolio amount in total to zero. This is consistent with
the fact that for short term bonds there is always a buyer and a seller among the
market participants.

Conclusion

The log-return distribution of a world stock index denominated in different cur-
rencies has been identified in the class of symmetric generalized hyperbolic dis-
tributions as a Student t distribution with about four degrees of freedom. This
empirical stylized fact can be naturally explained by a version of the minimal
market model.
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