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Helpman (1994). Unlike existing methods in the literature, our approach does not require
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1 Introduction

There has been much interest in the political economy aspects of trade policy recently. In part,

this has been triggered by the theoretical framework in the Grossman and Helpman (1994)

”Protection for Sale” (PFS) model. Empirical studies such as Goldberg and Maggi (1999)

(hereafter GM) and Gawande and Bandyopadhyay (2000) (hereafter GB) have used US data

and shown that as predicted by the PFS framework, protection is positively related to the import

penetration ratio for politically unorganized industries but negatively for organized ones.1

In these studies, the key explanatory variable is the dummy variable indicating whether

an industry is politically organized. Its construction requires the classification of industries

into politically organized and unorganized ones. For this purpose GM and GB used data on

contributions along with some simple rules. GM classify an industry as politically organized if its

Political Action Committees’(PAC) contribution is greater than a pre-specified threshold level.

GB’s classification rule is less transparent. Pointing out that contributions may be directed to

things other than trade policies, they attempt to classify industries as politically organized if

those industries appear to make contributions to influence trade policies. Roughly speaking,

if the relationship between political contribution and the import penetration from its trading

partners is estimated to be positive, the industry is classified as organized.

Several questions naturally arise about these classification rules. First, are they consistent

with the PFS model? Second, do they correctly distinguish between organized and unorganized

industries? These issues are of vital importance because testing and structural estimation of the

PFS model requires political organization to be correctly classified and in a manner consistent

with the PFS model.

In this paper we show that there is good reason to think that the classification rules used

1Subsequently, Mitra et al. (2002) and McCalman (2004) used Turkish and Australian data respectively, and
provided similar evidence.
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in the literature are not internally consistent with the PFS model itself. Thus,industries are

misclassified as organized/unorganized and consequently the parameter estimates obtained in

previous work are likely to be biased. We propose and implement a novel way of testing the

PFS model that is immune to bias due to classification errors. Our approach, contrary to the

literature (and much to our surprise), provides no support for the PFS model. We also provide

some insight into how the literature could have inadvertently obtained support for the PFS

model.

Although using a cutoff level of contributions seems intuitively appealing, it is worth re-

membering that the contribution levels observed are equilibrium outcomes of a game and that

equilibrium contributions can easily be very small, despite the industry being organized. We

provide a simple numerical example (and a formal proof in the Appendix) to show that under

reasonable conditions, the PFS model predicts that equilibrium level of organized industry’s

contribution and its import penetration are negatively correlated so that organized industries

make very small contributions if their import penetration is high. This implies that using a

particular threshold of campaign contribution as a device to distinguish between organized and

unorganized industries, as is done in GM, is inconsistent with the PFS model, results in mis-

classification and biases the estimates in a way that, we argue below, could provide spurious

support for the PFS model.

What about the approach of GB? Our results cast their procedure into doubt as well. They

run regressions where the dependent variable is contributions from an industry (per dollar of

value added) and the independent variable the bilateral imports (relative to consumption) of

the industry from each trading partner. If the predicted contributions, net of the constant, are

positive for any trading partner, i.e., the slope is positive, the industry is classified as organized2.

2This may confuse the reader familiar with the paper as the paper first says that industries are organized if
the predicted contributions are positive and then in the appendix it says that they are organized if the slope is
positive. Personal communication with the authors resulted in the clarification provided here.

3



If our simplified version of the PFS model is correct, then their classification would tend to be the

inverse of the correct one and they would tend to classify organized industries as unorganized

and vice versa. Thus, their finding of support for the PFS model would translate into the

opposite, which is exactly what we find. In the data, contributions are increasing in import

penetration (more exactly, decreasing in inverse import penetration ratio divided by the import

price elasticity), not decreasing in import penetration as predicted by our simple PFS model.

We also argue that there is no instrument that can be used to correct for the bias due to

the classification errors so that little can be done to deal with this problem. Thus, we have

a problem in implementing the usual tests of the PFS model. To deal with it we propose a

new test of the PFS model. The test is based not on the well-known and extensively-examined

prediction of the PFS used by GM and others, but on other implications past studies have not

explored. Importantly, our test does not require classification of industries as organized or not;

nor does it require data on contributions made to political parties, data which is available for

the US but is not usually available for other countries.

Our approach relies on the relationship between observables (i.e., the protection measure,

import penetration, and import demand elasticity) implied by the PFS model and thus is entirely

consistent with the PFS framework. In particular, we exploit the following prediction of the PFS

model: politically organized industries should have higher protection than unorganized ones,

given the inverse import penetration ratio and other control variables. This suggests that, given

inverse import penetration and other controls, industries with higher protection are more likely

to be politically organized. Thus, for these industries, we should expect a positive relationship

between the inverse import penetration ratio and the protection measure. However, in the

figures where we present the relationship between protection and the inverse import penetration

for highly protected industries, this relationship is negative, not positive (See Figures 6

and 7, and 8 and 9 for their quantile version).
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To conduct a formal econometric test of this prediction, we use the quantile regression.

This essentially estimates a linear approximation of the above relationship for each quantile.

Thus, in a quantile regression, we should see a positive relationship between protection and the

inverse import penetration ratio for higher quantiles of the protection measure conditional on

the inverse import penetration ratio and other controls, and a negative one for lower quantiles.3

This prediction is tested on the data used in GB.4 Contrary to much of the literature, our new

test does not provide empirical support for the PFS model.

We proceed as follows. In Section 2 we first review the PFS model. We then explain in

more detail how, in a very simple form of the model, classification error might bias the results

and offer insight into why previous work may have inadvertently found support for the PFS

predictions. In Section 3 we explain our approach. In Section 4 we implement it. Section 5

contains a brief discussion of our results, and Section 6 concludes.

2 The PFS Model and Its Estimation

2.1 The PFS Model

The exposition in this section relies heavily on Grossman and Helpman (1994). There is a

continuum of individuals, each of infinitesimal size. Each individual has preferences that are

linear in the consumption of the numeraire good and are additively separable across n goods.

On the production side, there is perfect competition in a specific factor setting: each good is

produced using a factor specific to the industry, ki in industry i, and a mobile factor, labor li,

where
∑n

i=1 li = L. Thus, each specific factor is the residual claimant in its industry. Some

industries are exogenously organized into lobby groups. Owners of the specific factors in orga-

nized industries make up the lobby group which can make contributions to the government to

3IV quantile regression further deals with endogeneity.
4The data used in GM was not available as it had been lost. So, as a robustness check, we also conduct a

similar test using the data similar to GM constructed by Facchini et. al. (2006).
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influence tariff policy. Government cares about both the contributions and social welfare, W (p),

where p is a vector of prices equal to the tariff vector plus the world price, p∗. Tariff revenue

is redistributed to all agents in a lump sum manner. Since the economy is assumed to be small

relative to the world, p∗ is given. Government puts a relative weight of α on social welfare, 5

The timing of the game is as follows: first, lobbies simultaneously bid contribution functions

that specify contributions made contingent on specific tariff levels. The government then chooses

tariffs to maximize its own objective function. In this way, the government is the common agent

all principals (organized lobbies) are trying to influence. Such games are known to have a

continuum of equilibria. By restricting agents to bids that are “truthful” so that their bids have

the same curvature as their welfare, a unique equilibrium can be obtained. 6 The equilibrium

outcome in this unique equilibrium is as if the government was maximizing a weighted social

welfare function with an additional weight on the welfare of organized industries. That is,

equilibrium tariffs can be found by maximizing

G(p) = αW (p) +
∑
jεJ0

Wj(p),

where J0 is the set of politically organized industries and Wj is the welfare of the specific factor

owners in industry j, which is

Wj(p) = πj(pj) + lj +
Nj

N
[T (p) + S(p)] ,

where πj(pj) is producer surplus, lj is their labor income (wage is unity), Nj/N = αj is the

fraction of agents who own the specific factor j, while T (p) + S(p) is the sum of tariff revenue

5We use bold letters for vectors.
6For a detailed discussion of this concept, see Bernheim and Whinston (1986). Imai et al. (2008) provide a

new elementary proof of their result.
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and consumer surplus in the economy. Maximizing G(p) gives, after some manipulation:

xj(pj)(Ij − αL) + (pj − p∗j )m′j(pj)(α+ αL) = 0, (1)

where Ij is unity if j is organized and zero otherwise, αL (assuming that each individual owns

at most one specific factor) corresponds to the fraction of the population that owns specific

capital in organized industries, and xj(pj) and mj(pj) denote domestic supply and imports of

industry j. Defining zj = xj(pj)/mj(pj) as the inverse of the import penetration ratio, and

ej = −m′j(pj)pj/mj(pj) as the import elasticity of demand (a positive number), equation (1)

can be rewritten using the fact that (pj − p∗j ) = tjp
∗
j where tj is the tariff rate,

tj
1 + tj

=

(
Ij − αL
α+ αL

)(
zj
ej

)
. (2)

This is the basis of the key estimating equation, which we call the protection equation:

tj
1 + tj

= γ
zj
ej

+ δIj
zj
ej

. (3)

This equation provides the well known prediction of the PFS model: γ = [−αL/ (α+ αL)] < 0,

δ = 1/ (α+ αL) > 0, and γ + δ > 0.7 In other words, protection is decreasing in the inverse

import penetration ratio if an industry is not organized (γ < 0), but increasing in it when the

industry is organized (γ + δ > 0).

7This holds as long as there are some agents who do not own any specific capital of organized industries,
αL < 1.
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2.2 A Problem in Estimation — the Classification of Industries

To make equation (3) estimable, an error term εj is added in a linear fashion:

tj
1 + tj

= γ
zj
ej

+ δIj
zj
ej

+ εj .
8 (4)

To allow for the fact that a significant fraction of industries have zero protection in the data,

equation (4) can be modified as follows:

tj
1 + tj

= Max

{
γ
zj
ej

+ δIj
zj
ej

+ εj , 0

}
. (5)

To test the key prediction (i.e., γ < 0, δ > 0 and γ + δ > 0), equations (4) and (5) have been

estimated in a number of previous studies.

Although data on measures of trade protection, the import penetration ratio, and the import-

demand elasticities are often available, it is harder to obtain a good proxy of whether an

industry is politically organized or not. To deal with this problem, GM used data on campaign

contributions at the three-digit SIC industry level. In their paper, an industry is classified as

politically organized if the campaign contribution exceeds a specified threshold level.

GB use an alternative approach. They run a regression using the three-digit SIC industry

level data, where the dependent variable is the log of the corporate PAC spending per con-

tributing firm relative to value added and the regressors include the interaction of the import

penetration from five countries and the two-digit SIC dummies9. Then, industries are classified

as politically organized if any of the coefficients on the five interaction terms are found to be

positive. This procedure is based on the presumption that in organized industries, an increase

in contributions would likely occur when import penetration increased.

8From now on, unless noted otherwise, we will use the GB notation and rescale inverse import penetration
ratio by dividing it by 10000, i.e. z/10000.

9Three-digit SIC industry categories are subcategories of the two-digit SICs.
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Both of these procedures are questionable. GM because low contributions are quite consis-

tent with being organized, and GB because the presumption that contributions are positively

associated with import penetration when industries are organized is far from clear. We offer

a formal argument that claims: (1) when industries are misclassified, only under very strong

assumptions can we consistently estimate parameters in the protection equation; (2) both of the

above classification approaches are inconsistent with the PFS model and result in misclassifica-

tion of industries, with the likely outcome being inconsistent parameter estimates.

To see the first claim, let ηj be classification error; ηj = Ij − I ′j where Ij is the true political

organization dummy and I ′j is the political organization dummy used for estimation. Then, the

following equation is essentially estimated as the protection equation:

tj
1 + tj

= γ
zj
ej

+ δI ′j
zj
ej

+ ζj ,

where ζj ≡ δηjzj/ej + εj is the composite error term. This suggests that we could find instru-

ments for zj/ej (i.e., variables that are correlated with zj/ej but not correlated with ζj) only if

ηj is mean zero and independent of zj/ej ; otherwise, instruments for zj/ej would be unavailable,

as any variable correlated with zj/ej will be correlated with δηjzj/ej and hence with ζj . Im-

portantly, as we will show below, the classification schemes used by GM and GB tend to result

in classification error that is not mean zero and/or independent of zj/ej , thereby making their

instruments invalid.10

Next, we discuss the second claim. Given the model and the menu auction equilibrium of the

PFS model, it is easy to verify that the equilibrium campaign contribution schedule should be

such that government welfare in equilibrium should equal the maximized value of the government

objective function when industry i is not making any contributions at all. Thus, the equilibrium

10In GM,they used the same instruments for I ′j as those for zj/ej . As such, if their instruments for zj/ej are
correlated with ζj , so are their instruments for I ′j .
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campaign contribution can be expressed as follows:11

B∗i (pE) = −

αW (pE) +
∑

jεJ0,j 6=i
Wj(p

E)

+ αW (p(i)) +
∑

jεJ0,j 6=i
Wj(p(i)) = Hi(p(i))−Hi(p

E),

where B∗i (pE) is the campaign contribution of industry i at the equilibrium domestic price

vector pE , and p(i) is the vector of domestic price chosen by the government when industry i

is not making any contributions. Since Hi(p) = αW (p) +
∑

jεJ0,j 6=i
Wj(p) 12, it can be seen that

equilibrium contributions are essentially the difference in the value of the function Hi(p) : RN

→ R between p(i) and pE .

Let p(t) be a path from pE to p(i) as t goes from zero to unity. Since the line integral is

path independent, we can choose this path as desired. In particular, we can choose it so that

p(t) = pE + t
[
p(i)− pE

]
so that p(t = 0) = pE , p(t = 1) = p(i), and Dp(t) =

[
p(i)− pE

]
.

Hence,

Hi(p(i))−Hi(p
E) =

1∫
0

dHi(p(t))

dt
dt =

1∫
0

∂Hi(p)/∂pj •
[
p(i)− pE

]
dt, (6)

where DHi(p(t)) is the vector of partial derivatives of the real valued function Hi(.) with respect

to the vector p and Dp(t) is the vector of the derivatives of p with respect to t and • denotes

their dot product.

How can we find p(i)? It is the outcome when all other agents bid what they would have

done in the regret free equilibrium, but i bids zero, and the government maximizes its objective

function. As each agent bids his own welfare, less a constant, this is exactly the outcome that

would occur in the regret free equilibrium where i did not exist. Thus, the vector p(i) must take

the same form as pE (the domestic price chosen by the government when industry i is making

11As the equilibrium bids of a lobby group equal its welfare of the lobby group less a constant, the constants
will cancel out in the expression.

12Note that H has to be indexed by i.
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contributions) but with αL being replaced by αL − αi. Thus,

pl(i)− p∗l
pl(i)

=
I(l ∈ J0 − {i})− (αL − αi)

α+ αL − αi
zl
el
, (7)

pl(i) =
p∗l

1− I(l∈J0−{i})−(αL−αi)
α+αL−αi

zl
el

, (8)

where I is an indicator function. Note the analogy with equation (2). This equation allows us

to calculate p (i) given the parameters of the model and zl/el.

Now using the line integral defined in equation (6) and substituting forDHi(p(t)) = ∂Hi(p)/∂pj

and for Dp(t) =
[
p(i)− pE

]
, and equation (1), we get

B∗i (pE) =

1∫
0

∑
j

{(α+ αL − αi) (pj(t)− p∗j )
∂mj (pj(t))

∂pj

+ [I (j ∈ L− {i})− (αL − αi)]xj (pj(t))}{pj(i)− pEj }dt

=
∑
j

{pj(i)− pEj }
1∫
0

{− (α+ αL − αi)
(pj(t)− p∗j )

pj(t)

(
zj(t)

ej(t)

)−1
+ [I (j ∈ L− {i})− (αL − αi)]}xj (pj (t)) dt. (9)

Thus, depending on αi, α, αL, xj(.), and zj/ej , B
∗
i (pE), the equilibrium campaign con-

tributions of the PFS model, can be small even for politically organized industries. This is

evident from a numerical example. Assume there are 400 industries (N = 400), of which 200

are politically organized (Np = 200). We set p∗i = 2.0, α = 50.0, αL = 0.5, αi = αL/N , and

xi = 10000. We also set zi/ei = i/1000 for industries i = 1, ..., Np which are politically organized

and zNp+i/eNp+i = i/1000 for industries Np + i = Np + 1, ..., N which are not politically orga-

nized. In this example, for every organized sector with a particular zi/ei, there is an unorganized

one with the same zi/ei. In every other way, the sectors are assumed to be identical.

Figure 1 depicts the equilibrium campaign contributions for politically organized industries
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in the above example13. Notice that these contributions vary from 0 to 40 depending on the

value of z/e. This illustrates the possibility that GM’s classification based on a threshold of

campaign contribution could well misclassify industries with low campaign contribution and low

z/e (high import penetration and/or high e) as politically unorganized. Hence, classifying polit-

ical organization based on a uniform threshold, as done by GM and others, leads to classification

error, which is not independent of zj/ej .

Figure 1 also shows that the equilibrium campaign contributions increase with z/e for po-

litically organized industries. It is not hard to see that the PFS model under fairly general

parameter setting would generate positive relationship between campaign contributions and

z/e; it predicts that for politically organized industries, protection is positively related to z/e.

Hence, campaign contributions and z/e are likely to be positively related as long as greater

campaign contributions tend to result in higher protection. In the Appendix, we formally prove

the following proposition.

Proposition 1 (Equilibrium Campaign Contribution) Denote the inverse import penetra-

tion times the import elasticity of industry j to be
xj
mjej

= Dj . Assume αj is sufficiently small

for all j, xj and Dj do not vary with p and Dj is ordered so that it is increasing in j. Then, as

long as the weight on welfare is large enough, then equilibrium campaign contributions Bj(p
E)

are increasing in j for industries that have the same αj and xi.

2.2.1 Explaining the Results of GB and GM as Misclassification:

Note however that this prediction is the opposite of the relationship used by GB to classify polit-

ical organization14. Our example and proposition therefore suggests that the correct organized

13We did not plot the campaign contributions of politically unorganized industries becase they obviously are
zero.

14In GB, for politically organied industries, the campaign contributions are assumed to be negatively related
to inverse import penetration ratio, whereas in our version of the PFS model we show that they are positively
related.
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industries may well be the ones which GB classified as unorganized and vice versa, i.e., I = 1 −

IGB where IGB is the political organization dummy by GB. misclassification on the part of GB

has an important implication for the interpretation of their parameter estimates: although their

estimates seem consistent with the PFS predictions (i.e., γGB < 0, δGB > 0, and γGB+δGB > 0),

they are not, given the correct political organization dummy. This can be easily seen by noticing

that when I = 1 − IGB is the political organization dummy, the protection equation should be

tj
1 + tj

= (γGB + δGB)
zj
ej
− δGB (1− IGB)

zj
ej

+ εj .

This implies γ̂ = γGB + δGB > 0, δ̂ = −δGB < 0, and γ̂ + δ̂ = γGB < 0, which is clearly

inconsistent with the PFS framework. In this way, classification error could have led GB to

inadvertently conclude that the data supported the PFS model. In effect, by tending to label

industries as the opposite of what they truly are, GB get a false positive in support of the PFS

model.

Though a positive relation between contributions and z/e is predicted in the model, a negative

relationship between them is confirmed in the data used in GB and the data in Facchini et al.

(2006) (who reconstructed the GM dataset). We present these relationships in Figures 2 and 3,

respectively, where log(z/e) (z/e in Figure 3) and log of campaign contributions per dollar of

value added are found to be negatively correlated. In other words, campaign contributions are

negatively correlated with the inverse of the import penetration ratio or positively correlated

with import penetration.

We next explain how the approach of GM might be giving a false positive coefficient estimate

for z/e for the organized industries due to classification error. In the example constructed below,

even though the true model is clearly inconsistent with the PFS framework, estimation of the

protection equation using GM’s classification approach provides results in support of the PFS
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model!

We generate protection levels that are decreasing in z/e for organized industries as well

as for unorganized ones, which is consistent with what we find in the data by using quantile

regression, but inconsistent with the PFS model. Specifically, we use the following equation:

tj
1 + tj

= max

{
β0 + β1

zj
ej

+ εj , 0.0

}

where (β0, β1) = (0.5,−2.5) for organized industries, (β0, β1) = (0.05,−0.25) for unorganized

ones, and εj ∼ N(0, 0.02), zj/ej = j/2000, j = 1, ..., 200 for both. Thus, in our example, orga-

nized industries have higher protection levels but for both organized and unorganized industries,

protection falls with z/e. The total number of industries as well as the number of organized in-

dustries are set to be the same as the ones used earlier. As observed in the actual data, we

generate campaign contributions to be positively correlated with the import penetration ratio

(negatively with z/e). We normalize the campaign contributions to be equal to the protection

measure t/(1 + t) and classify industries to be politically organized if the campaign contribu-

tions exceed the threshold of 0.25. This results in about 50% of the organized industries being

wrongly classified as unorganized.

Using simulated data from the above exercise on protection and z/e, we estimate the pro-

tection equation by OLS15 and then obtain γ̂ = −0.95 (−9.87) and δ̂ = 3.14 (14.28) where

t-statistics are in parentheses. The results are clearly in support of the PFS model even though

the simulated model is not.

The reason for the result is simple. Assume that the true protection equation is

tj
1 + tj

= γ
zj
ej

+ ζj

15Both z/e and the political organization are constructed to be exogenous. Since the classificaton error is
correlated with z/e and mean nonzero, we cannot correct for the bias by any instruments as discussed earlier.
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and assume the campaign contribution to be equal to tj/(1 + tj) for politically organized in-

dustries. Suppose that γ < 0 is the true parameter for both the politically organized and

unorganized industries. Furthermore, suppose that the campaign contribution equals the pro-

tection measure tj/(1 + tj), with the threshold C̄ being the one that classifies the industries

into politically organized ones (those with Cj ≥ C̄) and unorganized ones (those with Cj < C̄).

Then, for industries that are classified as politically organized, for high values of zj/ej only

those with ζj sufficiently large such that tj/(1 + tj) ≥ C̄ are left. Thus, for industries classified

as politically organized, zj/ej and ζj are positively correlated, resulting in upward bias of the

estimate of γ. Similarly, for politically unorganized industries, for low values of zj/ej only those

with ζj sufficiently low such that tj/(1 + tj) < C̄ are included. Again, for industries that are

classified as politically unorganized, zj/ej and ζj are positively correlated, resulting in upward

bias of the estimate γN . If the magnitude of the downward bias for γ for political organized

industries is greater than that of the unorganized, then we would get δ to be estimated positive.

Perhaps the simplest way to see the intuition is to look at Figure 4, where we plot the sim-

ulated data and the fitted PFS protection equation. The data generated produce two downward

sloping clusters of points, with the organized industries (red colored points) lying above the

unorganized (green colored) ones. As protection and campaign contributions are the same, the

GM approach will result in “organized industries” getting a positive slope and “unorganized”

ones getting a negative one as depicted.

15



3 A Proposed Approach

3.1 Quantile Regression

Equation (5) and the restrictions on the coefficients have at least two implications. First, z/e

has a negative effect on the level of protection for unorganized industries while it has a positive

effect for organized ones. Second, given z/e, organized industries have higher protection. These

implications lead to the following claim: given z/e, high-protection industries are more likely to

be organized and thus the effect of an increase in z/e on protection tends to be that of organized

industries.

The logic of this argument is illustrated in Figure 5 where the distribution of t/ (1 + t) is

plotted for given z/e. The variation of t/ (1 + t) given z/e occurs for two reasons. First, because

some industries are organized while others are not and these two behave differently,and second,

because of the error term. As a result, the distribution of t/ (1 + t) comes from a mixture of two

distributions, namely those for the politically organized industries and those for the unorganized.

These two distributions for some given values of z/e are shown in Figure 5. The two dashed lines

give the conditional expectations of t/ (1 + t) for the organized and unorganized industries as a

function of z/e. In line with the PFS model, the two lines start at the same vertical intercept

point and the line for the organized industries is increasing while the other is decreasing in z/e.

For each z/e, if we look at the industries with high t/ (1 + t), they tend to be the politically

organized ones. Thus, at high quantiles, the relationship between t/ (1 + t) and z/e should be

that for organized industries, i.e., should be increasing as depicted by the solid line labelled the

90th quantile in Figure 5.

In Figure 6 and 7, we plot the relationship between the inverse import penetration ratio

and the protection measure in the data used in GB. In both specifications, with and without

the elasticity on the RHS, the relationship is negative, especially at high ranges of protection
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measure. In both figures it appears that the relationship between the inverse import penetration

ratio and the protection measure is quite different from the one shown in Figure 5.

In Figure 8 and 9, we present the 0.4, 0.6, 0.8, 0.9 and 0.95 quantiles of the protection

measure for each z/e and z, subsequently. The purple and blue lines trace out the protection

measure of 0.9 and 0.95 quantiles of industries, both of which are highly protected. They both

decrease with z/e.

We then proceed to analyze the data more formally by using the quantile regression, which

is equivalent to fitting a straight line for each line in Figures 8 and 9, while including additional

variables, such as tariffs on intermediate goods and others used in GB as controls. For example,

running a quantile regression for 0.9 quantile with z/e being the RHS variable is equivalent to

fitting a straight line for the purple line in Figure 8.

The next proposition and its proof formalizes the above logic.

Proposition 2 (Quantile Regression) Assume that Tj ≡ tj/(1 + tj) is generated by the PFS

tariff equation, i.e. either equation 4 or 5. Assume that (1) Zj ≡ zj/ej is bounded below by a

positive number, i.e. there exists Z > 0 such that Zj ≥ Z, (2) εj has a smooth density function

which has support that is bounded from above and below, (3) εj is independent of both Zj and

Ij, and (4) δ > 0. Then, for τ sufficiently close to 1, the τ quantile conditional on Zj can be

expressed as

QT (τ |Zj) = F−1ε

(
τ ′
)

+ (γ + δ)Zj (10)

where F is the distribution function of ε and

τ ′ =
τ − P (Ij = 0)

P (Ij = 1)
. (11)

The proof can be found in Appendix 1. The proposition essentially states that in the quantile
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regression of t/(1 + t) on z/e, the coefficient on z/e should be close to γ+ δ > 0 at the quantiles

close to τ = 1. To examine this, we use the quantile regression (Koenker and Bassett, 1978) and

estimate the following equation:

QT (τ |Z) = a (τ) + b (τ)Z, (12)

where τ denotes quantile, T = t/(1 + t), Z = z/e, and QT (τ |Z) is the conditional τ -th quantile

function of T . If the PFS model is correct, b (τ) converges to (γ + δ) > 0 as τ approaches its

highest level of unity from below16.

3.2 IV Quantile Regression

In the quantile regression, Z is assumed to be an exogenous variable. However, Z is likely to be

endogenous as discussed in the literature (e.g., Trefler, 1993) and hence the parameter estimates

of the quantile regression are likely to be inconsistent. It is therefore important to allow for the

potential endogeneity of Z. We formally show that even in the presence of this endogeneity,

the main prediction of the PFS model in terms of our quantile approach does not change. The

relevant proposition (Proposition 2), an analogue of Proposition 1, is presented below.

Proposition 3 (Quantile IV) Assume that Zj is bounded below by a positive number, i.e.

16Facchini et. al. (2006) provided a modified equilibrium protection equation which is derived from the
equilibrium PFS model where NTB’s are used instead of tariffs as the instruments for protection. The equilibrium
protection equation derived by them is

φ−1
i (qi)

1 + φ−1
i (qi)

=
1

γi
× Ii − αL

β
1−β + αL

× zi
ei

+
1− γi
γi

× zi
ei

where φ−1
i (qi) is the tariff equivalent protection measure of the quota qi, which we follow the literature including

Facchini et. al. (2006) by using the coverage ratio of NTB’s as a proxy. γi, which is defined as the ratio of quota
rent that is captured, is restricted to be

0 ≤ γi ≤ 1

and set to be the same (i.e., γ) for all industries in the estimation stage. Then, the coefficient on zi/ei for the
politically organized industry is

1

γ
× 1− αL

β
1−β + αL

+
1− γ
γ

> 0,

satisfying the assumption required for the quantile based test to be valid. Therefore, the quantile based test would
also be a valid test for their modified PFS model.
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there exists Z > 0 such that Zj ≥ Z. Then, for τ sufficiently close to 1,

P
(
T ≤ F−1ε

(
τ ′
)

+ (γ + δ)Zj |Wj

)
= τ,

where

τ ′ =
τ − P (Ij = 0)

P (Ij = 1)
.

The proof is provided in the Appendix.

To test the prediction in the presence of possible endogeneity of Z, we estimate the following

equation by using IV quantile regression (Chernozhukov and Hansen, 2004a; 2004b; 2005; 2006):

P (T ≤ a (τ) + b (τ)Z|W ) = τ , (13)

where W is a set of instrumental variables. We use as instruments the variables that are

considered as exogenous in the parsimonious specification of the tariff equation in GB17. In the

IV quantile regression, we have to assume that instruments are independent of the error term

of the tariff equation.

Importantly, nowhere in equations (12) and (13) is the political organization dummy present;

these equations involve only variables that are readily available. In this way our approach does

not require classification of industries in any manner and as a result, we can avoid any biases

due to misclassification.

An issue that we need to discuss is the endogeneity of political organization. That is, there

could be a correlation between the error term of the equation determining political organization

and the error term of equation (5). Since our method is not subject to classification error, one

of the main sources of correlation between the error terms in the two equations in GM and other

17We thank the referee for the suggestion of instruments.
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studies, we are less subject to this criticism 18. Moreover, as long as the error term of the equation

determining political organization and that of the protection equation are positively correlated,

or as long as the negative correlation is not too strong, our quantile IV procedure will still be

consistent. This is because only when the negative correlation in the errors is very strong (large

positive shocks in protection are correlated with shocks that make an industry unorganized)

could the most protected industries be unorganized ones. Plausible scenarios actually would

suggest the opposite.

Nonetheless, to further guard against the possibility of endogeneity bias, we control for

capital-labor ratios, which is essentially equivalent to allowing the capital-labor ratio to be a

determining factor for the probability of political organization. This is motivated by Mitra (1999)

who provides a theory of endogenous lobby formation. His model predicts that, among other

things, industries with higher levels of capital stock are more likely to be politically organized.

4 Estimation

In this section we implement our quantile approach.

4.1 Data

We use part of the data used in Gawande and Bandyopadhyay (2000).19 The data consist of

242 four-digit SIC industries in the United States. In the dataset, the extent of protection, t,

is measured by the nontariff barrier (NTB) coverage ratio. z is measured as the inverse of the

ratio of total imports to consumption scaled by 10, 000. e is derived from Shiells et al. (1986)

and corrected for measurement error by GB. See GB for more details along with the sample

18In those studies, classification error enters both the disturbance term of the equation determining the political
organization and the disturbance term of the protection equation. Thus, classification error necessarily resulted
in correlation between the disturbance terms.

19We are grateful to Kishore Gawande for promptly and generously providing us with the data. We would have
also used the data used by GM but this was lost. We use a reconstructed dataset (developed by Facchini et. al.
(2006) ) as the best approximation of GM’s dataset. The data was kindly given to us by Facchini and Willmann.
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statistics of the variables. Of particular note about the data is that 114 of 242 industries (47%)

have zero protection, highlighting the importance of accounting for a corner solution as done

naturally using a quantile approach.

4.2 Quantile Regressions

We present the results of the basic regressions, and then the ones where we add controls and

use instruments. We also perform a number of robustness checks.

4.2.1 The Basic Quantile Regression

Column 1 of Table 1 presents the estimation results of equation (12)20. The results do not

appear to provide any supporting evidence for the PFS model; the null hypothesis of b (τ) ≤ 0

cannot be rejected at high quantiles (in fact, at all quantiles) in favor of the one-sided alter-

native that b (τ) > 021 . Moreover, the point estimates indicate that the b (τ) are all negative

at high quantiles, contrary to the PFS prediction, and tend to decrease as τ goes from 0.5 to 0.95 .

b(τ) is estimated to be zero at the 0.05-0.45 quantiles, suggesting that the corner solution

(T = 0) greatly affects the estimates at lower quantiles. From this evidence, it is conjectured

that the existence of corners also affects the estimates at the mean. Thus, findings based on the

linear model (i.e., equation (4)) in GB, Bombardini (2008), and others are likely to be subject

to bias due to the corner solution problem. In contrast, our method does not suffer from the

problem, since the focus is mainly on the higher quantiles where the effect of corner solution is

20All the quantile regression estimation is done by using stata command qsreg. The standard errors are boot-
strapped with 200 replications. We also provide the bootstrapped P-values for the hypothesis b(τ) ≤ 0, i.e.
P (b(τ) ≤ 0).

21It is noteworthy tht the bootstrapped P-values are surprisingly high given the high bootstrapped standard
errors, which normally results in inconclusive results in hypothesis testing, i.e. P-values around 0.5. If we look
at the parameter estimates generated by bootstrap, we find that they are skewed with a heavy tail at negative
values. Due to this nonnormality of the parameter distribution with small sample size of 242, hypothesis testing
should be based on the bootstrapped P-values rather than the standard error, because the hypothesis testing
based on the latter statistics assumes (asymptotic) normality of the parameter distribution.
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minimal22 23.

Following GB, we also control for tariffs on intermediate goods (INTERMTAR) and NTB

coverage of intermediate goods (INTERMNTB). As Column 2 of Table 1 shows, our main

findings do not change; the null hypothesis that b (τ) ≤ 0 cannot be rejected at high quantiles.

The point estimates of b(τ) are either zero or negative except at the 0.95 quantile. Even then,

its P-value P (b(τ ≤ 0)) is still high at 60%. b(τ) is found to be zero at the quantiles between

0.05 and 0.2, strengthening the case for using a quantile approach.

4.2.2 The IV Quantile Regression

For the IV quantile regressions, we use the exogenous variables in GB and their squares as

instruments 24. Column 3 and 4 of Table 1 present the estimation results of equation (13)25

without and with the GB controls. As in the quantile regression, we cannot reject the null

hypothesis of b(τ) ≤ 0 in favor of the one-sided alternative at high quantiles. The point estimates

are not favorable towards the PFS model either; even after correcting for the endogeneity of Z,

the estimates of b at the high quantiles are negative except for the 95 percentile one in column

3. Even there, the bootstrapped P-value for b(τ) ≤ 0 is high at 0.58. As presented in Column

5 of Table 1, qualitatively similar results are obtained when we further control for the capital-

labor ratio. Our main findings appear to be robust; regardless of which instruments we use and

whether we control for capital-labor ratios, the null hypothesis at the high quantiles cannot be

22Figures 8 and 9 confirm this as well. The slopes of the lower quantile lines (yellow, red and green ones) seem
to be flat, due to zero lower bound in protection, but the slopes of purple and blue lines do not appear to be
affected by it.

23Of course, this advantage comes with a cost. That is, the quantile approach does not allow us to estimate
the structural parameters γ and δ separately.

24The same instruments have been used in Bombardini (2008). As a robustness check, we also used a varied set
of instruments: (1) GB’s 17 instruments plus their interaction terms, (2) SCIENTISTS only, (3) MANAGERS
only, and (4) CROSSELI only. In (1), we encountered singularity problems in bootstrap resampling and rees-
timation due to the excessive number of instruments relative to the small sample size of 242. Since the results
(2)-(4) are similar to the ones we report, we do not include them in the paper. Those results are available from
the authors upon request.

25All the IV quantile regression exercises are done by using a stata code based on the stata command bsqreg.
The code is available from the authors upon request.
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rejected. Moreover, the point estimates of b (τ) are mostly negative at high quantiles.

4.2.3 An Alternative Specification

As a further robustness check, we examine a different model specification. Note that by moving

ej to the left hand side of the equation, equation (3) can be re-expressed as:

tj
1 + tj

ej = γzj + δIjzj .

This provides a basis of an alternative model for our quantile-based test:

QTe (τ |z) = a (τ) + b (τ) z, (14)

where Te = te/(1 + t), QTe (τ |z) is the conditional τ -th quantile function of Te; for IV quantile

regression,

P (Te ≤ a (τ) + b (τ) z|W ) = τ, (15)

where W is a set of instrumental variables. Since the dependent variable now involves elastic-

ity, we exclude any RHS variable that measures or proxies for elasticity, including cross price

elasticity CROSSELI from the set of instrumental variables used earlier.

As presented in Table 2, the results resemble those presented before; point estimates of b(τ)

at high quantiles are all negative, except for the 0.95 quantile for the quantile regression results,

which may be subject to the endogeneity bias. Even there, the hypothesis of b(τ) ≤ 0 cannot

be rejected, having high P-values P (b(τ) ≤ 0). Our main results therefore do not seem to be

driven by the model specification. We also examined the robustness of our results to a varied

set of instruments. The results are similar.26.

26The results are available on request.
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In Table 3, we do a final check and report the results where we used the same data as in

Facchini et. al. (2006) who reconstructed the GM dataset.27 Here again, both for quantile

regression and IV quantile regression, we cannot reject the hypothesis of b ≤ 0. However, it is

important to keep in mind that one should not give too much weight to these quantile regression

and IV quantile regression results as the sample size here is only 104 and it is well known that

these methods require a large sample size28.

5 Discussion

There are several possible explanations for our results. The first possibility is heteroskedasticity.

If the error term has higher variance when the industry is unorganized, i.e.,

εj = wj + (1− Ij) ζj , (16)

where both wj and ζj are random terms independent of zj/ej and Ij , then unorganized industries

would have error terms with much higher variance. As a result, unorganized industries would

dominate in high quantiles as well as in low quantiles, whereas the organized industries would

be found mostly around the median. In this scenario, at high quantiles the negative quantile

regression coefficients should correspond to γ, which is negative, and not γ + δ > 0. This could

explain the presence of negative slope coefficients in the higher quantiles. While this possibility

cannot be completely ruled out, it is hard to reconcile it with the fact that almost all industries

have positive campaign contributions and both GM and GB have more than half of the industries

being organized, so that it is reasonable to think that a significant fraction of the industries are

likely to be organized. If this is so, then it is surprising to find that the slope coefficients of the

27We thank the referee for the suggestion of this robustness check.
28To make the results comparable to those by GM, we use z/e instead of z/(1000e), and follow the GM protection

equation specification of using te/(1 + t) as the depedent variable and z as the independent variable. We also use
GM instruments and follow them in using unemployment rate and employment size as controls.
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quantile regressions are negative at almost all quantiles except for the zeros at low quantiles,

which comes from the corners. Could heteroskedasticity in terms of z/e account for our results?

Simple forms of this clearly cannot. In fact, if the variance of the error term increases in z/e,

one could actually get a false positive in favor of the PFS model using our quantile approach. If

the variance of the error term decreases in z/e, then one could obtain the reverse pattern with

the slope coefficient rising for lower quantiles. We find neither of these patterns in the data.

Second, the small sample may make it difficult for our approach to provide evidence favoring

the PFS model. This problem can be overcome by using more disaggregated data, although

such an exercise is beyond the scope of the current paper.

Third, note that when classification error is considered, our results are consistent with part

of GB’s results and not inconsistent with those of GM. As argued earlier, if political organization

were correctly assigned in GB, then GB might also have found no support for the PFS model.

Recall that in our example where we computed the relationship between the equilibrium cam-

paign contribution and z/e for organized industries, it was positive instead of negative. If the

positive relationship holds in reality, we argued that the industries that were originally classified

as organized in GB should be classified as unorganized and vice versa. Then, the true results

of the GB estimation should be γ̂ > 0, δ̂ < 0 and γ̂ + δ̂ < 0, part of which (i.e., γ̂ + δ̂ < 0) is

indeed consistent with our quantile and quantile IV results (i.e., β (τ) < 0 for high τ ’s). We also

argued that misclassification due to the GM’s approach could result in evidence favoring the

PFS model even when the true model is inconsistent with the PFS framework. This suggests

that the GM’s results are not inconsistent with our results against the PFS model.

It is worth explaining why we chose to take a quantile (IV quantile) approach rather than

some other approach, even though it does not provide estimates of the structural parameters.

Given current techniques, there may be another way to satisfactorily estimate the model that

does not require classification ex ante of industries into the two groups. This would involve
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the estimation of GM setup but with organization treated as unobservable.29 The issue in this

case would be identification. The exclusion restriction for identification would require that at

least one exogenous variable that determines z/e (i.e., instruments for z/e) does not enter in

the political organization equation, and thus does not influence tariffs directly. But such an

instrument is likely to be hard to find.

6 Conclusion

In this paper, we proposed and implemented a new test of the PFS model that does not re-

quire data on political organization. To our surprise, the findings are not supportive of the PFS

model. Clearly, more work is needed on this. One fruitful research avenue might be to look at

countries other than the United States using our approach. Since it does not require data on

political organization, our approach could be tested using data where information on political

organization is unavailable. Another possible research avenue is to use more disaggregated data

so that our approach can provide more statistically clear-cut evidence. Other predictions of

the PFS model such as those on equilibrium contribution levels predicted by the PFS model

relative to actual contributions need to be tested, and we hope to do so using a more structural

approach that would be able to estimate all the structural parameters of the PFS model. There,

the algorithm that we used in this paper to compute the equilibrium relationship between the

parameters of the PFS model and the equilibrium campaign contribution would likely play a

key role in the estimation.

Since we failed to obtain evidence in favor of the basic PFS model, we believe that the PFS

model needs to be further developed to address the empirical inconsistencies pointed out in

29This is equivalent to a switching regression approach where the outcome of the switching regression is not
observable. One may also think of this as an unobserved heterogeneity model where the unobserved types are
allowed to be endogenous and are estimated in addition to the tariff equation.
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this paper. The negative relationship between the inverse import penetration ratio reported

in this paper would be more consistent with the “Surge Protection” type story advocated by

Imai et. al. (2009), where protection is a response to an import surge in an industry. Indeed,

they show that the quantile regression and IV quantile results of the Surge Protection model is

more consistent with the data than the PFS model. By incorporating the loss aversion to the

standard PFS model, Tovar (2009) presents the modified PFS model with an idea similar to the

“Surge Protection” model, and reports results in support of it. Bown and Crowley (2009) looks

at the U.S. antidumping tariffs from 1997 to 2006 and concludes that the increase in bilateral

imports to the U.S. increases antidumping tariffs, and political economy measures have little

explanatory power.
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8 Appendix

8.1 Equilibrium Campaign Contributions

Proof of Proposition 1:

From equation (9) we know that by transforming the variable of integration from t to p

B∗i (PE) =
∑
j

∫ pj(i)

pEj

{
(α+ αL − αi)(pj − p∗j )

∂mj

∂pj
+ [I(j ∈ L− {i})− (αL − αi)]xj

}
dpj

=
∑
j

∫ pj(i)

pEj

{
−(α+ αL − αi)

pj − p∗j
pj

[mjej ] + [I(j ∈ L− {i})− (αL − αi)]xj
}
dpj

=
∑
j

∫ pj(i)

pEj

{
−(α+ αL − αi)

pj − p∗j
pj

mjej
xj

+ [I(j ∈ L− {i})− (αL − αi)]
}
xjdpj

. (17)

Next, we will decompose the campaign contributions into two parts: one part which is common

across all lobby groups i that have the same αi and one part that varies according to the lobby

group.

Let p̃j(i) be defined as follows:

p̃j(i)− p∗j
p̃j(i)

=
I(j ∈ L)− αL + αi

α+ αL − αi
Dj (18)

Then, for j 6= i

p̃j(i) = pj(i).

Note that as defined, p̃j(i) = p̃j(i
′) if αi = αi′ . That is, as long as αi is the same, p̃j(i) does not

depend on the identity of i.

As a result, we can decompose the campaign contribution equation into two components,

Bi(P
E) = Bi(P

E) + ∆i
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where

Bi(P
E) =

∑
j

∫ p̃j(i)

pEj

{
−(α+ αL − αi)

pj − p∗j
pj

mjej
xj

+ [I(j ∈ L)− (αL − αi)]
}
xjdpj .

We will show now that Bi(P
E) is the same for any industry with the same αi. That is, Bi(P

E)

can be rewritten as

Bi(P
E) = B(PE , αi)

We can see this by considering Bi(P
E) of two industries i 6= i′ with αi = αi′ . As we have seen

above, pj(i) = pj(i
′) and thus

Bi′(P
E) =

∑
j

∫ p̃j(i
′)

pEj

{
−(α+ αL − αi′)

pj − p∗j
pj

mjej
xj

+ [I(j ∈ L)− (αL − αi′)]
}
xjdpj

=
∑
j

∫ p̃j(i)

pEj

{
−(α+ αL − αi)

pj − p∗j
pj

mjej
xj

+ [I(j ∈ L)− (αL − αi)]
}
xjdpj = Bi(P

E)

The second component, ∆i, depends on Di and accounts for the fact that pi(i) 6= p̃i(i) (the first

term in the expression below) and for the difference between I(j ∈ L) and I(j ∈ L − {i)) (the

second term below)

∆i =

∫ pi(i)

p̃i(i)

[
−(α+ αL − αi)

pi − p∗i
pi

miei
xi
− (αL − αi)

]
xidpi −

∫ pi(i)

pEi

xidpi

Note that both terms in ∆i differ across lobbying industries even if αi is the same. Consider

the term ∫ pi(i)

p̃i(i)

[
−(α+ αL − αi)

pi − p∗i
pi

miei
xi
− (αL − αi)

]
xidpi
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From equation (7),

pi(i)− p∗i
pi(i)

=
−(αL − αi)
α+ αL − αi

xi
miei

Hence,

−(α+ αL − αi)
pi(i)− p∗i
pi(i)

miei
xi
− (αL − αi) = 0.

Furthermore, from (18)

−(α+ αL − αi)
p̃i(i)− p∗i
p̃i(i)

miei
xi
− (αL − αi) = −1.

Let

K =
pi − p∗i
pi

miei
xi

+
αL − αi

α+ αL − αi

For K = 0,

pi = pi(i)

and for K = 1
α+αL−αi

pi = p̃i(i)

and for 0 < K < 1
α+αL−αi ,

pi =
p∗i

1−
(
K − αL−αi

α+αL−αi

)
Di

∈ (pi(i), p̃i(i)) (19)

and

−(α+ αL − αi)
pi − p∗i
pi

1

Di
− (αL − αi) = −(α+ αL − αi)K (20)

Then,

dpi
dK

=
Dip

2
i

p∗i
> 0
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because, as assumed, ∂Di
∂pi

= 0.

Then,

∫ pi(i)

p̃i(i)

[
−(α+ αL − αi)

pi − p∗i
pi

miei
xi
− (αL − αi)

]
xidpi

=

∫ 0

1
α+αL−αi

−(α+ αL − αi)Kxi
dpi
dK

dK

= xi

∫ 1
α+αL−αi

0
(α+ αL − αi)K

Di

p∗i

 p∗i

1−
(
K − αL−αi

α+αL−αi

)
Di

2

dK (21)

where we use the fact that dpi
dK =

Dip
2
i

p∗i
, pi =

p∗i

1−
(
K− αL−αi

α+αL−αi

)
Di

.

We need to see how an increase in Di shifts the function inside the integral. If it shifts it up

for the region of K we are integrating over, then the above integral must will rise with Di.

Let A = αL−αi
α+αL−αi . Note that we only need to see how KDi

(1−(K−A)Di)2
behaves as Di changes.

First note that it takes a positive value as long as K is positive as it is in the interval of

integration.

d
[

KDi
(1−(K−A)Di)2

]
dDi

=
(1− (K −A)Di)

2K +KDi2 (1− (K −A)Di) (K −A)

(1− (K −A)Di)
4

=
K(1 + (K −A)Di)

(1− (K −A)Di)
3

As K rises the numerator rises and the denominator falls so that their ratio rises. Since

K(1+(K−A)Di)
(1−(K−A)Di)3

is zero at K = 0, we see that the function inside the integral in equation (21) is

anchored at K = 0, and shifts up for K > 0. Thus, we are done.

Next, consider the term

−
∫ p̃i(i)

pEi

xi(pi)dpi
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where

p̃i(i) =
p∗i

1−
(

1−αL+αi
α+αL−αi

)
Di

pEi =
p∗i

1−
(

1−αL
α+αL

)
Di

As αi falls, p̃i(i) approaches pEi and this term goes to zero. Hence, for small αi, the effect of

change in Di on this term can be ignored.

8.2 Quantile Regression

Assume the model is as follows:

Tj = γZj + εj if Ij = 0

Tj = (γ + δ)Zj + εj if Ij = 1

Proof. For any T > 0,

P
(
Tj ≤ T |Zj

)
= P

(
εj ≤ T − γZj

)
P (Ij = 0) + P

(
εj ≤ T − (γ + δ)Zj

)
P (Ij = 1) . (22)

Let 0 < τ, τ ′ < 1 and T satisfy the following equations.

T = F−1ε

(
τ ′
)

+ (γ + δ)Zj (23)

and

τ = P (Ij = 0) + τ ′P (Ij = 1) , or τ ′ =
τ − P (Ij = 0)

P (Ij = 1)
. (24)

From equation (24), we can see that for τ ↗ 1, τ ′ ↗ 1 as well. Hence, for τ sufficiently close to
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1, we have τ ′ close enough to 1 such that

F−1ε

(
τ ′
)

+ δZj ≥ F−1ε

(
τ ′
)

+ δZ > F−1ε (1) .

Hence,

T = F−1ε

(
τ ′
)

+ (γ + δ)Zj > F−1ε (1) + γZj

and

P
(
εj ≤ T − γZj

)
≥ P

(
εj ≤ F−1ε (1)

)
= 1

which results in

P
(
εj ≤ T − γZj

)
= 1. (25)

Substituting equations (23), (24), and (25) into (22), we obtain

P
(
Tj ≤ T |Zj

)
= P (Ij = 0) + P

(
εj ≤ F−1ε

(
τ ′
))
P (Ij = 1)

= P (Ij = 0) + τ − P (Ij = 0) = τ .

Therefore, for τ sufficiently close to 1,

QT (τ |Zj) = T = F−1ε

(
τ ′
)

+ (γ + δ)Zj .

We make two remarks on the assumptions. First, we assume that εj has bounded support

(assumption 2). This assumption is reasonable since the protection measure is usually derived

from the NTB coverage ratio (e.g., Goldberg and Maggi, 1999; Gawande and Bandyopadhyay,

2000) and therefore it is clearly bounded above and below. Second, we assume that εj is
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independent of both Zj and Ij (assumption 3). This is rather a strong assumption and will be

relaxed next. In particular, we allow Zj to be correlated with εj .

Assume the model is as follows:

T ∗j = γZj + εj if Ij = 0

T ∗j = (γ + δ)Zj + εj if Ij = 1

where Zj = g (Wj , vj) and Wj is an instrument vector and vj is a random variable independent

of Wj . We will show that β (τ)→ (γ + δ) > 0 as τ ↗ 1.

Let us define uj as follows:

εj = E [εj |vj ] + uj , uj ≡ εj − E [εj |vj ] ,

where uj is assumed to be i.i.d. distributed. For the sake of simplicity, we assume that both uj

and E [εj |vj ] are uniformly bounded, hence so is εj . Furthermore,

Tj = max
{
T ∗j , 0

}
.

Then, for Ij = 0 the model satisfies the assumptions A1-A5 of Chernozhukov and Hansen (2006).

Similarly for Ij = 1. Therefore, from Theorem 1 of Chernozhukov and Hansen (2006), it follows

that

P
(
T ≤ F−1ε (τ) + γZj |Wj

)
= τ for Ij = 0,

and

P
(
T ≤ F−1ε (τ) + (γ + δ)Zj |Wj

)
= τ for Ij = 1.
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Proof. Let τ , τ ′ satisfy 0 < τ, τ ′ < 1 and

τ ′ =
τ − P (Ij = 0)

P (Ij = 1)
, or τ = P (Ij = 0) + τ ′P (Ij = 1) .

Then,

P
(
Tj ≤ F−1ε

(
τ ′
)

+ (γ + δ)Zj |Wj

)
= P

(
εj + γZj ≤ F−1ε

(
τ ′
)

+ (γ + δ)Zj |Wj

)
P (Ij = 0)

+P
(
εj + (γ + δ)Zj ≤ F−1ε

(
τ ′
)

+ (γ + δ)Zj |Wj

)
P (Ij = 1)

= P
(
εj ≤ F−1ε

(
τ ′
)

+ δZj |Wj

)
P (Ij = 0) + P

(
εj ≤ F−1ε

(
τ ′
)
|Wj

)
P (Ij = 1)

= P
(
εj ≤ F−1ε

(
τ ′
)

+ δZj |Wj

)
P (Ij = 0) + τ ′P (Ij = 1) .

From the definition of τ ′, for τ ↗ 1, τ ′ ↗ 1 as well. Because ε is uniformly bounded, for τ

sufficiently close to 1, we have τ ′ close enough to 1 such that

F−1ε

(
τ ′
)

+ δZ > F−1ε (1) .

Hence,

P
(
εj ≤ F−1ε

(
τ ′
)

+ δZj |Wj

)
= 1.

Therefore,

P
(
Tj ≤ F−1ε

(
τ ′
)

+ (γ + δ)Zj |Wj

)
= P (Ij = 0) + τ ′P (Ij = 1) = τ .
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It follows that for τ sufficiently close to 1,

P
(
T ≤ F−1ε

(
τ ′
)

+ (γ + δ)Zj |Wj

)
= τ .
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Figure 4: Plot of z/e and t/(1+t)
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Figure 8:Quantiles of the distribution of t/(1+t)
given z/e

z/e

t/(
1+

t)

0.4
0.6
0.8
0.9
0.95

49



0.000 0.002 0.004 0.006 0.008

0.
0

0.
2

0.
4

0.
6

0.
8

Figure 9:Quantiles of the distribution of
 te/(1+t) given z

z

te
/(

1+
t)

0.4
0.6
0.8
0.9
0.95

50


	WP_Cover12.pdf
	wp12.pdf

