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Abstract. By developing a continuous-time heterogeneous agent model of multi-

assets traded by fundamental and momentum investors, we provide a potential

mechanism in generating time-varying dominance between fundamental and non-

fundamental in financial market. The deterministic skeleton of the nonlinear

model tends to have bistable dynamics, characterized by a Bautin bifurcation, in

which a locally stable fundamental steady state coexists with a locally stable limit

cycle around the fundamental, leading to two very different market states. Mar-

ket prices switch stochastically between the two persistent market states, leading

to the coexistence of seemingly controversial efficient market and price momen-

tum over different time periods. The model also generates other financial market

stylized facts, such as spillover effects in both momentum and volatility, mar-

ket booms, crashes, and correlation reduction due to cross-sectional momentum

trading. Empirical evidence based on US market supports the main findings.
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1. Introduction

The coexistence of puzzling and even controversial financial market anomalies

and hypotheses is well documented and perfectly reflected by 2013 Nobel Laure-

ates Eugene Fama and Robert Shiller on their controversial views on efficient mar-

ket hypothesis (Fama (1970, 2014) and Shiller (2003, 2014)). In this paper, we

develop a continuous-time financial market model with heterogeneous agents who

trade multi-assets based on either economic fundamentals or price momentums to

characterize such coexistence in financial markets. From a globally nonlinear dy-

namics point of view, we show that it is the coexistence of two different and locally

stable market states that underlies time-varying dominance between fundamental

and non-fundamental in financial markets.

Reversal and cross-section momentum are well documented in financial markets.

By incorporating investment constraints, we model asset prices as nonlinear interac-

tion of agents who trade on fundamentals and agents who trade on price momentum

(either in time series or cross-section). The resulting asset price model tends to have

bistable dynamics, characterized by a Bautin bifurcation, in which a locally stable

fundamental steady state coexists with a locally stable limit cycle around the fun-

damental. Depending on market price levels and shocks, market prices display two

very different market states. One characterizes small deviations of market price

from the random walk fundamental price, leading market prices to be more efficient;

while the other characterizes cyclical oscillations around the fundamental, enhancing

cross-sectional price momentum and leading to less efficient markets. Triggered by

random shocks, market prices then switch stochastically between the two persistent

market states (due to their local stability), leading to the coexistence of seemingly

controversial efficient market and price momentum over different time periods.

To explore the underlying mechanism on the coexistence, we conduct a detailed

analysis of the global dynamics for a nonlinear financial market model and provide

better understanding of the complexity of market behavior. The analysis comple-

ments local stability analysis well documented in extant nonlinear economic model

literature. By applying normal form method and center manifold theory, we demon-

strate bistable dynamics (the coexistence of a locally stable steady state and a locally

stable limit cycle) through a Bautin bifurcation (generalized Hopf bifurcation).1 We

provide analytical conditions for the bistable dynamics and show that both time

series and cross-sectional momentum can lead to bistable dynamics. The Bautin

bifurcation is characterized numerically by conditions in which a Hopf bifurcation

occurs and meanwhile the first Lyapunov coefficient is zero. With the aid of the

1The Bautin bifurcation is similar to the Chenciner bifurcation in discrete-time model, which is

used to explain the volatility clustering observed in various financial markets, see Gaunersdorfer,

Hommes and Wagener (2008) and He, Li and Wang (2016).
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Matlab package DDE-BIFTOOL, we numerically study the global extension of bi-

furcated periodic solutions, track unstable limit cycles, and provide the condition

for bistable dynamics.

The current agent based financial market literature is mainly based on local stabil-

ity analysis by focusing on the forward and stable bifurcated cycles. However, when

the first Lyapunov coefficient is positive, the Hopf bifurcation is backward and the

bifurcated periodic solution becomes unstable. In this case, the bifurcated unstable

periodic solution can be extended backward with respect to bifurcation parameter

until a threshold value and then the extended periodic solution becomes forward

(with respect to the bifurcation parameter) and stable. Therefore, the stable funda-

mental steady state can coexist with the stable forward extended periodic solution,

in between the backward extended periodic solution is unstable. Correspondingly,

there exists an interval for the bifurcation parameter in which the two locally stable

attractors coexist. This implies that, even when the fundamental steady state is lo-

cally stable, prices need not converge to the fundamental value, but may settle down

to a stable limit cycle, depending on the initial price levels. The stylized analysis

method for the global dynamics used in this paper can be easily applied to other

nonlinear economic models as well.

The impact of cross-section momentum trading on the bistable dynamics is in-

vestigated through three scenarios. (i) In the first scenario, two separate risky asset

prices have forward and stable bifurcations before introducing cross-section momen-

tum trading among two risky assets. When agents are allowed to trade two risky

assets at the same time via the cross-sectional momentum trading, the two assets

are integrated into one market. We show that the new integrated market can only

have forward and stable bifurcations. (ii) In the second scenario when the two prices

have backward and unstable bifurcations before integration, the integrated market

can either have backward (unstable) bifurcation or forward (stable) bifurcation. (iii)

In the third scenario when one risky price has backward (unstable) bifurcation and

the other has forward (stable) bifurcation, the integrated market can either have

backward (unstable) bifurcation or forward (stable) bifurcation. The analysis on

the above scenarios shows that in addition to reducing the local stability of the

steady states (meaning a smaller local stability parameter region or basin of the

attraction), the momentum trading can enhance the local stability of the limit cy-

cles (meaning a larger parameter region or basin of the attraction for the bifurcated

period solution), another channel through which momentum investors destabilize

the market. More specifically, we show that the cross-sectional momentum trading

tends to destabilize the local stability of the fundamental steady state by reducing

the the parameter region of the local stability and enhance cyclical price oscillation

around the fundamental steady state.
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Intuitively, the bistable dynamics is caused by the constraints faced by both fun-

damental and momentum investors. On the one hand, various constraints faced by

the fundamental traders, such as the wealth and short-sale constraints, limit the

activity of the fundamental traders and reduce the size of the basin of the local

attractor of the stable fundamental steady state. When the initial values are far

away from the steady state, the prices tend to depart further from the steady state.

On the other hand, the wealth and short-sale constraints also limit the destabilizing

role of the momentum investors. As a result, the prices cannot explode but settle

down at a stable cycle when the initial prices are far away from the steady state

fundamental prices. Therefore, the constraints limit the strengths of both local at-

tractors (the stable steady state and the stable limit cycle), resulting in the bistable

dynamics.

Our results lead to several empirical implications. First, we find that a strong

integration via the cross-sectional momentum results in comovements in asset prices

in opposite directions. Second, cross-sectional momentum trading can give rise to a

spillover effect in momentum, which is documented empirically in Gebhardt, Hvid-

kjaer and Swaminathan (2005) and Jostova, Nikolova, Philipov and Stahel (2013),

and can reduce the correlation of stock returns. More interestingly, the model sug-

gests that cross-sectional momentum trading tends to be self-fulfilling in the sense

that it destabilizes the market and generates additional price trends in cross-section.

Further more, we provide empirical evidence based on US market to support the re-

duction in return correlation. We find that an increase in the usage of cross-sectional

momentum strategies significantly decreases the correlations among stocks, an av-

erage decrease by 35% after Jegadeesh and Titman published their seminal work

in 1993. Also the profits of the cross-sectional momentum increases by 1.5%. The

empirical results are consistent with our analytical findings.

This paper is closely related to the momentum literature. Momentum profitability

is found to depend on market states (Chordia and Shivakumar, 2002, and Cooper,

Gutierrez and Hameed, 2004), investor sentiment (Antoniou, Doukas and Subrah-

manyam, 2013) and market volatility (Wang and Xu, 2015). For example, Cooper,

Gutierrez and Hameed (2004) find that short-run (six months) momentum strate-

gies are profitable in an up-market, but no in a down-market. Recently, Daniel

and Moskowitz (2016) document that momentum strategy tends to experience se-

vere crashes during market rebounds. Chu, He, Li and Tu (2015) show that the

dominance of fundamental and behavioral-bias-related non-fundamental strengths is

time-varying.2 However, most existing theories are independent of market conditions

either implying a long-lasting momentum or ruling out the existence of momentum.

2He, Li and Li (2017) shows that studying both fundamental and momentum jointly is more

powerful than examining each in isolation.
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They are difficult to harmonize with the time-varying existence of momentum. In

our model, the “inefficient” momentum and “efficient” market price can coexist, and

their dominance depends on the price levels (and price shocks).

The paper is also related to heterogeneous agent models (HAMs) literature. Over

the last three decades, empirical evidence, unconvincing justification of the assump-

tion of unbounded rationality, and investor psychology have led to the growing

research on HAMs.3 With different groups of investors having different expectations

about future prices, HAMs have shown that asset price fluctuations can be caused by

an endogenous mechanism of interaction of heterogeneous agents (Chiarella, Dieci

and Gardini (2002), and Brock and Hommes (1997, 1998)). Given the complexity

of nonlinear financial markets, most of HAMs is computationally oriented based on

local stability and bifurcation analysis while the globally nonlinear properties are

seldom analyzed (through the normal form method and the center manifold the-

ory).4 This paper conducts an analysis of global dynamics, which complements the

local stability analysis well documented in HAMs literature. It provides better un-

derstanding of the complexity and the underlying economic mechanism of market

behavior.

The bistable dynamics is related to multiple equilibria mechanism in the sense

that a nonlinear financial market can have multiple locally stable attractors. How-

ever, different from the multiple equilibria mechanism, the two attractors in our

mechanism are very different. Therefore the model is able to characterize seem-

ingly unrelated or even opposite market phenomena, such as price momentum and

efficient market.

The paper is organized as follows. We first propose a continuous-time heteroge-

neous agent model of two assets in Section 2 to explicitly characterize momentum

trading. In Section 3, we apply stability and bifurcation theory, together with nor-

mal form method and center manifold theory, to examine both local and global

dynamics of the model. In particular, we demonstrate the coexistence of a local

stable fundamental price and a locally stable closed cycle around the fundamental

price. Section 4 conducts a numerical analysis of the stochastic model to explore

the joint impact of the global deterministic dynamics and noises. Based on US mar-

ket data, Section 5 provides empirical evidence to support some implications of the

3See Hommes (2006), LeBaron (2006), Chiarella, Dieci and He (2009), Lux (2009) and He (2013)

for surveys of the recent development in this literature.
4He, Li, Wei and Zheng (2009) and He et al. (2016) are two exceptions. In addition to the local

stability analysis, He et al. (2009) analytically examine the bifurcation properties, including the

direction of the bifurcation, the stability of the bifurcated cycle, and the global extension of the

bifurcated cycle. He et al. (2016) analytically provide the conditions of Chenciner bifurcation and

show the coexistence of two local attractors.
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model. Section 6 concludes. A more general model with multiple assets and all the

proofs are included in the appendices.

2. The Model

We consider a financial market of two risky assets (A and B), populated by

fundamental investors, extrapolators, and noise traders. To have an intuitive and

parsimonious model, we motivate the demand functions based on agents’ behavior

directly by following Chiarella (1992), He and Li (2012, 2015) and Di Guilmi, He

and Li (2014).5 The fundamental investors trade based on the (log) book-to-market

ratio and their excess demands are given by

Di
f,t = tanh[βf(F

i
t − P i

t )], i = A,B, (2.1)

where F i
t and P i

t are the log fundamental price and log market price respectively at

time t, and βf > 0 is a constant measuring the mean-reverting of the market price

to the fundamental price. The S-shaped demand function tanh(·) reflects various

constraints faced by agents, such as the wealth constraint (the upper bound) and

the short-sale constraint (the lower bound). For simplicity, we consider that the

fundamental prices are governed by
(

dFA
t

dFB
t

)

= ΣFdW F
t , ΣF =

(

σF
A,1 σF

A,2

σF
B,1 σF

B,2

)

,

(

FA
0

FB
0

)

=

(

F̄A

F̄B

)

, (2.2)

where ΣF is the variance-covariance matrix for fundamental returns and W F
t =

(W F
1,t,W

F
2,t)

′ are two independent Brownian motions.

The literature has extensively documented that many individual and institutional

investors extrapolate historical returns,6 and shown that both time series momentum

(or absolute momentum) and cross-sectional momentum (or relative momentum)

widely used in practice can generate persistent and sizeable profits.7 Accordingly,

we also consider extrapolators in the economy who trade on short-run price trends.

The extrapolators estimate price trend using a moving average of historical returns
∫ t

t−τ

dP i
u = P i

t − P i
t−τ ,

where dP i
u is the (log) instantaneous return of asset i, and τ is the look-back period

of the extrapolation. There are two types of extrapolators, based on time series

5The demands in the continuous-time setup are consistent with those deriving from heteroge-

neous expectations and utility maximization in discrete time heterogeneous agent models literature,

see, for example, Brock and Hommes (1997, 1998).
6See, e.g., Vissing-Jorgensen (2004), Bacchetta, Mertens and van Wincoop (2009), Barberis

(2013), Amromin and Sharpe (2014), Greenwood and Shleifer (2014) and Kuchler and Zafar (2016).
7See, e.g., Jegadeesh and Titman (1993) and Moskowitz, Ooi and Pedersen (2012) among many

others.
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momentum (or absolute momentum) and cross-sectional momentum (or relative

momentum) respectively. The demands of the absolute momentum investors for

asset A and B are given, respectively, by

Di
a,t = tanh[βa(P

i
t − P i

t−τ )], i = A,B, (2.3)

where parameter βa > 0 represents the extrapolation rate of the absolute momentum

investors on the future price trend. The demands of the cross-sectional momentum

investors are given by

DA
c,t = tanh{βc[(PA

t − PA
t−τ )− (PB

t − PB
t−τ )]},

DB
c,t = tanh{βc[(PB

t − PB
t−τ )− (PA

t − PA
t−τ )]},

(2.4)

where βc > 0 is a constant. Equation (2.4) implies that the cross-sectional momen-

tum strategy is a zero-investment strategy by taking a long position in one asset and

short position in the other asset simultaneously. We consider the same time horizon

τ for both assets to be consistent with the cross-sectional momentum literature.

Therefore, both fundamental investors and absolute momentum investors focus

on only individual asset, while the cross-sectional momentum investors trade on

two assets simultaneously. The market fractions of the three types of investors who

trade on asset i are αi
f , α

i
a and αi

c respectively, satisfying α
i
f + αi

a + αi
c = 1. Notice

αi
c measures the market fraction rather than the number of traders. So it can be

different for the two assets even though the cross-sectional momentum investors are

the same group of investors across the two risky assets.

The market maker adjusts the market price according to the aggregated excess

demand

dPA
t = µA

[

αA
f tanh[βf (F

A
t − PA

t )] + αA
a tanh[βa(P

A
t − PA

t−τ )]

+ αA
c tanh{βc[(PA

t − PA
t−τ )− (PB

t − PB
t−τ )]}

]

dt+ σM
A dW

M
t ,

dPB
t = µB

[

αB
f tanh[βf (F

B
t − PB

t )] + αB
a tanh[βa(P

B
t − PB

t−τ )]

+ αB
c tanh{βc[(PB

t − PB
t−τ )− (PA

t − PA
t−τ )]}

]

dt+ σM
B dW

M
t ,

(2.5)

where the constant µi > 0 represents the speed of the price adjustment by the market

maker, ΣM = (σM
A , σ

M
B )′ is the variance-covariance matrix for the market returns

and WM
t = (WM

1,t ,W
M
2,t )

′ represent two independent Brownian motions, measuring

the demands of noise traders or market noises. They can be correlated with the

fundamental shocksWF,t. Especially, if Σ
M is a diagonal matrix, then the conditional

volatility of one asset cannot be affected by the other asset and hence any spill-over

effect in realized volatility cannot be introduced by this term. However, the two

assets are still linked via the fundamental correlation and the relative momentum

investors.
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The asset price model (2.5) is characterized by a nonlinear stochastic delay differ-

ential system. The resulting returns are linear functions of three factors, including

a fundamental component and two momentum components, in addition to a noise

term.8 In the following analysis, the local dynamics of the corresponding determin-

istic model are examined via the linearized form of (2.5). We show that, different

from the fundamental factor, the two momentum factors tend to destabilize the

market and may result in non-stationary return processes. Furthermore, the global

dynamics analysis shows a rich and more complex return behavior, which can be

beyond the scope of the linear models used in the empirical momentum literature.

3. Deterministic Dynamics

This section examines the price dynamics of the deterministic skeleton of (2.5). By

assuming a constant fundamental price F i
t = F̄ i and no market noise ΣM = 0, system

(2.5) becomes a deterministic system of delay differential equations, representing the

mean processes of market returns of the two risky assets

ṖA
t = µA

[

αA
f tanh[βf(F̄

A − PA
t )] + αA

a tanh[βa(P
A
t − PA

t−τ )]

+ αA
c tanh{βc[(PA

t − PA
t−τ )− (PB

t − PB
t−τ )]}

]

,

ṖB
t = µB

[

αB
f tanh[βf (F̄

B − PB
t )] + αB

a tanh[βa(P
B
t − PB

t−τ )]

+ αB
c tanh{βc[(PB

t − PB
t−τ )− (PA

t − PA
t−τ )]}

]

.

(3.1)

The linearization of (3.1) at its unique fundamental steady state (PA, PB) = (F̄A, F̄B)

is given by

ṖA
t = (γAa + γAc − γAf )P

A
t − (γAa + γAc )P

A
t−τ − γAc P

B
t + γAc P

B
t−τ ,

ṖB
t = (γBa + γBc − γBf )P

B
t − (γBa + γBc )P

B
t−τ − γBc P

A
t + γBc P

A
t−τ ,

(3.2)

where γif = µiαi
fβf , γ

i
a = µiαi

aβa and γic = µiαi
cβc, i = A,B, measure the activities

of the three types of investors. Before studying the full model (3.1) with all three

types of investors, we first examine several special cases to understand the roles of

different types of traders.

8In a different setup of consumption-based capital asset pricing model where sentiment investors

extrapolate the expected returns using all historical returns, Barberis, Greenwood, Jin and Shleifer

(2015) show that the return process is linear in the dividend process and the extrapolators’ belief.

Empirically, Grinblatt and Moskowitz (2004) and Heston and Sadka (2008), among others, find

that the historical average returns over a short-run horizon can positively forecast the cross-section

of expected returns.
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3.1. Bistable Dynamics of the Single Asset Model. We first consider the case

when there is no relative momentum investors, that is γic = 0. In this case, the

price dynamics of the two assets are decoupled into two separate single asset price

dynamics,

ṖA
t = µA

[

αA
f tanh[βf(F̄

A − PA
t )] + αA

a tanh[βa(P
A
t − PA

t−τ )]
]

,

ṖB
t = µB

[

αB
f tanh[βf (F̄

B − PB
t )] + αB

a tanh[βa(P
B
t − PB

t−τ )]
]

.
(3.3)

The local dynamics can be described by the following proposition.

Proposition 3.1. For system (3.3) with i = A,B,

(1) it has a unique fundamental steady state P i = F̄ i;

(2) the fundamental steady state P i is locally asymptotically stable for all τ ≥ 0

when γif ≥ 2γia;

(3) the fundamental steady state P i is locally asymptotically stable for τ < τ i0
and unstable for τ > τ i0 when γif < 2γia. In addition, P i undergoes Hopf

bifurcations at τ = τ in, n = 0, 1, 2, · · · .

Local dynamics have been well understood in the HAMs literature. For example,

He and Li (2012), among others, show that fundamental investors play a stabilizing

role while momentum investors play a destabilizing role in financial markets, and

the local stability switches as the time horizon τ increases. Especially, if neither

absolute momentum investors nor relative momentum investors participate into the

market, the fundamental steady state is always stable.

However, global price dynamics have been seldom studied in the literature9 and are

still unclear so far. Therefore, we mainly focus on global dynamics, the coexistence

of attractors and the interaction between the two asset dynamics in this paper.

Denote the first Lyapunov coefficient by c1(0), which is derived in Appendix B.2.

The properties of the Hopf bifurcation is given by the following proposition.

Proposition 3.2. For system (3.3) with i = A,B,

(1) if c1(0) = 0, it undergoes a Bautin bifurcation (generalized Hopf bifurcation);

(2) if γif < 2γia and c1(0) 6= 0, then the direction and stability of bifurcated

periodic solutions (Hopf bifurcation) are completely determined by the sign

of c1(0). That is, the bifurcated periodic solutions is forward stable when

c1(0) < 0, but backward and unstable when c1(0) > 0.

Fig. 3.1 illustrates the impact of absolute momentum trading, measured by βa, on

the global price dynamics, especially the stability of the limit cycles. As βa increases,

the sign of the first Lyapunov coefficient c1(0) switches from positive to negative.

9He et al. (2009) and He et al. (2016) are two exceptions.
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Figure 3.1. First Lyapunov coefficient as a function of βa. Here

µi = 15, αi
f = 0.2, αi

a = 0.8, αi
c = 0, βf = 0.2 and τ = τ i0.

Following Proposition 3.2, the direction of Hopf bifurcation changes from backward

to forward; correspondingly the unstable bifurcated cycle becomes stable. When

the first Lyapunov coefficient c1(0) = 0, the system (3.3) has a Bautin bifurcation

(generalized Hopf bifurcation). The occurrence of Bautin bifurcation implies that,

with proper set of parameters, a stable steady state can coexists with a stable

limit cycle (a bistable dynamics, see Chapter 8 of Kuznetsov (2004)). Interestingly,

numerical simulations suggest that the first Lyapunov coefficient c1(0) tends to keep

the same sign as αi
j varies. Intuitively, the right-hand side of (3.3) is linear in αi

j ,

implying that αi
j can affect the local stability of the steady state while may not

affect the stability of the bifurcation. However, (3.3) is nonlinear in βj and hence

can affect the global dynamics as illustrated in Fig. 3.1. In the following analysis,

we examine two different scenarios (c1(0) > 0 and c1(0) < 0) separately, and show

that these two scenarios have different local and global dynamics.

3.1.1. Scenario 1: c1(0) > 0. We set µ = µi = 15, αi
f = 0.2, αi

a = 0.8, αi
c = 0,

βf = 0.2 and βa = 0.04. It follows from (B.5) and (B.11) that the first Hopf bi-

furcation value τ0 ≈ 3.92 and first Lyapunov coefficient c1(0) = 1.3 × 10−3 > 0.

Proposition 3.1 states that the fundamental steady state is locally stable for τ < τ i0
and becomes unstable for τ > τ i0. Proposition 3.2 further shows that there is a

backward Hopf bifurcation when τ = τ i0, and the corresponding bifurcated periodic

solution is unstable. We numerically examine the tendency of the bifurcated peri-

odic solution using the Matlab package DDE-BIFTOOL, which can even track the

unstable limit cycles. The numerical method is described in Appendix B.3. Fig.

3.2 illustrates how the bifurcated periodic solution varies with parameter τ . Every

point in the curve stands for a periodic solution, and hence the curve is called the
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Figure 3.2. The extension of periodic solution bifurcated through a

backward and unstable Hopf bifurcation. Here µ = µi = 15, αi
f = 0.2,

αi
a = 0.8, αi

c = 0, βf = 0.2 and βa = 0.04. The first Hopf bifurcation

value τ i0 ≈ 3.92 and first Lyapunov coefficient c1(0) = 1.3× 10−3 > 0.

branch of periodic solutions.10 As τ varies, the periodic solution with small ampli-

tude at the beginning, moves to the left initially, then turn around at the critical

value τ i∗(≈ 2.89), and shift to the right. At τ = τ i∗, the two limit cycles collide and

disappear via a saddle-node bifurcation of periodic solutions (Kuznetsov, 2004).

Therefore, two periodic solutions coexist for τ ∈ (τ i∗, τ i0). By further computing

the corresponding nontrivial Floquet multiplier (the one with the maximal module

among all multipliers) for these two periodic solutions with fixed τ ∈ (τ i∗, τ i0), we

find that the periodic solution with relatively larger amplitude is stable, while the

other is unstable. Hence, when τ is within the ‘coexistence interval’ (τ i∗, τ i0), there

are two local attractors, the asymptotically stable fundamental steady state and

the asymptotically stable limit cycle with larger amplitude, and in between there

is an unstable cycle. As τ increases, the branch increases steeply, implying large

amplitudes of the cycles. Numerical simulations (not reported here) show that an

increase in βa decreases the length of the coexistence interval.

The bistable dynamics are caused by the limited activities of both fundamental

and momentum investors. Intuitively, on the one hand, the fundamental investors

face various constraints, such as the wealth and short-sale constraints, which limit

the activity of the fundamental investors and reduce the size of the basin of the local

attractor of the stable steady state. When the initial values are far away from the

steady state, the prices tend to further depart from the steady state. On the other

hand, the wealth and short-sale constraints (or the S-shaped demand function) also

10We refer readers to He et al. (2009) for the proofs of the global extension of Hopf bifurcation.
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limit the destabilizing role of the momentum investors. As a result, the prices cannot

explode to infinity but will settle down at a stable cycle when the initial values are

far away from the steady state. Therefore, the constraints limit the strengths of

both local attractors (the stable steady state and the stable limit cycle), resulting

in the bistable dynamics.11 In the following section, we will show that, triggered by

the random shocks in the full stochastic model (2.5), the bistable dynamics can lead

market prices to switch stochastically but persistently between the two attractors,

characterizing two very different market states.
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Figure 3.3. The extension of periodic solution bifurcated through a

forward and stable Hopf bifurcation. Here µ = µi = 15, αi
f = 0.2,

αi
a = 0.8, αi

c = 0, βf = 0.2 and βa = 0.12. The first Hopf bifurcation

value τ i0 ≈ 0.81 and first Lyapunov coefficient c1(0) = −2.0×10−3 < 0.

3.1.2. Scenario 2: c1(0) < 0. We choose µ = µi = 15, αi
f = 0.2, αi

a = 0.8, αi
c = 0,

βf = 0.2 and βa = 0.12. In this case, the first Hopf bifurcation value is τ i0 ≈ 0.81,

and c1(0) = −2.0×10−3 < 0, and Proposition 3.2 shows that the Hopf bifurcation is

forward and stable. Fig. 3.3 illustrates the extension of the Hopf bifurcation. The

fundamental steady state is stable for τ < τ i0 and becomes unstable for τ > τ i0. The

bifurcated forward limit cycles are stable and the amplitude of the cycles increases

as τ increases.

We complete the discussion with the following remark. When the Hopf bifurcation

is forward and stable as in Scenario 2, the oscillation amplitude of the bifurcated

cycles is very small around the bifurcation value and increases with τ . However,

11On the one hand, we find that the limit cycles tend to be unstable and the solutions to the

system can explode to infinity without the S-shaped demand functions of the momentum investors.

On the other hand, after removing the S-shaped demand functions of the fundamental investors,

although the limit cycles are stable, the bistable dynamics tend to disappear.
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when the Hopf bifurcation is backward and unstable as in Scenario 1, the extended

bifurcated cycles have large oscillation amplitude around the bifurcation value. In

other words, there is a big jump from the stable steady state to the stable cycle

around the bifurcation value.

3.2. Bistable Dynamics of the Two Assets Model. The previous analysis

shows the different roles played by different types of investors. We now analyze

the market stability when all three strategies are employed. The market stability of

the system (3.1) can be characterized by the following proposition.

Proposition 3.3. For system (3.1),

(1) it has a unique fundamental steady state (PA, PB) = (F̄A, F̄B);

(2) the fundamental steady state is locally asymptotically stable for all τ ≥ 0

under condition C defined in Appendix B.6;

(3) the fundamental steady state is locally asymptotically stable for τ ∈ [0, τ0)

and becomes unstable for τ > τ0 under condition C in Appendix B.6;

(4) it undergoes a Hopf bifurcation at τ = τ0 under condition C. In addition,

if T
c1(0)

< 0 ( T
c1(0)

> 0), then the bifurcation is forward (backward), and the

bifurcated periodic solution is stable (unstable) when c1(0) < 0 (c1(0) > 0),

where T and the first Lyapunov coefficient c1(0) are defined in Appendix B.6.

Proposition 3.3 shows that the direction and the stability of bifurcated periodic

solution is determined by the sign of both the transversality condition T and the first

Lyapunov coefficient c1(0). When the two individual systems are coupled together,

the market integration cannot alter the fundamental steady state of each asset, while

tends to destabilize the market in the sense that the integrated market is prone to

be more unstable. In the remaining analysis, we further investigate the impact of

integration on price dynamics by examining the integration strength βc.

Especially, if there is no absolute momentum investors, that is αi
a = 0, then

Proposition 3.3 reduces to the following corollary.

Corollary 3.4. Assume that αi
a = 0 for i = A,B.

(1) The fundamental steady state is locally asymptotically stable for all τ ≥ 0

when b2 ≥ 0, where b2 = γAf γ
B
f (γ

A
f γ

B
f − 2γAf γ

B
c − 2γBf γ

A
c ).

(2) The fundamental steady state is locally asymptotically stable for 0 ≤ τ < τ0
and becomes unstable for τ > τ0 when b2 < 0. In addition, system (3.1)

undergoes Hopf bifurcations at τ = τn, n = 1, 2, · · · , where τn is given by

(B.21).

(3) If T
c1(0)

< 0 ( T
c1(0)

> 0), then the bifurcation is forward (backward), and the

bifurcated periodic solution is stable (unstable) when c1(0) < 0 (c1(0) > 0),

where T and the first Lyapunov coefficient c1(0) are defined in Appendix B.6.
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Figure 3.4. The branch of Hopf bifurcation in (τ, βc)-plane. The

upper line is a Hopf bifurcation branch, and the bifurcated periodic

solution is unstable. Its frequency (ω2) is the same as that for one

decoupled model, and hence the corresponding bifurcation value for τ

is independent of βc. The middle line separates the (τ, βc)-plane into

stable and unstable regions of the fundamental steady state, showing

that the bifurcation value for τ decreases when βc is increasing, and

also τ tends to the bifurcation value τ0 for decoupled model as βc ap-

proaches 0. Through this line, backward or forward Hopf bifurcation

occurs, depending on the value of βc. For any βc < β∗

c , there exists

an interval for τ (as indicated by the red solid line), on which the

system has bistable dynamics characterized by the coexistence of a

stable steady state and a stable cycle. Here µ = 15, αA
f = αB

f = 0.2,

αA
a = αB

a = 0.7, αA
c = αB

c = 0.1, βa = 0.05, and βf = 0.2.

Fig. 3.4 illustrates the extension the Hopf branch bifurcated from the first bifur-

cation point in (βc, τ)-plane using DDE-BIFTOOL. There are several observations.

First, the first Hopf bifurcation value in term of τ decreases as βc increases, see

the decreasing blue line in the middle of Fig. 3.4. This implies that enforcing the

integration strength reduces the bifurcation value. Therefore, the two assets with

stable prices before integration can become unstable when they are strongly coupled.

Second, the sign of the first Lyapunov coefficient c1(0) changes as the intensity of

integration βc increases and exceeds the critical value β∗

c ≈ 0.07, while the quantity

T does not switch sign as shown in Fig. 3.5. Therefore, the direction and the stabil-

ity of the bifurcation change at β∗

c . Third, there is a Bautin bifurcation (generalized
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Figure 3.5. (a) The first Lyapunov coefficient c1(0) and (b) the

transversality condition T as functions of βc. Here µi = 15, αA
f =

αB
f = 0.2, αA

a = αB
a = 0.7, αA

c = αB
c = 0.1, βa = 0.05, and βf = 0.2.

Hopf bifurcation) for system (3.1) at (τ 10 , β
∗

c ), which theoretically implies the coex-

istence of two local attractors (the stable fundamental steady state and the stable

limit cycle).

If both assets are unstable before coupling, then there are two series of bifurca-

tion values introduced by the two assets respectively after market integration. For

example, we consider τ̃A0 < τ̃B0 . Asset A becomes unstable when τ > τ̃A0 . An in-

teresting question following Proposition 3.3 would be whether asset B is still stable

or becomes unstable for τ̃A0 < τ < τ̃B0 after integrated with asset A. The following

corollary indicates the latter.

Corollary 3.5. Assume γic 6= 0. The two prices of system (3.1) converge to their

fundamental steady state prices or fluctuate cyclically simultaneously.

Three observations follow Corollary 3.5. Firstly, Corollary 3.5 shows that we do

not have a market situation in which one asset price converges to its fundamental

price (or ‘stable’) and the other fluctuates cyclically (or ‘unstable’) simultaneously.12

Furthermore, when the system is unstable, the bifurcated periodic solution of the two

assets have the same period because the oscillation frequency is unique as demon-

strated by Proposition 3.3.

12This is different from the observations in Chiarella, Dieci, He and Li (2013) that one asset is

stable and the other can be unstable in a coupled system. Intuitively, the multi-assets are coupled

via the variance-covariance matrices in Chiarella et al. (2013)’s model, which is in the higher order

terms and hence cannot affect the local stability. However, the current model couples the two assets

together even in its linearization skeleton. Especially, (3.1) can have such solutions that price A is

stable while price B is unstable if γA
c = 0, which however violates the condition in Corollary 3.5.
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Secondly, Corollary 3.5 also implies the spill-over effect in momentum. More

specifically, consider two separate assets, one is stable and the other is unstable,

that is, one has no trend and the other has (time series) momentum effect. After

market integration when agents diversify their portfolios, Corollary 3.5, together

with Proposition 3.4, shows that the stable asset become unstable and exhibits

momentum. Therefore, the momentum can spill over from one asset to another.

The spillover effect in momentum is also documented empirically in Gebhardt et al.

(2005) and Jostova et al. (2013). This also implies that time series momentum can

give rise to cross-sectional momentum. In fact, Moskowitz et al. (2012) show that

positive auto-covariance is the main driving force for time series momentum and

cross-sectional momentum effects, while the contribution of serial cross-correlations

and variation in mean returns is small. Furthermore, they show that time series

momentum “is able to fully explain cross-sectional momentum across all assets as

well as within each asset class”, while time series momentum is not fully captured

by cross-sectional momentum. Our model provides a theoretical support to these

empirical results.

Thirdly, notice that (3.1) implies that PA
t+dt (P

B
t+dt) is a decreasing function of PB

t

(PA
t ). An increase in one asset price tends to decrease the other’s price. The

countercyclical behavior of the two asset prices is caused by the cross-sectional

momentum trading. In other words, cross-sectional momentum trading makes the

two asset’s returns tend to be negatively correlated, which in turn amplifies cross-

sectional momentum effect. Therefore, cross-sectional momentum trading tends to

be self-fulfilling.13

In all, we show that the cross-sectional momentum trading, which integrates the

two asset dynamics, can change both local and global dynamics by making the two

price dynamics resonance.

3.3. The Impact of Cross-sectional Trading on the Bistable Dynamics. We

further explore how integration effect affects the dynamics of (3.1) by numerically

studying different dynamics of the two assets before integration.

3.3.1. Scenario A: Backward + Backward ⇒ Backward or Forward. We first exam-

ine the case in which the two prices for assets A and B have backward and unstable

bifurcations before integration. Set µi = 15, αA
f = 0.2, αB

f = 0.25, βf = 0.2,

αA
a = 0.7, αB

a = 0.65, and βa = 0.05. By Propositions 3.1 and 3.2, the first bifur-

cation values for each asset model are 3.30 (for A) and 5.21 (for B), and their first

Lyapunov coefficients are 1.1 × 10−3 and 1.2 × 10−3, respectively, implying back-

ward and unstable bifurcations for each asset before the integration. Let αA
c = 0.1,

αB
c = 0.1 and βc = 0.03. Then, there are two frequencies ω1 ≈ 0.59 and ω2 ≈ 0.46

13He and Li (2015) also show that the time series momentum trading is self-fulfilling.
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Figure 3.6. The solution of (3.1) for τ = 2.7 < 2.74 with different

initial values: (a) (PA, PB) = (2, 2) and (b) (PA, PB) = (20, 20) over

[−τ, 0]. Here µi = 15, αA
f = 0.2, αB

f = 0.25, βf = 0.2, αA
a = 0.7,

αB
a = 0.65, βa = 0.05, αA

c = 0.1, αB
c = 0.1, βc = 0.03, F̄A = 0 and

F̄B = 0.

for the integrated system, and their corresponding smallest bifurcation values are

τ 10 ≈ 2.74 and τ 20 ≈ 4.42 respectively. Therefore, the first Hopf bifurcation value for

(3.1) is τ0 = τ 10 , implying that the integration effect destabilizes the fundamental

steady state by reducing the first bifurcation value. Furthermore, we have T ≈ 0.02

and c1(0) ≈ 1.0 × 10−3 when τ = τ0. This indicates that the Hopf bifurcation for

the integrated system (3.1) at τ = τ0 is still backward and the bifurcated periodic

solution is unstable. The bistable dynamics (one locally stable fundamental steady

state and one locally stable limit cycle) is illustrated in Fig. 3.6 by choosing differ-

ent initial values. The opposite price dynamics for the two assets are caused by the

cross-sectional momentum trading, which always longs one asset while at the same

time shorts the other. In other words, the cross-sectional momentum investors tend

to destabilize the cross-section of asset returns.

Changing the value of parameter βc from 0.03 to 0.09, the first bifurcation value

becomes 1.86, the transversality condition T = 0.08, and the first Lyapunov coeffi-

cient c1(0) ≈ −6.0 × 10−4, implying that the bifurcation becomes forward and the

bifurcated periodic solution is stable. The bifurcation diagrams for different βc are

shown in Fig. 3.7. Note that the first Lyapunov coefficients are positive for both

assets when they are decoupled, and it may become negative after integration. In

this case, the integrated system only has one local attractor (periodic solution), even

if there are two stable attractors (fundamental steady state and periodic solution)

for each asset before integration. Therefore, the integration of the two assets tends

to stabilize the otherwise unstable cycles before the integration.
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Intuitively, the cross-sectional momentum trading tends to destabilize the market

and strengthen the stability of the limit cycles. Therefore, as integration strength

increases, the basin of the attractor of the limit cycle grows while that of the steady

state declines. With strong integration, the steady state completely losses its stabil-

ity and hence the backward and unstable Hopf bifurcations for the two individual

assets before the integration become forward and stable after coupling.
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(b) βc = 0.09

Figure 3.7. Hopf bifurcation extension for asset A’s price of the

system (3.1) in scenario A for (a) βc = 0.03 and (b) βc = 0.09. Here

µi = 15, αA
f = 0.2, αB

f = 0.25, αA
a = 0.7, αB

a = 0.65, αA
c = 0.1,

αB
c = 0.1, βf = 0.2, and βa = 0.05.

3.3.2. Scenario B: Backward + Forward ⇒ Backward or Forward. We choose an-

other set of parameter values, µi = 15, αA
f = 0.12, αB

f = 0.1, βf = 0.2, αA
a = 0.78,

αB
a = 0.3, βa = 0.084, such that each asset model undergoes different types of Hopf

bifurcations when they are decoupled. In fact, the first bifurcation value and the

first Lyapunov coefficient are 1.16 (3.69) and −6.4×10−6 (5.4×10−5) respectively for

asset A (B), implying the bifurcation is forward and stable (backward and unstable)

for asset A (B). Let αA
c = 0.1, αB

c = 0.6 and βc = 0.01. Then, there exists two

frequencies ω1 ≈ 0.79 and ω2 ≈ 0.53, with their corresponding bifurcation values

given by τ 10 ≈ 1.07 and τ 20 ≈ 1.95 for the integrated system. Moreover, T ≈ 0.07 and

c1(0) ≈ 5.6×10−5 when τ = τ0 = τ 10 , which implies the Hopf bifurcation for (3.1) at

τ = τ0 is backward and the bifurcated periodic solution is unstable. However, the

first bifurcation value decreases after the integration.

Choosing βc = 0.06, we obtain the first bifurcation value of 0.90, the transversality

condition T = 0.08, the first Lyapunov coefficient c1(0) ≈ −8.0 × 10−4, and hence

the corresponding bifurcation is forward and stable. The bifurcation diagrams are

omitted, since they are similar to Fig. 3.7. Therefore, we show that Backward +
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Forward ⇒ Backward. However, the first bifurcation value becomes smaller after

the integration.

3.3.3. Scenario C: Forward + Forward ⇒ Forward. Numerical simulations (not re-

ported here) also show that when the two asset prices have forward and stable Hopf

bifurcation before the integration, the integrated system always have a forward and

stable Hopf bifurcation.

In all, we have shown that the integration effect destabilizes the system in two

ways. First, an increase in the integration strength parameter βc reduces the first

bifurcation value, so the fundamental steady state of the integrated system is prone

to be unstable compared with the decoupled systems. Second, an increase in βc

tends to lead the cycles of the integrated system stable, even though the decoupled

systems have unstable cycles.

4. Price Behaviour of the Stochastic Model

In this section, through numerical simulations, we study the interaction between

the global dynamics of the deterministic model and noise processes and explore the

potential power of the model to generate various market behaviour and the stylized

facts observed in financial markets.

4.1. Bistable Dynamics and Stochastic Switching. Fig. 4.1 illustrates the

time series of log market prices and log fundamental prices for assets A and B with

different initial conditions. With the chosen parameters, Fig. 3.5 shows that the

corresponding deterministic system has bistable dynamics, that is, the coexistence

of a stable fundamental steady state and a stable cycle. When we choose the initial

values close to the fundamental steady state, the prices converge to the stable fun-

damental steady state of the corresponding deterministic system. For the stochastic

system, Figs. 4.1 (a) and (b) show that the stochastic market prices (the red solid

line) follow the fundamental prices (the blue dotted line) in general, but accompa-

nied with small deviations from time to time. However, when we choose the initial

values far away from the steady state, the prices converge to the stable limit cycle of

the corresponding deterministic system and the stochastic market prices fluctuate

widely around their fundamentals for the stochastic system as illustrated in Figs.

4.1 (c) and (d). Further numerical simulations (not reported here) show that when

we choose the initial values in between the stable fundamental steady state and the

stable cycle, the fluctuations of the market prices become stronger than those in

Figs. 4.1 (a) and (b) but weaker than in Figs. 4.1 (c) and (d). This illustrates a

significant impact of the initial value on the price dynamics when the underlying

deterministic model is bistable.
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Figure 4.1. The time series of log market prices and log fundamental

prices for assets A and B with different initial conditions. µA = µB =

15, αA
f = αB

f = 0.2, αA
a = αB

a = 0.7, αA
c = αB

c = 0.1, βf = 0.2, βa =

0.05, βc = 0.01, σF
A,1 = 0.05, σF

A,2 = 0.01, σF
B,1 = 0.01, σF

B,2 = 0.06,

σM
A,1 = 0.1, σM

A,2 = 0.05, σM
B,1 = 0.05, σM

B,2 = 0.08, F̄A = F̄B = 5 and

τ = 2.

4.2. Spillover Effect. The spillover effect in returns and volatilities has been ex-

tensively documented in the literature. It has been observed in various assets, in-

cluding international equity markets (King, Sentana and Wadhwani, 1994, Forbes

and Rigobon, 2002), bond markets (Christiansen, 2007), foreign exchange markets

(Hong, 2001) and commodity markets (Nazlioglu, Erdem and Soytas, 2013).

We numerically examine the spillover effect by exploring the joint impact of the

integration intensity βc and the two noise processes on the market price dynamics.

To examine the impact of the market integration on the stochastic price dynamics,

we choose the same market volatility and fundamental volatility for the two assets.
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(a) Prices for A when βc = 0
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(b) Prices for B when βc = 0
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(c) Prices for A when βc = 0.015
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(d) Prices for B when βc = 0.015

Figure 4.2. The time series of log market prices and log fundamental

prices for assets A and B with different initial conditions. µA = µB =

15, αA
f = 0.2, αB

f = 0.7, αA
a = 0.7, αB

a = 0.2, αA
c = 0.1, αB

c = 0.1,

βf = 0.2, βa = 0.05, σF
A,1 = 0.06, σF

A,2 = 0.05, σF
B,1 = 0.05, σF

B,2 = 0.06,

σM
A,1 = 0.08, σM

A,2 = 0.05, σM
B,1 = 0.05, σM

B,2 = 0.08, F̄A = F̄B = 5, and

τ = 2.8.

However, we consider a situation in which the fundamental steady state of the

corresponding deterministic model is unstable for asset A but stable for asset B

before market integration (that is, βc = 0). Figs. 4.2 (a) and (b) show that the

stochastic price of asset A has greater fluctuations than asset B’s, and the realized

annual standard deviations of market returns are 9.3% and 8.6% for assets A and B

respectively and the correlation is 45.3%. The higher volatility for asset A is mainly

driven by the greater activity of momentum investors in asset A. Figs. 4.2 (c)

and (d) illustrate the prices after market integration (that is, βc > 0). They show

that market integration increases the volatilities for both assets, and the realized

annual standard deviations of market returns become 10.8% and 10.7% for assets

A and B respectively. Notice the volatility for asset B increases by 24.4%, much
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bigger than the increase for asset A, 16.1%. Therefore, cross-momentum trading

leads to a spillover in volatility. However, the correlation between the two assets’

returns reduces to 15.7%. In fact, Fig. 3.6 has shown that the cross-sectional

momentum trading leads to an opposite movements of the two assets, and hence we

observe smaller correlations after market integration. Therefore, the cross-sectional

momentum trading reduces return correlations, which in turn make the momentum

portfolios become more diversified. Further numerical simulations (not reported

here) show that the correlation increases in the σAB
F and σAB

M .

We also conduct Monte Carlo simulations. Based on the set of parameters used

in Fig. 4.2, and 1000 different random seeds, the average realized annual standard

deviations of market returns are 8.9% and 8.5% for assets A and B respectively and

the correlation is 43.5% when βc = 0. With the cross-sectional momentum trading

(βc = 0.015), the average realized annual standard deviations of market returns

become 16.4% and 16.3% for assets A and B respectively and the correlation is

reduced to 28.3%. The Monte Carlo results confirm that cross-sectional momentum

trading reduces return correlation.

5. Empirical Evidence from US Market

Table 5.1. Panel (A): the average correlations among stock returns

before and after publication of momentum, and their difference. Panel

(B): the average momentum profits before and after publication. t-

statistics are reported.

Before After Difference

(A) Correlation 27.1% 17.5% -9.6%

(111.01) (80.87) (-35.78)

(B) Return 20.4% 21.9% 1.5%

(6.79) (2.78)

Finally we provide empirical analysis to test these model implications developed in

the previous section. First, we examine if cross-sectional momentum trading tends to

reduce the correlations among stocks. It is reasonable to assume that there would be

an increase in the usage of cross-sectional momentum strategies after Jegadeesh and

Titman published their seminal work in March 1993. In fact, Jegadeesh and Titman

(2001) show that the momentum strategies continued to be profitable and that past

winners outperformed past losers by about the same magnitude after the publication

of their 1993 paper.14 We examine the correlations among stock returns before and

14Mclean and Pontiff (2016) find a decrease of 58% in the portfolio returns of 97 variables shown

by academic studies to predict cross-sectional returns after they were published academically.
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after the publication of momentum. We use the stocks listed in the S&P 100 index

during 03/1986-12/2015 from CRSP. We drop the stocks with less than five years

data before or after 03/1993. The correlations among each two stocks are calculated

for before publication (i.e. 03/1986-02/1993) and after publication (i.e. 04/1993-

12/2015). There are 76 stocks considered, implying 2850 correlations in total. We

find that the distribution of the correlations is very close to a normal distribution.

Panel (A) of Table 5.1 reports the average correlations before and after publication,

and their difference. There is an economically and statistically significant decrease

(35%) in the average correlations after the publication of momentum in 03/1993.

The empirical finding is consistent with our theoretical results.

Second, our model implies that the cross-sectional momentum trading is self-

fulfilling in the sense that it amplifies the price trends in cross-section. We con-

sider the momentum portfolios constructed in Daniel and Moskowitz (2016). The

10-decile momentum portfolios are formed on the basis of cumulative log returns

from months t − 12 through t − 2 using NYSE, AMEX, and NASDAQ stocks over

01/1927-03/1013. The portfolios are value weighted and rebalanced at the end of

each month.15 We escape the momentum crashes periods of 07-08/1932, and 03-

05/2009 documented in Daniel and Moskowitz (2016). Panel (B) of Table 5.1 shows

that the annualized average returns to momentum strategies are 20.4% and 21.9%

respectively before and after the publication of momentum, indicating an increase

of 1.5% in momentum return after publication. This is consistent with the find-

ing in Schwert (2003) that among different financial anomalies, momentum is the

only persistent anomaly even after its publication. In fact, the abnormal returns

even increase after its publication. Jegadeesh and Titman (2001) also show that

the relative returns to high-momentum stocks increased after their publication of

momentum. We also find similar results (not reported here) based on the 10-decile

momentum portfolios in Ken French’s data library.16 Therefore, more momentum

trading seems not able to arbitrage away the abnormal momentum returns, however

in turn amplifies the momentum profits. This supports our model implication that

the cross-sectional momentum trading destabilizes the market and leads to more

significant price trends in cross-section.

6. Conclusion

In this paper, we develop a continuous-time nonlinear heterogeneous agent model

of multiple assets to characterize the cross-sectional momentum trading. Both lo-

cal and global dynamics are examined via stability, bifurcation theory, normal form

15See the online appendix of Daniel and Moskowitz (2016) for the details of portfolio formation.
16The portfolios are constructed using NYSE prior 2-12 months return decile breakpoints. See

http : //mba.tuck.dartmouth.edu/pages/faculty/ken.french/datalibrary.html.
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method, and center manifold theory respectively. The impact of integration is ex-

amined for different cases in which the asset dynamics have various combinations

before introducing cross-section momentum trading. The bistable dynamics (or the

coexistence of a local stable fundamental steady state and a local stable cycle) oc-

cur through a Bautin bifurcation (generalized Hopf bifurcation). We show that, in

addition to the loss of local stability of the fundamental steady states, momentum

trading destabilizes the market by strengthening the stability of limit cycles.

Channeled by the underlying deterministic dynamics, the stochastic price model

can generate various stylized facts observed in the financial markets, including mar-

ket booms and crashes, comovements and spillover effects. Our analysis suggests

that cross-sectional momentum trading tends to be self-fulfilling in the sense that it

destabilizes the market and amplifies the price trends in cross-section. Our analysis

also suggests that cross-sectional momentum trading leads to decreases in return

correlations, which in turn make the cross-sectional momentum portfolios more di-

versified. Empirical evidence based on US market supports our main findings.

Appendix A. A General Model with N Assets

The two-asset model (2.5) can be extended to a general case with N risky assets,

dP i
t = µi

{

αi
f tanh(βff

i
t ) + αi

a tanh(βar
i
t,t−τ )

+ αi
c tanh

[βc
N
(rit,t−τ − rmt,t−τ )

]}

dt+ σA
MdW

A
M,t, i = 1, 2, · · · , N,

(A.1)

where f i
t = F i

t − P i
t is the fundamental factor, rit,t−τ = P i

t − P i
t−τ is the return of

asset i over the period of [t−τ, t] and rmt,t−τ =
∑N

i=1 r
i
t is the equally weighted market

return. That is, the cross-sectional momentum investors buy the past winners and

short the past losers over the period of [t − τ, t] simultaneously. Notice the cross-

sectional momentum portfolio is an arbitrage portfolio since the total investment

at time t sum to zero (Lo and Mackinlay, 1990 and DeMiguel, Nogales and Uppal,

2014). Our analysis can be straightforwardly extended to this general case, but with

a more involved results.

Appendix B. Proofs

The characteristic equation at the fundamental steady state of the system 3.1 is

given by

[

λ+γAf − (γAa +γAc )(1−e−λτ)
][

λ+γBf − (γBa +γBc )(1−e−λτ )
]

−γAc γBc (1−e−λτ)2 = 0.

(B.1)
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B.1. Proof of Proposition 3.1. It is easy to verify that (3.1) has a unique steady

state P i = F̄ i. The characteristic equation reduces to

λ+ γif − γia + γiae
−λτ = 0. (B.2)

When τ = 0, (B.2) has only one negative root λ = −γif < 0. Substitute λ = iω

(ω > 0) into (B.2):

cosωτ = 1−
γif
γia
, sinωτ =

ω

γia
, (B.3)

leading to

ω2 = γif(2γ
i
a − γif). (B.4)

If γif ≥ 2γia, then (B.4) has no solution.

If γif < 2γia, then ω =
√

γif(2γ
i
a − γif) and

τ in =
1

ω
[cos−1(1− γif/γ

i
a) + 2nπ], n = 0, 1, 2, · · · . (B.5)

It is easy to verify that d(Reλ)
dτ

∣

∣

∣

λ=iω
= ω2 + (γif − γia)

2 > 0.

Therefore, the fundamental steady state P i is locally asymptotically stable τ < τ i0
and unstable for τ > τ i0. P

i undergoes Hopf bifurcations at τ = τ in, n = 0, 1, 2, · · · .

B.2. Proof of Proposition 3.2. For the no relative momentum case, we conduct

symbolic computation of the first Lyapunov coefficient, which determines the di-

rection and stability of bifurcated periodic solutions. In this case, the prices are

decoupled and the system (3.1) is given by

Ṗ i
t = µi

[

αi
f tanh[βf (F̄

i − P i
t )] + αi

a tanh[βa(P
i
t − P i

t−τ )]
]

, i = A,B, (B.6)

which involves two analogical equations with different coefficients. In the following

analysis, we drop the superscript i to get a scalar equation, which can represent any

equation in (B.6):

Ṗt = µi
[

αf tanh[βf (F̄ − Pt)] + αa tanh[βa(Pt − Pt−τ )]
]

. (B.7)

After a change of variable, P̂t = Pt − F̄ , and drop the “ˆ” for ease of notation, we

get

Ṗt = −µiαf tanh(βfPt) + µαa tanh[βa(Pt − Pt−τ )]. (B.8)

Taylor expanding the righthand side of (B.8) at 0, and then writing its linear and

nonlinear parts in functional form yield:

L(φ) := (γa − γf)φ(0)− γaφ(−τ),

F (φ) :=
1

3
(γfβ

2
f − γaβ

2
a)φ

3(0) +
1

3
γaβ

2
aφ

3(−τ) + γaβ
2
aφ

2(0)φ(−τ)− γaβ
2
aφ(0)φ

2(−τ).
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There are mainly two methods for the first Lyapunov coefficient calculation in

the literature: one is to compute the expression of center manifold (Guckenheimer

and Holmes, 1983, and Hassard, Kazarinoff and Wan, 1981), and the other is to

get the normal form directly via a sequence of transformation of variables without

computing center manifold (Faria and Magalhaes, 1995). We use the first method

by following the algorithm developed in Guckenheimer and Holmes (1983) below,

which requires to compute the following quantities in the first place:

(1) the matrix-valued function Φ(θ), satisfying AΦ(θ) = Φ(θ)B, where A is the

infinitesimal generator of the linearized equation of (B.8), defined by

Aφ =

{

φ′(θ), θ ∈ [−τ, 0),
(γa − γf)φ(0)− γaφ(−τ), θ = 0,

and B =

(

0, ω

−ω, 0

)

;

(2) the matrix-valued function Ψ(ξ), satisfying A∗Ψ(ξ) = BΨ(ξ) and (Ψ,Φ) = I,

where A∗ is the formal adjoint operator of A, defined by

A∗ψ =

{

−ψ′(ξ), ξ ∈ (0, τ ],

(γa − γf)ψ(0)− γaψ(τ), ξ = 0,

and (·, ·) is the bilinear form defined by

(ψ, φ) = ψ(0)φ(0)−
∫ 0

−τ

∫ θ

ξ=0

ψ(ξ − θ)dη(θ)φ(ξ)dξ;

(3) and the Taylor expansion, up to second order, of the expression for center

manifold: h = h11(θ)u
2
1 + h12(θ)u1u2 + h22(θ)u

2
2 +O(‖u‖3) := h2 +O(‖u‖3),

where u = (u1, u2)
T are functions of time t, standing for the coordinates of

the solution to (B.8) on the center manifold.

Based on these quantities, one can derive the following ODE for u, up to third

order, on the center manifold

u̇ = Bu+Ψ(0)F (Φu+ h2 +O(‖u‖3)), (B.9)

whose general form is given by

u̇1 = ωu2 + f 1
11u

2
1 + f 1

12u1u2 + f 1
22u

2
2 + f 1

111u
3
1 + f 1

112u
2
1u2 + f 1

122u1u
2
2 + f 1

222u
3
2 +O(4),

u̇2 = −ωu1 + f 2
11u

2
1 + f 2

12u1u2 + f 2
22u

2
2 + f 2

111u
3
1 + f 2

112u
2
1u2 + f 2

122u1u
2
2 + f 2

222u
3
2 +O(4).

The coefficients in the above equation depend on Φ, Ψ, h and the nonlinear term F

of the original equation. According to formula in Guckenheimer and Holmes (1983),
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the first Lyapunov coefficient is given by

c1(0) =
1

8
(3f 1

111 + f 1
122 + f 2

112 + 3f 2
222)

− 1

8ω
[f 1

12(f
1
11 + f 1

22)− f 2
12(f

2
11 + f 2

22)− 2f 1
11f

2
11 + 2f 1

22f
2
22].

(B.10)

Remark B.1. (1) The matrix Ψ satisfying both A∗Ψ = BΨ and (Ψ1,Φ) = I is

usually obtained by two steps: solving A∗Ψ = BΨ to get an intermediate

matrix Ψ1, and then multiplying it by a proper matrix K to make sure that

(Ψ,Φ) = I, that is, Ψ = KΨ1. Therefore, K = (Ψ1,Φ)
−1.

(2) The second order term in h satisfies the following system:

∂h2
∂θ

+O(‖u‖3) = ∂h2
∂u

Bu+ Φ(θ)Ψ(0)F2(Φ(θ)u) +O(‖u‖3),

L(h2) + F2(Φ(θ)u) +O(‖u‖3) = ∂h2
∂u

|θ=0Bu+ Φ(θ)Ψ(0)F2(Φ(θ)u) +O(‖u‖3).

which yields a series of differential equations for hij(θ), i, j = 1, 2, with

proper boundary conditions, and hence, the approximate expression for h

will be obtained by solving these equations.

Along with a similar Maple program, as in Campbell (2009), one can get

Φ(θ) = [cos(ωθ), sin(ωθ)],

Ψ(ξ) =







−2ω([ωτ cosωτ − sinωτ ] cosωξ + ωτ sinωτ sinωξ)

γaω2τ 2 + γa cos2 ωτ − 2ω2τ cosωτ − γa + 2ω sinωτ
−2ω([ωτ cosωτ − sinωτ ] sinωξ − ωτ sinωτ cosωξ)

γaω2τ 2 + γa cos2 ωτ − 2ω2τ cosωτ − γa + 2ω sinωτ






:=

[

ψ1(ξ)

ψ2(ξ)

]

,

and

h2 = 0.

The second order term h2 being zero is due to the fact that the second order deriva-

tives of tanh x at x = 0 is 0. Substituting these variables into (B.9), also accom-

plished by Maple, we get

f 1
111 =

1

3
γaβ

2
aψ1(0)[−1 + 3 cosωτ − 3 cos2 ωτ + cos3 ωτ ] +

1

3
γfβ

2
fψ1(0),

f 1
122 = ψ1(0)γaβ

2
a sin

2 ωτ(cosωτ − 1),

f 2
112 = −ψ2(0)γaβ

2
a sinωτ(cosωτ − 1)2,

f 2
222 = −1

3
γaβ

2
aψ2(0) sin

3 ωτ,

and all the coefficients of the second order term in (B.9) are zero. It then follows

form (B.10) that the first Lyapunov coefficient is finally given by

c1(0) =
1

4
γaβ

2
aψ1(0)(2 cosωτ−cos2 ωτ−1)+

1

8
γfβ

2
fψ1(0)+

1

4
γaβ

2
aψ2(0) sinωτ(cosωτ−1).

(B.11)
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B.3. Numerical Method of the Periodic Solution Branch. To examine these

two limit cycles numerically around the Bautin bifurcation point, the scheme is to

find a proper set of parameter values under which backward Hopf bifurcation hap-

pens, and then to check how the bifurcated periodic solution varies as one of these

parameters (e.g. τ) changes. The choice of parameters for backward Hopf bifur-

cation is based on Propositions 3.1 and 3.2, while tracking the bifurcated periodic

solution can be done with the aid of a Matlab package, DDE-BIFTOOL, which al-

lows to analyse stability of steady state solutions and periodic solutions, to continue

steady state fold and Hopf bifurcations, and to switch, from the latter, to an em-

anating branch of periodic solutions (Engelborghs, Luzyanina and Samaey, 2001).

Notice the method can even numerically simulate the unstable limit cycles.

B.4. Proof of Proposition 3.4. The characteristic equation at the steady state

(PA, PB) = (F̄A, F̄B) is given by

[

λ+ γAf − γAc (1− e−λτ )
][

λ+ γBf − γBc (1− e−λτ )
]

− γAc γ
B
c (1− e−λτ )2 = 0. (B.12)

When τ = 0, (B.12) has two negative roots λ1 = −γAf and λ2 = −γBf . If τ > 0,

then (B.26) reduces to

sinωτ =
−ωN(K1 − ω2) +K2ωL

K2
2ω

2 + (K1 − ω2)2
, cosωτ =

−L(K1 − ω2)−K2ω
2N

K2
2ω

2 + (K1 − ω2)2
,

where

L = γAf γ
B
c + γBf γ

A
c , N = γAc + γBc , K1 = γAf γ

B
f − L, K2 = γAf + γBf −N,

and thus ω satisfies

F (ω̄) = ω̄4 + P3ω̄
3 + P2ω̄

2 + P1ω̄ + P0 = 0, (B.13)

with ω̄ = ω2 and

P3 = 2(K2
2 − 2K1)−N2,

P2 = 2K2
1 + (K2

2 − 2K1)
2 − L2 − (K2

2 − 2K1)N
2,

P1 = 2K2
1(K

2
2 − 2K1)−K2

1N
2 − (K2

2 − 2K1)L
2,

P0 = K2
1(K

2
1 − L2).

We rewrite (B.13) as

F1(ω̄)F2(ω̄) = 0, (B.14)

where

F1 = (ω̄ − γAf γ
B
f + γAf γ

B
c + γAc γ

B
f )

2 + ω̄(γAf − γAc + γBf − γBc )
2,

F2 = ω̄2 + ω̄(γA2
f − 2γAf γ

A
c + γB2

f − 2γBf γ
B
c ) + γAf γ

B
f (γ

A
f γ

B
f − 2γAf γ

B
c − 2γBf γ

A
c ).

(B.15)
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Notice F1 ≥ 0 and we only need to examine the positive roots of F2(ω̄) = 0. We

rewrite F2(ω̄) as F2(ω̄) = ω̄2 + a2ω̄ + b2, where

a2 = γA2
f − 2γAf γ

A
c + γB2

f − 2γBf γ
B
c = K2

2 − 2K1 −N2,

b2 = γAf γ
B
f (γ

A
f γ

B
f − 2γAf γ

B
c − 2γBf γ

A
c ) = K2

1 − L2.

It is easy to verify that there is only one frequency

ω+ =

[−a2 +
√

a22 − 4b2
2

]1/2

, (B.16)

if and only if

(a2, b2) ∈ {a22 = 4b2, a2 < 0}
⋃

{b2 < 0}
⋃

{a2 < 0, b2 = 0}, (B.17)

there are two frequencies

ω± =

[−a2 ±
√

a22 − 4b2
2

]1/2

, (B.18)

if and only if

(a2, b2) ∈ {a22 > 4b2 > 0, a2 < 0}, (B.19)

and (B.15) has no positive root if and only if

(a2, b2) ∈ {a22 < 4b2}
⋃

{a2 = 2
√

b2}
⋃

{a2 > 0, b2 = 0}
⋃

{a22 > 4b2 > 0, a2 ≥ 0}.
(B.20)

When b2 ≥ 0, we get γAf (γ
B
f −2γBc ) ≥ 2γBf γ

A
c and γBf (γ

A
f −2γAc ) ≥ 2γAf γ

B
c . Hence,

a2 = γAf (γ
A
f − 2γAc ) + γBf (γ

B
f − 2γBc ) ≥

2γA2
f γBc
γBf

+
2γB2

f γAc
γAf

> 0,

which implies that the sets {(a2, b2) : a2 < 0, b2 = 0} and {(a2, b2) : a22 > 4b2 >

0, a2 < 0} are empty. It also follows from (B.28) that the transversality condition is

determined by the sign of F ′(ω2
+), which is equal to the sign of the quantity F ′

2(ω
2
+)

since F1 > 0. If (a2, b2) ∈ {a22 = 4b2, a2 < 0}, then F ′

2(ω
2
+) = 2ω2

+ + a2 = 0.

Therefore, Hopf bifurcation will never happen for (a2, b2) ∈ {a22 = 4b2, a2 < 0}, and
hence the sufficient condition for the occurrence of Hopf bifurcation corresponding

to one frequency is b2 < 0, under which F ′

2(ω
2
+) = 2ω2

+ + a2 > 0.

Note that sinωτ > 0 for all positive ω, since K2L−K1N = γA2
f γBc + γB2

f γAc > 0.

Therefore, the bifurcation value are given by

τn =
1

ω+

[

cos−1

(−L(K1 − ω2)−K2ω
2N

K2
2ω

2 + (K1 − ω2)2

)

+ 2nπ

]

, n = 0, 1, · · · (B.21)

The proof of the properties of Hopf bifurcation can be found in Appendix B.6 for

the proof for the full model.
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B.5. Proof of Proposition 3.5. It is sufficient to show that it cannot happens that

one asset’s price converges to its fundamental while the other’s fluctuates cyclically

simultaneously. Without loss of generality, suppose PA
t converges to its fundamental

price and PB
t fluctuates cyclically at the same time. Because PB

t is a cycle in this

case, there exist a positive number x > 0 and a sequence of time tk, k = 1, 2, · · · ,
such that tk → ∞ as k → ∞, and |PB

tk
− PB

tk−τ | ≥ x.17 The first equation of (3.1) is

equivalent to

PA
t+dt − F̄A =PA

t − F̄A + µA
[

αA
f tanh[βf (F̄

A − PA
t )] + αA

a tanh[βa(P
A
t − PA

t−τ )]

+ αA
c tanh{βc[(PA

t − PA
t−τ )− (PB

t − PB
t−τ )]}.

(B.22)

As t → ∞, F̄A − PA
t → 0 and PA

t − PA
t−τ → 0 due to the convergence of PA

t . So

(B.22) implies that, for sufficiently large k,

|PA
tk+dt − F̄A| ≈ µAαA

c tanh{βc|PB
tk
− PB

tk−τ |} ≥ µAαA
c tanh{βcx} > 0, (B.23)

which contradicts the assumption of the convergence of PA
t .

This completes the proof.

B.6. Proof of Proposition 3.3. When τ = 0, there are two roots, λ1 = −γAa and

λ1 = −γBa , for (B.1), and hence the equilibrium is locally stable. If ±iω, ω > 0 are

a pair of purely imaginary roots of (B.1), then we have

(K1 − ω2) + (L− 2M) cosωτ + ωN sinωτ +M cos 2ωτ = 0,

K2ω − (L− 2M) sinωτ + ωN cosωτ −M sin 2ωτ = 0.
(B.24)

which is equivalent to

(K1 − ω2 −M) sinωτ +K2ω cosωτ + ωN = 0,

(K1 − ω2 +M) cosωτ −K2ω sinωτ + (L− 2M) = 0.
(B.25)

Here,

L = γAf (γ
B
a + γBc ) + γBf (γ

A
a + γAc ),

M = γAa γ
B
a + γAa γ

B
c + γAc γ

B
a ,

N = γAa + γAc + γBa + γBc ,

K1 = γAf γ
B
f − L+M,

K2 = γAf + γBf −N.

17We assume that τ is not equal to the multiples of the period of the cycle. Otherwise, PB
tk

−
PB
tk−τ ≡ 0.
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Therefore,

sinωτ =
−ωN(K1 − ω2 +M) +K2ω(L− 2M)

K2
2ω

2 + (K1 − ω2)2 −M2
,

cosωτ =
−(L− 2M)(K1 − ω2 −M)−K2ω

2N

K2
2ω

2 + (K1 − ω2)2 −M2
.

(B.26)

This implies that ω must satisfy the following equation

[−N(K1 − ω2 +M) +K2(L− 2M)]2ω2 + [(L− 2M)(K1 − ω2 −M) +K2ω
2N ]2

=[K2
2ω

2 + (K1 − ω2)2 −M2]2,

which can be simplified to

F (ω̄) := ω̄4 + P3ω̄
3 + P2ω̄

2 + P1ω̄ + P0 = 0, (B.27)

with ω̄ = ω2, and

P3 = 2(K2
2 − 2K1)−N2,

P2 = 2(K2
1 −M2) + (K2

2 − 2K1)
2 − (L− 2M)2 − (K2

2 − 2K1)N
2 + 2MN2,

P1 = 2(K2
1 −M2)(K2

2 − 2K1)−N2(K1 +M)2

− (L− 2M)2(K2
2 − 2K1)− 2M(L− 2M)2 + 4K2MN(L− 2M),

P0 = (K1 −M)2(K1 +M)2 − (K1 −M)2(L− 2M)2,

The fundamental theorem of algebra suggests that (B.27) has four roots. The

expressions of the four roots, first proposed by Lodovico Ferrari, are extremely

complicated. A detailed discussion on the conditions for different cases and the

corresponding solutions would be tediously long. Therefore, instead of providing

a complete conditions of all possible combinations of parameters, including those

economically meaningless parameter sets, we just give some simple discussions on

the properties of the roots of (B.27) to provide a better understanding of the roots,

and then we numerically examine the roots for certain sets of parameters we are

interested in. We refer readers to Abramowitz and Stegun (1972) for the details

of the formulas of the four roots. First, Vieta’s Formulas show that (B.27) has

even (odd) number of positive roots if P0 > 0 (< 0). Therefore, if P0 < 0, (B.27)

has at least one positive root and hence system (3.1) will undergo Hopf bifurcations.

Especially, if P0 = 0, then the number of positive roots is determined by P2. Second,

we can rewrite (B.27) as

(ω̄2 + a1ω̄ + b1)(ω̄
2 + a2ω̄ + b2) = 0,

where ai and bi satisfy

P0 = b1b2, P1 = a1b2 + a2b1, P2 = a1a2 + b1 + b2, P3 = a1 + a2.

Therefore, we can instead examine the roots of the more familiar quadratic equations

and the number of positive roots of (B.27) are completely determined by ai and



32 HE, LI AND WANG

bi, i = 1, 2. More specifically, first, (B.27) has four positive roots if and only if

C1

⋂

C2, where Ci := {ai < 0}
⋂

{a2i ≥ 4bi > 0}, i = 1, 2. The condition C1

⋂

C2 is

equivalent to {P0 > 0, P1 < 0, P2 > 0, P3 < 0}
⋂

{a2i ≥ 4bi, i = 1, 2}. Second, (B.27)
has two positive roots if and only if (C1

⋂

C2)
⋃

(C2

⋂

C1), where the overline is

a complementary set operator. Third, (B.27) has no positive root if and only if

C1

⋂

C2. Similarly, we can determine the conditions that (B.27) has one or three

roots. To save space, we omit them. We denote C := C1

⋂

C2 as the condition that

(B.27) has no positive root, so the parameter set C corresponds to the condition

that (B.27) has at least one positive root.

Now, we consider the properties of Hopf bifurcation of system (3.1). Assume that

(B.27) has positive roots, (that is, under condition C), denoted by ω̄i, i takes the

integers from 1 to 4 depending on how many roots (B.27) may have. For each ω̄i, one

can get a sequence of bifurcation values for time delay, τ in, n = 0, 1, · · · , from (B.26).

Denote the smallest τ i0 for all possible i by τ0 and the corresponding frequency by

ω0. To verify the transversality condition, set

G(λ, τ) =
[

λ+γAf −(γAa +γ
A
c )(1−e−λτ )

][

λ+γBf −(γBa +γ
B
c )(1−e−λτ )

]

−γAc γBc (1−e−λτ )2.

Using (B.25), we get

∂G

∂λ
|λ=iω0,τ=τ0 = [K2 +N cosω0τ0 + τ0(K1 − ω2

0 −M cos 2ω0τ0)]

+ i[2ω0 −N sinω0τ0 + τ0(K2ω0 +M sin 2ω0τ0)],

and

∂G

∂τ
|λ=iω0,τ=τ0 = −ω0(K2ω0 +M sin 2ω0τ0) + iω0(K1 − ω2

0 −M cos 2ω0τ0),
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Therefore, SignRe
(

dτ
dλ

)

= −SignRe
(

∂G
∂λ
/∂G

∂τ

)

, which equals the sign of the following

quantity

ω0[K2 +N cosω0τ0 + τ0(K1 − ω2
0 −M cos 2ω0τ0)](K2ω0 +M sin 2ω0τ0)

− ω0[2ω0 −N sinω0τ0 + τ(K2ω0 +M sin 2ω0τ0)](K1 − ω2
0 −M cos 2ω0τ0)

= ω0(K2 +N cosω0τ0)(K2ω0 +M sin 2ω0τ0)

− ω0(2ω0 −N sinω0τ0)(K1 − ω2
0 −M cos 2ω0τ0)

= ω2
0(K

2
2 − 2K1 + 2ω2

0) + ω0K2M sin 2ω0τ0 + 2ω2
0M cos 2ω0τ0

+K2ω
2
0N cosω0τ0 + ω0N(K1 − ω2

0 +M) sinω0τ0

= 2ω2
0(K

2
2 − 2K1 + 2ω2

0) + 2ω2
0[K2N − (L− 2M)] cosω0τ0

+ ω0[N(K1 − ω2
0 +M)−K2(L− 2M)− 2ω2

0N ] sinω0τ0

=
ω2
0(4ω

6
0 + 3P3ω

4
0 + 2P2ω

2
0 + P1)

K2
2ω

2
0 + (K1 − ω2

0)
2 −M2

=
ω2
0F

′(ω2
0)

K2
2ω

2
0 + (K1 − ω2

0)
2 −M2

:= T.

(B.28)

The computation of c1(0) in Proposition 3.3 can be done by Maple, following

the same procedure as in Appendix B.2 for the single asset model. However, the

expression of c1(0) is much more complicated than the one for no relative momentum

model, and hence it is omitted.

Remark B.2. Although we do not provide the distribution of the roots to (B.27),

we claim that (B.27) can have positive roots for certain sets of parameters. For

example, assume that γAf = γBf := γf , γ
A
a = γBa := γa and γAc = γBc := γc. It then

follows that

P0 = γ4f(γf − 2γa − 2γc)
2[(γf − 2γa)

2 − 4γc(γf − 2γa)] > 0

when γf − 2γa < 0. Set ω̄1 = γf(2γa − γf). We get F (ω̄1) = 0 and F ′(ω̄1) =

−32γ2fγaγ
3
c < 0. Since limω̄→+∞ F (ω̄) = +∞, F (ω̄) = 0 has at least another positive

solution, denoted by ω̄2, which is greater than ω̄1. Assume further that the other two

roots of (B.27) are non-positive. Then, ω̄1 and ω̄2 will determine two sequences of

bifurcation values for τ , denoted by τ 1n and τ 2n respectively, n = 0, 1, · · · , according
to (B.26). Recall that the decoupled system (γc = 0) will oscillate in one side

neighborhood of τ i0, i = A or B, if γf − 2γa < 0. If τ 10 < τ 20 , then τ
1
0 (= τ i0) is the

first Hopf bifurcation value, and hence the coupled system will oscillate in the same

frequency as decoupled system. While τ 10 > τ 20 , the first Hopf bifurcation value

becomes τ 20 , which implies that the oscillation frequency for coupled system is
√
ω̄2.

In this case, we conclude that two assets prices, oscillating in the same way (same
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frequency and amplitude) when decoupled, will oscillate with higher frequency after

integration.
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