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Abstract. This chapter surveys the state-of-art of heterogeneous agent models

(HAMs) in finance using a jointly theoretical and empirical analysis, combined

with numerical and Monte Carlo analysis from the latest development in com-

putational finance. It provides supporting evidence on the explanatory power of

HAMs to various stylized facts and market anomalies through model calibration,

estimation, and economic mechanisms analysis. It presents a unified framework

in continuous time to study the impact of historical price information on price

dynamics, profitability and optimality of fundamental and momentum trading. It

demonstrates how HAMs can help to understand stock price co-movements and to

build evolutionary CAPM. It also introduces a new HAMs perspective on house

price dynamics and an integrate approach to study dynamics of limit order mar-

kets. The survey provides further insights into the complexity and efficiency of

financial markets and policy implications.

Key words: Heterogeneity, bounded rationality, heterogeneous agent-based mod-

els, stylized facts, asset pricing, housing bubbles, limit order markets, information

efficiency, comovement
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1. Introduction

Economic and finance theory is witnessing a paradigm shift from a representative

agent with rational expectations to boundedly rational agents with heterogeneous

expectations. This shift reflects a growing evidence on the theoretical limitations and

empirical challenges in the traditional view of homogeneity and perfect rationality

in finance and economics.

The existence of limitations to fully rational behavior and the roles of psycholog-

ical phenomena and behavioral factors in individuals’ decision making have been

emphasized and discussed from a variety of different standpoints in the economics

and finance literature (see, e.g. Simon (1982), Sargent (1993), Arthur (1994), Con-

lisk (1996), Rubinstein (1998), and Shefrin (2005)). Due to endogenous uncertainty

about the state of the world and limits to information and computational ability,

agents are prevented from forming rational forecasts and solving life-time optimiza-

tion problems. Rather, agents favor simple reasoning and ‘rules of thumb’, such

as the well documented technical analysis and active trading from financial market

professionals1. In addition, empirical investigations of financial time series show a

number of market phenomena (including bubbles, crashes, short-run momentum and

long-run mean reverting in asset prices) and some common features, the so-called

stylized facts2, which are difficult to accommodate and explain within the standard

paradigm based on homogeneous agents and rational expectations.

Moreover, agents are heterogeneous in their beliefs and behavioral rules, which

may change over time due to social interaction and evolutionary selection (see

Lux (1995), Arthur, Holland, LeBaron, Palmer and Tayler (1997b), and Brock and

Hommes (1998)). Such heterogeneity and diversity in individual behavior in eco-

nomics, along with social interaction among individuals, can hardly be captured

by a ‘representative’ agent at the aggregate level (see Kirman (1992, 2010) for ex-

tensive discussions). For instance, as Heckman (2001), the 2000 Nobel Laureate in

1See Allen and Taylor (1990) for foreign exchange rate markets and Menkhoff (2010) for fund

managers.
2They include excess volatility, excess skewness, fat tails, volatility clustering, long range depen-

dence in volatility, and various power-law behavior, as detailed in Pagan (1996) and Lux (2009b).
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Economics, points out (concerning the contribution of microeconometrics to eco-

nomic theory), “the most important discovery was the evidence on pervasiveness

of heterogeneity and diversity in economic life. When a full analysis was made of

heterogeneity in response, a variety of candidate averages emerged to describe the

average person, and the longstanding edifice of the representative consumer was

shown to lack empirical support.” Regarding agents’ behavior during crisis periods

and the role of policy makers, the former ECB president Jean-Claude Trichet writes

“We need to deal better with heterogeneity across agents and the interaction among

those heterogeneous agents”, highlighting the potential of alternative approaches

such as behavioural economics and agent-based modelling.

Over the last three decades, empirical evidence, unconvincing justification of the

assumption of unbounded rationality, and role of investor psychology have led to

an incorporation of heterogeneity in beliefs and bounded rationality of agents into

financial market modelling and asset pricing theory. This has changed the landscape

of finance theory dramatically and led to fruitful development in financial economics,

empirical finance, and market practice. In this chapter, we focus on the state-of-

the-art of this expanding research field, denoted as Heterogeneous Agent Models

(HAMs) in finance.

HAMs start from the contributions of Day and Huang (1990), Chiarella (1992),

de Grauwe, Dewachter and Embrechts (1993), Lux (1995), Brock and Hommes

(1998), inspired by the pioneering work of Zeeman (1974) and Beja and Goldman

(1980). This modeling framework views financial market dynamics as a result of

the interaction of heterogeneous investors with different behavioral rules, such as

fundamental and technical trading rules. One of the key aspects of these models is

the expectation feedback mechanism. Namely, agents’ decisions are based upon the

predictions of endogenous variables whose actual values are determined by the expec-

tations of agents. This result in the co-evolution of beliefs and asset prices over time.

Earlier HAMs develop various nonlinear models to characterize various endogenous

mechanisms of market fluctuations and financial crisis resulting from the interaction

of heterogeneous agents rather than exogenous shocks or news. Overall, such mod-

els demonstrate that asset price fluctuations can be caused endogenously. We refer
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to Hommes (2006), LeBaron (2006), Chiarella, Dieci and He (2009), Hommes and

Wagener (2009), Westerhoff (2009), Chen, Chang and Du (2012), Hommes (2013),

and He (2014) for surveys of these developments in the literature.

HAMs have strong connections with a broader area of Agent-Based Models (ABMs)

and Agent-based Computational Economics (ACE). In fact, HAMs can be regarded

as particular types of ABMs. However, generally speaking, ABMs are by nature

very computationally oriented and allow for a large number of interacting agents,

network structures, many parameters, and thorough descriptions of the underlying

market microstructures. As such, they turn out to be extremely flexible and power-

ful, suitable for simulation, scenario analysis and regulation of real-world dynamic

systems (see, e.g. Tesfatsion and Judd (2006), LeBaron and Tesfatsion (2008)).

By contrast, HAMs are typically characterized by substantial simplifications at the

modelling level (few belief-types or behavioral rules, simplified interaction struc-

tures and reduced number of parameters). This makes HAMs analytically tractable

to some extent, mostly within the theoretical framework of nonlinear dynamical

systems. However, unlike computationally oriented ABMs, HAMs allow a deeper

understanding of the basic dynamic mechanisms and driving forces at work, making

it possible to identify different and clear-cut ‘types’ of macro outcomes in connection

to specific agents’ behavior.

Among the large number of HAMs in finance, this chapter is mostly concerned

with analytically tractable models based on the interplay of two broad types of be-

liefs: extrapolative vs. regressive (or technical vs. fundamental rules, or chartists vs.

fundamentalists). Since chartists rely on extrapolative rules to forecast future prices

and to take their position in the market, they tend to sustain and reinforce current

price trends or to amplify the deviations from the ‘fundamental price’. By contrast,

fundamentalists place their orders in view of a mean reversion of asset price to its fun-

damental in long-run. The interplay between such forces is able to capture, albeit

in a simplified manner, a basic mechanism of price fluctuations in financial mar-

kets. Support to this kind of behavioral heterogeneity comes from survey evidence

(Menkhoff and Taylor (2007), Menkhoff (2010)), experimental evidence (Hommes,
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Sonnemans, Tuinstra and Velden (2005), Heemeijer, Hommes, Sonnemans and Tuin-

stra (2009)), and empirically grounded discussion on the profitability of momentum

and mean reversion strategies in financial markets (e.g. Lakonishok, Shleifer and

Vishny (1994), Jegadeesh and Titman (2001), Moskowitz, Ooi and Pedersen (2012)).

In this chapter, we focus on the state-of-the-art of HAMs in finance from five

main strands of the literature developed approximately over the last ten years since

the appearance of the previous contributions in Volume II of this Handbook series.

This development can have profound consequences for the interpretation of empirical

evidence and the formulation of economic policy.

The first strand of research (Section 2) emphasizes the lasting potential of stylized

HAMs in discrete time (in particular, chartist-fundamentalist models) to address

key issues in finance. Such models have been largely investigated in the past in

a wide range of versions incorporating heterogeneity, adaptation, evolution, and

even learning (Hommes (2001), Chiarella and He (2002, 2003) and Chiarella et al.

(2002, 2006)). They have successfully explained various market behaviour, such as

the long-term swing of market prices from fundamental price, asset bubbles and

market crashes, showing a potential to characterize and explain the stylized facts

(Alfarano et al. (2005), Gaunersdorfer and Hommes (2007)) and various power

law behavior (He and Li (2008) and Lux and Alfarano (2016)) observed in financial

markets. In addition, the chartist-fundamentalist framework can still provide insight

into various stylized facts and market anomalies, and relate them to the economic

mechanisms, parameters and scenarios of the underlying nonlinear deterministic

systems. Such promising perspectives have motivated further empirical studies,

leading to a growing literature on the calibration and estimation of the HAMs. In

particular, in Sections 2.1 and 2.2, we focus on a simple HAM of Dieci, Foroni,

Gardini and He (2006) to illustrate its explanatory power to volatility clustering

through calibration and empirical estimation, and relate the results to the underlying

mechanisms and bifurcations of the nonlinear deterministic ‘skeleton’. Moreover, by

considering an integrated approach of HAMs and incomplete information about

the fundamental value, we provide a micro-foundation to the endogenous trading

heterogeneity and switching behavior wildly characterized in HAMs (Section 2.3).
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We also survey fund flow effect among competing and evolving investment strategies

(Section 2.4).

The second strand (Section 3) is on the development of a general framework in

continuous time HAMs to incorporate historical price information in the HAMs. It

provides a plausible way to deal with a variety of expectation rules formed from

historical prices via moving averages over different time horizons, through a parsi-

monious system of stochastic delay differential equations. We introduce a time delay

parameter to measure the effect of historical price information. Besides being consis-

tent with continuous-time finance, this framework appears promising to understand

the impact on market stability of lagged information (incorporated in different mov-

ing average rules and in realized profits recorded over different time horizons) and to

explain a number of phenomena, particularly the long-range dependence in financial

markets. We illustrate this approach and the main results in Section 3.1 by survey-

ing the model in He and Li (2012). We emphasize the similarities to and differences

from discrete-time HAMs. Moreover, Sections 3.2 and 3.3 demonstrate how useful

the continuous-time HAMs can be in addressing the profitability of momentum and

contrarian strategies and the optimal allocation with time series momentum and

reversal, two of the most dominating financial market anomalies.

The third strand (Section 4) is on the impact of heterogeneous beliefs, expec-

tations feedback and portfolio diversification on the joint dynamics of prices and

returns of multiple risky assets. A related issue concerns the joint dynamics of in-

ternational asset markets, driven by heterogeneous speculators who switch across

markets depending on relative profit opportunities. In such models, often described

by dynamical systems of large dimension, the typical nonlinear features of baseline

HAMs interact with additional nonlinearities that arise naturally within a multi-

asset setting, such as the beliefs about second moments and correlations. Section 4

surveys such models, starting from the basic setup developed by Westerhoff (2004),

in which investors can switch not only across strategies but across markets (Section

4.1). Such models are not only able to reproduce various stylized facts, but also to

offer some explanations to price comovements and cross-correlations of volatilities

reported empirically (Schmitt and Westerhoff (2014)), as well as to address some
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key regulatory issues (Westerhoff and Dieci (2006)). Further research deals with as-

set comovements and changes in correlations from a different perspective. Based on

models of evolving beliefs and (mean-variance) portfolios of heterogeneous investors,

Section 4.2 is devoted to the multi-asset HAM of Chiarella, Dieci, He and Li (2013).

This approach appears quite promising to address the issue of ‘time-varying betas’

within an evolutionary CAPM framework. It establishes a link between investors’

behaviour and changes in risk-return relationships at the aggregate level. Finally,

Section 4.3 applies HAMs to illustrate the potentially destabilizing impact of the

interlinkages between stock and foreign exchange markets (Dieci and Westerhoff

(2010, 2013b)).

The fourth strand (Section 5) investigates the dynamics of house prices from the

perspective of HAMs. Similar to financial markets, housing markets have long been

characterized by boom-bust cycles and other phenomena apparently unrelated to

changes in economic fundamentals, such as short-term positive autocorrelation and

long-term mean-reversion, which are at odds with the predictions of the rational

representative agent framework. Moreover, peculiar features of the housing market

(such as the ‘twofold’ nature of housing, illiquidity, and supply-side elasticity) may

interact with investors’ demand influenced by behavioral factors. Section 5.1 surveys

two recent HAMs of the housing market (Bolt, Demertzis, Diks, Hommes and van der

Leij (2014) and Dieci and Westerhoff (2016)) which are based on mean-variance

preferences and standard equilibrium conditions, with the fundamental price being

regarded as the present value of future expected rental payments. However, within

this framework, investors form heterogeneous expectations about future house prices,

according to (evolving) regressive and extrapolative beliefs. Estimation of similar

models supports the assumption of behavioral heterogeneity changing over time,

based on the relative performance of the competing prediction rules. It highlights

how such heterogeneity can produce endogenous house price bubbles and crashes

(disconnected from the dynamics of the fundamental price). Moreover, the nonlinear

dynamic analysis of such models can provide a simple behavioral explanation for the

observed role of supply elasticity in ‘shaping’ housing bubbles and crashes, as widely

reported and discussed in empirical and theoretical literature (see, e.g. Glaeser,
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Gyourko and Saiz (2008)). Further ‘disequilibrium’ models, illustrated in Section

5.2, confirm the main findings about the impact of behavioral heterogeneity on

housing price dynamics.

The fifth strand (Section 6) is on an integrated approach combining HAMs with

traditional market microstructure literature to examine the joint impact of infor-

mation asymmetry, heterogeneous expectations, and adaptive learning in limit or-

der markets. As shown in Section 6.1, these HAMs are very helpful in examining

complexity in market microstructure, providing insight into the impact of heteroge-

neous trading rules on limit order book and order flows (Chiarella and Iori (2002),

Chiarella, Iori and Perello (2009), Chiarella, He and Pellizzari (2012), Kovaleva and

Iori (2014)), and replicating the stylized facts in limit order markets (Chiarella, He,

Shi and Wei (2017)). Earlier HAMs mainly examine the endogenous mechanism

of interaction of heterogeneous agents, less so about information asymmetry, which

is the focus of traditional market microstructure literature under rational expecta-

tions. Moreover, while the current microstructure literature focuses on informed

traders by simplifying the behavior of uninformed traders substantially, a thorough

modelling of the learning behavior of uninformed traders appears crucial for trading

and market liquidity (O’Hara (2001)). Section 6.2 surveys a contribution in this

direction by Chiarella, He and Wei (2015). By integrating HAMs with asymmet-

ric information and Genetic Algorithm (GA) learning into microstructure literature,

they examine the impact of learning on order submission, market liquidity, and price

discovery. Finally, very recent contributions (in Sections 6.3 and 6.4) further exam-

ine the impact of high frequency trading (Arifovic, Chiarella, He and Wei (2016))

and different regulations (Lensberg, Schenk-Hoppé and Ladley (2015)) on market in

a GA learning environment.

Most of the development surveyed in this chapter is based on a jointly theoreti-

cal and empirical analysis, combined with numerical simulations and Monte Carlo

analysis from the latest development in computational finance. It provides very

rich approaches to deal with various issues in equity market, housing market, and

market microstructure. The results provide some insights into our understanding of

the complexity and efficiency of financial market and policy implications.
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2. HAMs of Single Asset Market in Discrete-time

Empirical evidence of various stylized facts and anomalies in financial markets,

such as fat tails in return distribution, long-range dependence in volatility, and

time series momentum and reversal, has stimulated increasing research interest in

financial market modelling. By focusing on endogenous heterogeneity of investor be-

havior, HAMs play a very important role in providing insights into the importance

of investor heterogeneity and explaining stylized facts and marker anomalies ob-

served in financial time series. Early HAMs consider two types of traders, typically

fundamentalists and chartists. Beja and Goldman (1980), Day and Huang (1990),

Chiarella (1992), Lux (1995) and Brock and Hommes (1997, 1998) are amongst the

first to have shown that interaction of agents with heterogeneous expectations can

lead to market instability. These HAMs have successfully explained market booms,

crashes, and the deviations of market price from fundamental price and replicated

some of the stylized facts, which are nicely surveyed in Hommes (2006), LeBaron

(2006), and Chiarella, Dieci and He (2009). The promising perspectives of HAMs

have stimulated further studies on empirical testing in different markets, including

commodity markets (Baak, 1999, Chaves, 2000), stock markets (Boswijk et al., 2007;

Franke, 2009; Franke and Westerhoff, 2011, 2012; Chiarella et al., 2012, 2014; He

and Li, 2015), foreign exchange markets (Westerhoff and Reitz, 2003; De Jong et al.,

2010; ter Ellen et al., 2013), mutual funds (Goldbaum and Mizrach, 2008), option

markets (Frijns et al., 2010), oil markets (ter Ellen and Zwinkels, 2010), and CDS

markets (Chiarella et al., 2015). HAMs have also been estimated with contagious

interpersonal communication by Gilli and Winker (2003), Alfarano et al. (2005),

Lux (2009a, 2012), and other works reviewed in Chen et al. (2012).

This development has spurred recent attempts at theoretical explanations and

the underlying economic mechanism analysis, which is nicely summarized in a re-

cent survey of Lux and Alfarano (2016). Several behavioral mechanisms on volatility

clustering have been proposed based on the underlying deterministic dynamics (He

and Li ( 2007, 2015b, 2017), Gaunersdorfer et al. (2008), He, Li and Wang (2016)),

stochastic herding (Alfarano et al. 2005), and stochastic demand (Franke and West-

erhoff (2011, 2012).
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In this section, we use the simple HAM of Dieci et al. (2006) to illustrate the

explanatory power of the model to investor behavior and provide some of the under-

lying mathematical and economic mechanisms to volatility clustering and long-range

dependence in volatility. We first introduce the model of boundedly rational and

adaptive switching behavior of investors in financial markets in Section 2.1. We then

provide two particular mechanisms to explain volatility clustering and long mem-

ory in return volatility based on the underlying deterministic dynamics in Section

2.2. Mathematically, the first is based on the local stability and Hopf bifurcation,

explored in He and Li (2007), while the second is characterized by the coexistence

of two locally stable attractors with different size, proposed initially in Gaunersdor-

fer et al. (2008) and further developed theoretically in He, Li and Wang (2016).

Economically, it demonstrates that the dominance of trend chasing behavior when

investors cannot change their strategies or the intensive switching behavior of in-

vestors to switch to more profitable strategy can explain volatility clustering and

long memory in return volatility, while the noise traders also play a very important

role.

In Section 2.3, we briefly discuss He and Zheng (2016) about the emergence

of trading heterogeneity due to information uncertainty and strategic trading of

agents. Through an integrated approach of HAMs and incomplete information about

the fundamental value, He and Zheng (2016) provide an endogenous self-correction

mechanism of the market. This mechanism is very different from the HAMs with

complete information, in which mean-reverting is channeled through some kind of

nonlinear assumptions on the demand or order flow of risky asset and market stabil-

ity depends exogenously on balanced activities from fundamental and momentum

trading. The approach provides a micro-foundation to endogenous trading hetero-

geneity and switching behavior wildly characterized in HAMs. We complete the

section with a discussion about an evolutionary finance framework in Section 2.4 to

examine the effect of the flows of funds among competing and evolving investment

styles on investment performance.

2.1. Market mood and adaptive behavior. Empirical evidence in foreign ex-

change markets (Allen and Taylor, 1990, Taylor and Allen, 1992, Menkhoff (1998)
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and Cheung et al. (2004)) and managing fund industrial (Menkhoff, 2010) suggests

that agents have different information and/or beliefs about market processes. They

use not only fundamental but also technical analyses, which are consistent with

short-run momentum and long-run reversal behavior in financial markets. In addi-

tion, although some agents do not change their particular trading strategies, there

are agents who may switch to more profitable strategies over time. Recent labo-

ratory experiments in Hommes et al. (2005), Anufriev and Hommes (2012), and

Hommes and in’t Veld (2015) also show that agents using simple “rule of thumb”

trading strategies are able to coordinate on a common prediction rule. Therefore

heterogeneity in expectations and adaptive behavior are crucial to describe individ-

ual forecasting and aggregate price behavior.

Motivated by the empirical and experiment evidence, Dieci et al. (2006) introduce

a simple financial market of fundamentalists and trend followers. Some agents switch

between different strategies over time according to their performance, characterizing

the adaptively rational behavior of agents. Others are confident and stay with their

strategies over time, representing market mood. It turns out that this simple model is

rich enough to illustrating the complicated price dynamics and to exploring different

mechanisms in generating volatility clustering and long memory in volatility. In the

following, we first outline the model, discuss calibration and empirical estimation

of the model, and then provide an analysis on the two underlying mechanisms (see

Dieci et al. (2006) and He and Li (2008, 2017) for the detail).

Consider a financial market with one risky asset and one risk free asset. Let r

be the constant risk free rate, pt the price, and dt the dividend of the risky asset

at time t. Assume that there are four types of investors, fundamental traders (or

fundamentalists), trend followers (or chartists) and noise traders, and one market

maker. Let n3 be the population fraction of the noise traders. Among 1 − n3,

the fractions of the fundamentalists and trend followers have fixed, n1 and n2, and

switching, n1,t and n2,t = 1 − n1,t, components respectively. Denote n0 = n1 +

n2, m0 = (n1−n2)/n0 andmt = n1,t−n2,t. Then the market fractionsQh,t(h = 1, 2, 3)

of the fundamentalists, trend followers, and noise traders at time t can be rewritten
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as, respectively,




Q1,t = 1
2
(1− n3) [n0 (1 +m0) + (1− n0) (1 +mt)] ,

Q2,t = 1
2
(1− n3) [n0 (1−m0) + (1− n0) (1−mt)] ,

Q3,t = n3.

(2.1)

Let Rt+1 = pt+1 + dt+1 − Rpt be the excess return and R = 1 + r. We model the

order flow3 zh,t of type-h investors from t to t+1 by zh,t = Eh,t(Rt+1)/(ahVh,t(Rt+1)),

where Eh,t and Vh,t are the conditional expectation and variance at time t and ah

is the risk aversion coefficient of type h traders. The order flow of the noise traders

ξt ∼ N(0, σ2
ξ ) is an i.i.d. random variable. Then the population weighted average

order flow is given by Ze,t = Q1,t z1,t+Q2,t z2,t+n3ξt. To determine the market price,

we follow Chiarella and He (2003) and assume that the market price is determined

by the market maker as follows,

pt+1 = pt + λZe,t = pt + µze,t + δt, (2.2)

where ze,t = q1,t z1,t + q2,t z2,t, qh,t = Qh,t/(1 − n3) for h = 1, 2, λ denotes the speed

of price adjustment of the market maker, µ = (1 − n3)λ and δt ∼ N(0, σ2
δ ) with

σδ = λn3σξ.

We now describe briefly the heterogeneous beliefs of the fundamentalists and

trend followers and the adaptive switching mechanism. The conditional mean and

variance for the fundamental traders are assumed to follow

E1,t (pt+1) = pt + (1− α)[Et(p
∗

t+1)− pt], V1,t (pt+1) = σ2
1, (2.3)

where p∗t is the fundamental value of the risky asset following a random walk,

p∗t+1 = p∗t exp(−
σ2
ε

2
+ σεεt+1), εt ∼ N (0, 1), σε ≥ 0, p∗0 = p∗ > 0, (2.4)

3This order flow can be motivated by assuming that investors maximize their expected CARA

utility under their beliefs. This is particular the case when prices or payoffs of the risky asset are

assumed to be normally distributed, agents make a myopic mean-variance decision, and linear price

adjustment rule is used by market maker. When prices are assumed to be log-normal, the order flow

and price adjustment in log-linear price would be more appropriate (see Franke and Westerhoff,

2011, 2012 for the related discussion), though their micro-economic foundation becomes less clear

with heterogenous expectations.
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εt is independent of the noise process δt, σ
2
1 is constant, and hence Et(p

∗
t+1) =

p∗t . Here (1 − α) measures the speed of price adjustment towards the fundamental

price with 0 < α < 1. A high α indicates less confidence on the convergence to

the fundamental price, leading to a slower adjustment of the market price to the

fundamental. For the trend followers, we assume

E2,t (pt+1) = pt + γ (pt − ut) , V2,t (pt+1) = σ2
1 + b2vt, (2.5)

where γ ≥ 0 measures the extrapolation of the trend, ut and vt are sample mean

and variance, respectively. We assume that ut = δut−1 + (1− δ) pt and vt = δvt−1 +

δ (1− δ) (pt − ut−1)
2, representing limiting mean and variance of the geometric decay

processes when the memory lag tends to infinity. Here δ ∈ (0, 1) measures the

geometric decay rate and b2 ≥ 0 measures the sensitivity to the sample variance. For

simplicity we assume that investors share a homogeneous belief about the dividend

process dt, which is i.i.d. and normally distributed with mean d̄ and variance σ2
d.

Denote by p∗ = p∗o = d̄/r the long-run fundamental price.

Let πh,t+1 be the realized profit between t and t + 1 of type-h investors, πh,t+1 =

zh,t(pt+1 + dt+1 −Rpt) for h = 1, 2. Following Brock and Hommes (1997, 1998), the

market fraction of investors choosing strategy h at time t+ 1 is determined by

nh,t+1 =
exp [β (πh,t+1 − Ch)]∑
i exp [β (πi,t+1 − Ci)]

, h = 1, 2,

where β measures the intensity of the choice and Ch ≥ 0 the cost. Together with

(2.1) the market fractions and asset price dynamics are determined by the following

random dynamic system in discrete-time,





pt+1 = pt + µ(q1,t z1,t + q2,t z2,t) + δt, δt ∼ N (0, σ2
δ ),

ut = δut−1 + (1− δ) pt,

vt = δvt−1 + δ (1− δ) (pt − ut−1)
2 ,

mt = tanh[β
2
(z1,t−1 − z2,t−1 − (C1 − C2)) (pt + dt − Rpt−1)].

(2.6)

2.2. Volatility clustering: Calibration and mechanisms. By conducting econo-

metric analysis via Monte Carlo simulations, He and Li (2015b, 2017) show that the

autocorrelations of returns, absolute returns and squared returns of the model devel-

oped above share the same pattern as those of the DAX 30. They further characterize
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the power-law behavior of the DAX 30 and find that the estimates of the power-law

decay indices, the (FI)GARCH parameters, and the tail index of the model closely

match those of the DAX 30. In the following we first report the calibrated results

of the model developed in the previous subsection and then provide some insights

into investor behavior and two underlying mechanisms of the volatility clustering.

Table 1. Calibrated parameters of the no-switching (N), pure-

switching (S), and full (F) models

α γ a1 a2 µ n0 m0 δ b σ σδ β Wald

N 0.858 8.464 6.024 0.383 0.946 1 -0.200 0.292 6.763 0.24 3.473 0 112

S 0.513 0.764 7.972 0.231 2.004 0 - 0.983 3.692 0.231 3.268 0.745 108

F 0.488 1.978 7.298 0.320 1.866 0.313 -0.024 0.983 3.537 0.231 3.205 0.954 106

When there is no switching between the two strategies, the above model reduces

to the no-switching model in He and Li (2007), showing that the no-switching model

is able to replicate the power-law behavior in return volatility. Based on the daily

price index data of the DAX 30 from 11 August, 1975 to 29 June, 2007, He and

Li (2015b, 2017) calibrate three scenarios of the above model: the no-switching (N)

model with β = 0, pure-switching (S) model with n0 = 0, and full (F) model of (2.6).

The results are collected in Table 1 (with fixed r = 5% p.a. and C1 = C2 = 0). By

conducting econometric analysis via Monte Carlo simulations based on the calibrated

models, He and Li (2015b, 2017) find that, for all three scenarios, the estimates of

the power-law decay indices d, the (FI)GARCH parameters, and the tail index of

the calibrated model closely match those of the DAX 30. By conducting a Wald

test Ho : dDAX = d at 5% and 1% significant levels (with the critical values of 3.842

and 6.635, respectively), He and Li (2017) show that the adaptive switching model

fits the data better than the no-switching and pure-switching models.

Comparing the estimates of the three scenarios leads to different investor behav-

ior. The estimated annual return volatility σ is close to the annual return volatility

of the DAX 30. Higher a1 than a2 implies that the fundamentalists are more risk

averse compared to the trend followers. For the no-switching scenario, a higher value

of α indicates a slow price adjustment of the fundamentalists toward the fundamen-

tal value, while a higher value of γ indicates that the trend followers extrapolate the
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price trend actively. Without switching, mo = −0.2 indicates that both the funda-

mentalists and trend followers are active in the market, which is however dominated

by the trend followers (about 60%). On the full model, the market is dominated by

investors (about 70%) who constantly switch between the fundamental and trend

following strategies, although some investors (about 30%) never change their strate-

gies over the time. This is consistent with the empirical findings discussed at the

beginning of this section.

We now provide two mechanisms based on the underlying deterministic dynamics.

The first one is on the local stability and periodic oscillation due to Hopf bifurcation,

explored in He and Li (2007). Essentially, on the parameter space of the determin-

istic model, near the Hopf bifurcation boundary, the fundamental steady state can

be locally stable but globally unstable. Due to the nature of Hopf bifurcation, such

global instability leads to switching between the locally stable fundamental price

and the periodic oscillations around the fundamental price. Then triggered by the

fundamental and market noises, He and Li (2007) show that the interaction of the

fundamental, risk-adjusted trend chasing from the trend followers, and the interplay

of the noises and the underlying deterministic dynamics can be the source of power-

law behavior in return volatility. Mathematically, the calibrated no-switching and

switching models share the same underlying deterministic mechanism. Economi-

cally, however, they provide different behavioral mechanisms. With no-switching,

it is the dominance of the trend followers (about 60%) that drives the power-law

behavior. However, with both switching and no-switching investors, the market is

dominated by these traders (about 70%) who constantly switch between the two

strategies. It is therefore the adaptive behavior of investors that generates the

power-law behavior. This is also in line with Franke and Westerhoff (2012, 2016)

who estimate various HAMs and show that herding behavior plays a key role in

matching the stylized facts. More importantly, the noise traders play an important

role in generating insignificant ACs on the returns, while the significantly decayed

AC patterns of the absolute returns and squared returns are more influenced by

the fundamental noise. As pointed out in Lux and Alfarano (2016), noise traders is

probably a central ingredient of these models.
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The second mechanism proposed initially in Gaunersdorfer et al. (2008) is char-

acterized by the coexistence of two locally stable attractors with different size, while

such coexistence is not required in the previous mechanism. Dieci et al. (2006) show

that the above model can display such co-existence of locally stable fundamental

steady state and periodic cycle. The interaction of the coexistence of the deter-

ministic dynamics and the noise processes then triggers the switching among the

two attractors and endogenously generates volatility clustering. More recently, by

applying normal form analysis and center manifold theory, He, Li and Wang (2016)

provide the following theoretical result on the coexistence of the locally stable steady

state and invariant circle of the underlying deterministic model (we refer to He, Li

and Wang (2016) for the details).

Proposition 2.1. The underlying deterministic system of (2.6) has a unique fun-

damental steady state (p, u, v,m) = (p̄, p̄, 0, m̄) with m̄ = tanh β(C2−C1)
2

. The funda-

mental steady state is locally asymptotically stable for γ ∈ (0, γ∗∗), and it undergoes

a Neimark-Sacker bifurcation at γ = γ∗∗, that is, there is an invariant curve near

the fundamental steady state. Moreover, the bifurcated closed invariant curve is

forward and stable when a(0) < 0 and backward and unstable when a(0) > 0, and

a Chenciner (generalized Neimark-Sacker) bifurcation takes place when a(0) = 0.

Here a(0) is the first Lyapunov coefficient.

Note that the market fractions of the fundamentalists and trend followers at the

fundamental steady state are given by q1 = (1 +mq)/2 and q2 = (1 − mq)/2 with

mq = n0m0+(1−n0)m̄, respectively. When the cost of the fundamental strategy C1

is higher than the cost of the trend following strategy C2, an increase in the switching

intensity β leads to a decrease in γ∗∗, meaning that the fundamental price becomes

less stable when traders switch their strategies more often. This is essentially the

rational routes to randomness of Brock and Hommes (1997, 1998).

Fig. 2.1 illustrates two different types of Neimark-Sacker bifurcation. It is the

sign of the first Lyapunov coefficient a(0) that determines the bifurcation direction,

either forward or backward, and the stability of the bifurcated invariant circles,

leading to different bifurcation dynamics. When a(0) < 0, the bifurcation is forward

and stable, meaning that the bifurcated invariant circle occurring for γ > γ∗∗ is
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Figure 2.1. Bifurcation diagrams of the market price with respect

to γ. Here a = a1 = a2 = 0.5, µ = 1, α = 0.3, δ = 0.85, b2 = 0.05,

C = C1 − C2 = 0.5, β = 0.5, and m0 = 0.

locally stable. In this case, as γ increases and passes γ∗∗, the fundamental steady

state becomes unstable and the trajectory converges to an invariant circle bifurcating

from the fundamental steady state. As γ increases further, the trajectory converges

to invariant circles with different sizes. This is illustrated in Fig. 2.1 (a) with

γ∗∗ ≈ 0.93 where the two bifurcating curves for γ > γ∗∗ indicate the minimum and

maximum value boundaries of the bifurcating invariant circles as γ increases.
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Figure 2.2. The deterministic trajectories of time series of price for

(p0, u0, v0, m0) = (p̄+1, p̄, 0, m̄) in (a) and (p0, u0, v0, m0) = (p̄+1, p̄−
1, 0, m̄) in (b) and the phase plot of (p, u) in (c). Here the parameter

values are the same as in Fig. 2.1 and n0 = 0.5.
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However, when a(0) > 0, the bifurcation is backward and unstable, meaning that

the bifurcated invariant circle occurring at γ = γ∗∗ is unstable, illustrated in Fig.

2.1 (b) (with γ∗∗ ≈ 0.88). There is a continuation of the unstable bifurcated circles

as γ decreases initially until it reaches a critical value γ̂, which is indicated by the

two (red) dotted curves of the bifurcating circles for γ̂ < γ < γ∗∗. Then as γ

increases from the critical value γ̂, the bifurcated circles become forward and stable.

This is illustrated by the two (blue) solid curves, which are the boundaries of the

bifurcating circles, for γ > γ̂ in Fig. 2.1 (b). Therefore, the locally stable steady

state coexists with the locally stable ‘forward extended’ circles for γ̂ < γ < γ∗∗,

in between there are backward extended unstable circles. For γ̂ < γ < γ∗∗, even

when the fundamental steady state is locally stable, prices need not converge to

the fundamental value, while may settle down to a stable limit circle. We call

γ̂ < γ < γ∗∗ the ‘volatility clustering region’. In addition, a Chenciner (generalized

Neimark-Sacker) bifurcation takes place when a(0) = 0. Based on the above analysis,

a necessary condition on the coexistence is that a(0) > 0. The coexistence of the

locally stable steady state and invariant circle illustrated in Fig. 2.2 shows that the

price dynamics depends on the initial values.

When buffeted with noises, the stochastic model can endogenously generate volatil-

ity clustering and long range dependence in volatility, illustrated in Fig. 2.3. Eco-

nomically, with strong trading activities of either the fundamental investors or the

trend followers, market price fluctuates around either the fundamental value with

low volatility or a cyclical price movement with high volatility, depending on mar-

ket conditions. When the activities of the fundamentalists and trend followers are

balanced (to be in the volatility clustering region), the interaction of the fundamen-

tal noise and noise traders and the underlying co-existence dynamics then triggers

an irregular switching between the two volatility regimes, leading to volatility clus-

tering. In particular, volatility clustering becomes more significant when neither

the fundamental nor the trend following traders dominate the market and traders

switch their strategies more often. The results verify the endogenous mechanism on

volatility clustering proposed by Gaunersdorfer et al. (2008) and provide a behav-

ioral explanation on the volatility clustering.
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Figure 2.3. Time series of (a) the market price (red solid line) and

the fundamental price (blue dotted line), (b) the market returns; the

ACs of (c) the returns and (d) the absolute returns. Here the param-

eter values are the same as in Fig. 2.2 and σδ = 2, σε = 0.025.

2.3. Information uncertainty and trading heterogeneity. Traditional finance

literature mainly explore the role of asymmetric information and information un-

certainty. Most HAMs however mainly focus on endogenous market mechanism

through the interaction among heterogeneous agents by assuming a complete in-

formation about the fundamental value of risky assets. An integration of HAMs

and asymmetric and/or uncertain information would provide a micro-foundation on

behavioral heterogeneity and a more broad framework to better explaining various

puzzles and anomalies in financial markets. Instead of heuristical heterogeneity as-

sumption of agents’ behaviour, He and Zheng (2016) model the trading heterogene-

ity by introducing information uncertainty about the fundamental value to a HAM.



HETEROGENEOUS AGENT MODELS IN FINANCE 21

Agents are homogeneous ex ante. Conditional on their private information about the

fundamental value, agents choose optimally among different trading strategies when

optimizing their expected utilities. This approach provides a micro-foundation to

trading and behavioral heterogeneity among agents. It also offers a different switch-

ing behavior of agents from the current HAMs. In the following, we brief this

approach.

Consider a continuum [0, 1] of agents trading one risky asset and one risk-free

asset in discrete-time. For simplicity, the risk-free rate is normalized to be zero.

The fundamental value of the risky asset µ ∼ N (µ̄, σ2
µ) is not known publicly.

Denote αµ = 1/σ2
µ the precision of the fundamental value µ. In each time pe-

riod, agent i receives a private signal about the fundamental value µ, given by

xi,t = µ + εi,t, where εi,t ∼ N (0, σ2
x) is i.i.d. normal across agents and over time.

Let αx = 1/σ2
x be the precision of the signal. Agents maximize CARA utility

function U (Wi,t) = − exp (−aWi,t) , with the same risk aversion coefficient a, in

which Wi,t is the wealth of agent i at time t. Let pt be the (cum-)market price

of the risky asset and denote It = {pt, pt−1, · · · } the public information of his-

torical price. Conditional on the public information It−1 and her private signal

xi,t, agent i seeks to maximize her expected utility, leading to the optimal demand

qi,t = [E(pt|xi,t, It−1)−pt−1]/[a V ar(pt|xi,t, It−1)], conditional on the public informa-

tion It−1 and her signal xi,t.

Facing the information uncertainty on the fundamental value, the agent considers

both fundamental and momentum trading strategies based on the public information

of the history price and her private signal about the fundamental value. More

explicitly, the fundamental trading strategy is based on

Ef(pt|xi,t, It−1) = (1− γ)pt−1 + γ
αµµ̄+ αxxi,t
αµ + αx

, (2.7)

V arf(pt|xi,t, It−1) = γ2V ar (µ|xi,t, It−1) =
γ2

αµ + αx

, (2.8)

where γ ∈ (0, 1] is a constant, measuring the convergence speed of the market price

to the expected fundamental value. Note that
αµµ̄+αxxi,t

αµ+αx
and 1

αµ+αx
are agent i’s

posterior updating of the mean and variance, respectively, of the fundamental value

of the risky asset conditional on her signal xi,t. Condition (2.7) means that the
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predicted price is a weighted average of the latest market price and the posterior

updating of the fundamental value conditional on her private signal xi,t; while (2.8)

means that the conditional variance is proportional to the posterior variance con-

ditional on the private signal xi,t. In particular, when γ = 1, the conditional mean

and variance (2.7)-(2.8) are reduced to the posterior mean and variance, respec-

tively. Therefore the fundamental trading strategy reflects agent’s belief that the

future price is expected to converge to the expected fundamental value. Though the

private signals xi,t are i.i.d. across agents and over time, they are partially incorpo-

rated through the current market price pt and hence reflected in the prediction of the

future prices. Consequently, the optimal demand based on the fundamental analysis

becomes qfi,t = [αµµ̄+αxxi,t − (αµ + αx) pt−1]/(aγ), which is called the fundamental

trading strategy f .

The momentum trading is however independent of the private signal xi,t, but

depends on a price trend,

Ec(pt|xi,t, It−1) = pt−1 + β (pt−1 − vt) , V arc(pt|xi,t, It−1) = σ2
t−1, (2.9)

where vt is a reference price or price trend (can be a moving average, a support-

ing/resistance price level, or any index derived from technical analysis), β measures

the extrapolation of the price deviation from the trend, and σ2
t−1 is a heuristic

prediction on the variance of the asset price. Then the optimal demand bcomes

qci,t = β (pt−1 − vt) /(aσ
2
t−1), which is called momentum strategy c. In particular,

when vt is a moving average of the historical prices and β > (<)0, strategy c is

essentially a time-series momentum (contrarian) strategy (Moskowitz et al., 2012).

Given the information uncertainty, the agent compares the expected value func-

tions based on the two optimal trading strategies and chooses the one with relative

higher value. More explicitly, the agent firstly calculates the respective value func-

tions based on strategy f and c,

Ef
i,t (U) = − exp

{
−A

[
Wi,t−1 +

[αµµ̄+ αxxi,t − (αµ + αx) pt−1]
2

2a (αµ + αx)

]}
,

Ec
i,t (U) = − exp

{
−A

[
Wi,t−1 +

β2 (pt−1 − vt)
2

2aσ2
t−1

]}
.
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The agent then compares the value functions and selects the one that yields a higher

value. Note that Ef
i,t is an increasing function of the absolute value of the signal

|xi,t|, while Ec
i is independent of xi,t. Therefore there exists threshold signal values

x̄t for the private signal such that Ef
i,t = Ec

i,t, that is,

Ef
i,t(U)

Ec
i,t(U)

= exp

{
−
[
[αµµ̄+ αxx̄t − (αµ + αx) pt−1]

2

2 (αµ + αx)
− β2 (pt−1 − vt)

2

2σ2
t−1

]}
= 1.

Solving for x̄t yields

x±t =
1

αx

[
(αµ + αx) pt−1 − αµµ̄± β

√
αµ + αx

σt−1
(pt−1 − vt)

]
. (2.10)

Therefore, when vt = pt−1, the agent chooses strategy f . When vt 6= pt−1, the agent

chooses strategy c if her signal is less informative, falling into the interval (xmt , x
M
t ),

and strategy f otherwise, where xmt = min(x±t ) and x
M
t = max(x±t ). Therefore, the

optimal demand of agent i is given by qi,t = qfi,t for xi,t ≤ xmt or xi,t ≥ xMt ; otherwise

qi,t = qci,t when xi,t ∈ (xmt , x
M
t ). Intuitively, when agent’s private signal is near the

mean fundamental value, the private information becomes less valuable. However,

when agent’s private signal is far away from the mean fundamental value, the private

information becomes more valuable and hence the agent favors the fundamental

trading strategy.

The choice between the two strategies due to the informativeness of the private

information about the fundamental value leads to endogenous heterogeneity and

switching behavior of agents’ choices. More explicitly, by aggregating the demand

Dt in a closed form and considering noisy supply St, the market price is determined

through a market maker scenario via pt = pt−1 + λ(Dt + St) with λ > 0. He and

Zheng (2016) first conduct an analysis on the underlying deterministic model when

σ2
t−1 = σ2 is a constant and vt = pt−2 (corresponding to a simple momentum trading

based on the change in the last price). They show that the fundamental price is lo-

cally stable with small precisions of the fundamental information noise. That is, the

fundamental price becomes unstable when the level of the fundamental information

noise is small, leading to high price volatility. Intuitively, in this case, the funda-

mental information become more accurate and hence less valuable. Therefore the

fundamental strategy becomes less profitable, while the momentum trading strategy
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becomes more popular. This is consistent with the literature on coordination game

with imperfect information (see Angeletos and Werning (2006)).

When the fundamental price becomes unstable, the price dynamics can become

very complicated. On the stochastic model, they have shown that the market frac-

tion of the agents choosing the momentum (fundamental) strategy decreases (in-

creases) as the mis-pricing increases. This underlies mean-reverting of market price

to its fundamental price when mis-pricing becomes significant, burst of a bubble,

and recover of a recession. This mechanism, together with the destabilizing role of

the momentum trading and the stabilizing role of the fundamental trading, provides

an endogenous self-correction mechanism of the market. This mechanism is very

different from the HAMs with complete information, in which the mean-reverting is

channeled through some nonlinear assumptions on the demand or order flow of risky

asset. The market stability depends exogenously on balanced activities from funda-

mental and momentum trading. This integrated approach of HAMs and incomplete

information about the fundamental value therefore provides a micro-foundation to

endogenous trading heterogeneity and switching behavior wildly characterized in

HAMs. Furthermore, He and Zheng (2016) conduct a time series analysis on the

stylized facts and demonstrate that the model is able to match the S&P 500 in terms

of power-law distribution in returns, volatility clustering, long memory in volatility,

and leverage effect.

2.4. Switching of agents, fund flows, and leverage. Similar to Dieci et al.

(2006), most HAMs employ the discrete-choice framework4 to capture the way in-

vestors switch across different competing strategies/behavioural rules. However,

since this approach models the changes of investors’ proportions, not directly the

flows of funds, it is not very suitable to capture the long-run performance of invest-

ment strategies (or ‘styles’) in terms of accumulated wealth, nor the impact of fund

flows on the price dynamics. For this reason, LeBaron (2011) defines such forms

4A further example of switching based on the discrete-choice approach is contained in the multi-

asset model discussed in Section 4.2, whereas in the models described in Sections 5.1.2 and 5.2

investors’ shares evolve through a simplified mechanism based on current market conditions.
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of switching between strategies as active learning, capturing investors’ tendency to

adopt the best-performing rule, in contrast to passive learning, by which investors’

wealth naturally accumulates on strategies that have been relatively successful. This

second form of learning is closely related to the issue of survival and long-run domi-

nance of strategies and to the evolutionary finance approach (see Blume and Easley

(1992), Blume and Easley (2006), Sandroni (2000), Hens and Schenk-Hoppé (2005),

as well as Evstigneev, Hens and Schenk-Hoppé (2009) for a comprehensive survey

of early results and recent research in this field)5.

LeBaron (2011) argues that the dynamics of real-world markets are likely to be

affected by some combinations of active and passive learning, and that exploring

their interaction may improve our understanding of the dynamics of asset prices.

Moreover, LeBaron (2012) proposes a simple framework that can simultaneously

account for wealth dynamics and active search for new strategies, based on perfor-

mance comparison. Besides reproducing the basic stylized facts of asset returns and

trading volume, the model yields some insight into the dynamics of agents’ strategies

and their impact on market stability.

A further recent contribution on the interplay of active and passive learning is

provided by Palczewski, Schenk-Hopp and Wang (2016). They build an evolution-

ary finance framework in discrete time with fundamental, trend-following and noise

trading strategies. Such strategies are interpreted as portfolio managers with differ-

ent investment ‘styles’. Individual investors can move (part of) their funds between

portfolio managers. The total amount of freely flowing capital is a model parameter,

capturing the clients’ degree of impatience (similar to the proportion of switching

investors in Dieci et al. (2006)). Funds are reallocated based on the relative per-

formance of competing fund managers, according to the discrete choice principle.

Therefore, portfolio managers may experience an exogenous growth of their wealth,

in addition to the endogenous growth due to returns on the employed capital. The

5Note that, while most HAMs with strategy switching are based on CARA utility maximization,

the evolutionary finance approach is consistent with CRRA utility. Other models where endogenous

dynamics emerge due to the evolution of the wealth shares of heterogeneous investors are Levy,

Levy and Solomon (1994), Chiarella and He (2001), Chiarella, Dieci and Gardini (2006), Anufriev

and Dindo (2010), Bottazzi and Dindo (2014).
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model framework appears promising to investigate the market impact of the fund

flows and to incorporate different types of ‘behavioral biases’ into HAMs. In par-

ticular, Palczewski et al. (2016) show that even a small amount of freely flowing

capital can have a large impact on price movements if investors exhibit ‘recency

bias’ in evaluating fund performance.

In a somewhat related framework with heterogeneous investment funds using

‘value investing’, Thurner, Farmer and Geanakoplos (2012) explore the joint impact

of wealth dynamics and the flows of capital among competing investment funds.

Evolutionary pressure generated by short-run competition forces fund managers to

make leveraged asset purchases with margin calls. Simulation results highlight a

new mechanism to fat tails and clustered volatility, which is linked to wealth dy-

namics and leverage-induced crashes. Moreover, this framework appears promising

to test different credit regulation policies (Poledna, Thurner, Farmer and Geanako-

plos (2014)) and to investigate the impact of bank leverage management on the

stability properties of the financial system (Aymanns and Farmer (2015)).

3. HAMs of Single Asset Market in Continuous-time

Historical information plays a very important role in testing efficient market hy-

pothesis in financial markets. In particular, it is crucial to understand how quickly

market prices reflect fundamental shocks and how much information is contained in

the historical prices. Empirical evidence shows that stock markets react with a delay

to information on fundamentals and that information diffuses gradually across mar-

kets (Hou and Moskowitz, 2005, Hong et al., 2007). Based on market underreaction

and overreaction hypotheses, momentum and contrarian strategies are widely used

by financial market practitioners and their profitability has been extensively investi-

gated by academics. De Bondt and Thaler (1985) and Lakonishok et al. (1994) find

supporting evidence on the profitability of contrarian strategies for a holding period

of 3-5 years based on the past 3-5 years’ returns. In contrast, Jegadeesh and Titman

(1993, 2001) among many others, find supporting evidence on the profitability of

momentum strategies for holding periods of 3-12 months based on the returns over

the past 3-12 months. Time series momentum investigated recently in Moskowitz
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et al. (2012) characterizes a strong positive predictability of a security’s own past

returns. It becomes clear that the time horizons of historical prices play crucial

roles in the performance of contrarian and momentum strategies. Many theoretical

studies have tried to explain the momentum,6 however, as argued in Griffin, Ji and

Martin (2003), “the comparison is in some sense unfair since no time horizon is

specified in most behavioral models”.

In the literature of HAMs, the heterogeneous expectations of agents, in particular

of chartists, are formed based on price trends such as moving average of historical

prices. In discrete-time models, with different time horizon, the dimension of the

model is different. To examine the effect of time horizon analytically, we need to

study the model with different dimension separately. Also, as the time horizon in-

creases, it becomes more difficult analytically in dealing with high dimensional non-

linear dynamic system. This challenge is illustrated in Chiarella, He and Hommes

(2006) when examining the effect of different moving averages on market stabil-

ity. Therefore, how different time horizons of historical prices affect price dynamics

becomes a challenging issue in the current HAMs.

This section introduces some of the recent developments of HAMs of a single

risky asset (and a riskless asset) in continuous time to deal with the price delay

problems in behavioral finance and HAMs literature. In continuous-time HAMs,

the time horizon of historical price information is simply captured by a time delay

parameter. Such models are characterized mathematically by a system of stochastic

delay differential equations, which provide a more broad framework to investigate

the joint effect of adaptive behaviour of heterogeneous agents and the impact of

historical prices.

Development of deterministic delay differential equation models to characterize

fluctuation of commodity prices and cyclic economic behavior has a long history7,

however the application to asset pricing and financial markets is relatively new.

This section bridges HAMs with traditional approaches in continuous-time finance

6See, for example, Fama and French (1996), Daniel, Hirshleifer and Subrahmanyam (1998), and

Hong and Stein (1999).
7See, for example, Kalecki (1935), Goodwin (1951), Larson (1964), Mackey (1989), Phillips

(1957), Yoshida and Asada (2007), and Matsumoto and Szidarovszky (2011).
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to investigate the impact of moving average rules over different time horizon (He and

Li (2012)) in Section 3.1, the profitability of fundamental and momentum strategies

(He and Li (2015a)) in Section 3.2, and optimal asset allocation with time series

momentum and reversal (He, Li and Li (2015)) in Section 3.3.

3.1. A continuous-time HAMwith time delay. We now introduce the continuous-

time model of He and Li (2012) and demonstrate first that the result of Brock and

Hommes on rational routes to market instability in discrete-time also holds in con-

tinuous time. That is, adaptive switching behaviour of agents can lead to market

instability as the switching intensity increases. We then show a double edged ef-

fect of an increase in the time horizon of historical price information on market

stability. An initial increase in time delay can destabilize the market, leading to

price fluctuations. However, as the time delay increases further, the market is stabi-

lized. This double edged effect is a very different feature of continuous-time HAMs

from discrete-time HAMs. With noisy fundamental value and liquidity traders, the

continuous-time model is able to generate long deviations of market price from the

fundamental price, bubbles, crashes, and volatility clustering.

Consider a financial market with a risky asset and let P (t) denote the (cum)

price per share of the risky asset at time t. The market consists of fundamentalists,

chartists, liquidity traders, and a market maker. The fundamentalists believe that

the market price P (t) is mean-reverting to the fundamental price F (t), and their

demand is given by Zf(t) = βf [F (t) − P (t)], with βf > 0 measuring the mean-

reverting speed of the market price to the fundamental price. The chartists are

modelled as trend followers, believing that the future market price follows a price

trend u(t), and their demand is given by8 Zc(t) = tanh
(
βc[P (t)−u(t)]

)
with βc > 0

measuring the extrapolation of the trend followers to the price trend. Among various

price trends used in practice, we consider u(t) as a normalized exponentially decaying

weighted average of historical prices over a time interval [t− τ, t],

u(t) =
k

1− e−kτ

∫ t

t−τ

e−k(t−s)P (s)ds, (3.1)

8The fact that the S-shaped demand function captures the trend following behavior is well

documented in the HAM literature (see, for example, Chiarella et al. (2009)).
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where time delay τ ∈ (0,∞) represents time horizon of historical prices, k > 0

measures the decay rate of the weights on the historical prices. In particular, when

k → 0, the weights are equal and the price trend u(t) in (3.1) is simply given by

the standard moving average (MA) with equal weights, u(t) = 1
τ

∫ t

t−τ
P (s)ds. When

k → ∞, all the weights go to the current price so that u(t) → P (t). For the time

delay, when τ → 0, the trend followers regard the current price as the price trend.

When τ → ∞, the trend followers use all the historical prices to form the price

trend, u(t) = k
∫ t

−∞
e−k(t−s)P (s)ds. In general, for 0 < k < ∞, equation (3.1) can

be expressed as a delay differential equation with time delay τ

du(t) =
k

1− e−kτ

[
P (t)− e−kτP (t− τ)− (1− e−kτ )u(t)

]
dt.

The demand of liquidity traders is i.i.d. normally distributed with mean of zero and

standard deviation of σM (> 0).

Let nf (t) and nc(t) represent the market fractions of agents who use the fundamen-

tal and trend following strategies, respectively. Their net profits over a short time

interval [t, t+dt] can be measured, respectively, by πf (t)dt = Zf(t)dP (t)−Cfdt and

πc(t)dt = Zc(t)dP (t)− Ccdt, where Cf , Cc ≥ 0 are constant costs of the strategies.

To measure strategy performance, we introduce a cumulated profit over the time

interval [t − τ, t] by Ui(t) = η

1−e−ητ

∫ t

t−τ
e−η(t−s)πi(s)ds, i = f, c, where η > 0 mea-

sures the decay of the historical profits. Consequently, dUi(t) = η
[
πi(t)−e−ητπi(t−τ)

1−e−ητ −
Ui(t)

]
dt for i = f, c. Following Hofbauer and Sigmund (1998, Chapter 7), the evo-

lution dynamics of the market populations are governed by

dni(t) = βni(t)[dUi(t)− dŪ(t)], for i = f, c,

where dŪ(t) = nf (t)dUf(t) + nc(t)dUc(t) is the average performance of the two

strategies and β > 0 measures the intensity of choice. The switching mechanism in

the continuous-time setup is consistent with the one used in discrete-time HAMs. In

fact, it can be verified that the dynamics of the market fraction nf(t) satisfy dnf(t) =

βnf(t)(1−nf(t))[dUf (t)−dUc(t)], leading to nf (t) = eβUf (t)/(eβUf (t)+eβUc(t)), which

is the discrete choice model used in Brock and Hommes (1998).

Finally, the price P (t) is adjusted by the market maker according to dP (t) =

µ
[
nf(t)Zf (t) + nc(t)Zc(t)

]
dt + σMdWM(t), where µ > 0 represents the speed of
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the price adjustment of the market maker, WM (t) is a standard Wiener process

capturing the random excess demand process either driven by unexpected market

news or liquidity traders, and σM > 0 is a constant. To sum up, the market price of

the risky asset is determined according to the stochastic delay differential system




dP (t) = µ
[
nf (t)Zf(t) +

(
1− nf(t)

)
Zc(t)

]
dt+ σMdWM(t),

du(t) =
k

1− e−kτ

[
P (t)− e−kτP (t− τ)− (1− e−kτ )u(t)

]
dt,

dU(t) =
η

1− e−ητ

[
π(t)− e−ητπ(t− τ)− (1− e−ητ )U(t)

]
dt,

(3.2)

where U(t) = Uf (t) − Uc(t), nf(t) = 1/(1 + e−βU(t)), Zf (t) = βf(F (t) − P (t)),

Zc(t) = tanh[βc
(
P (t)− u(t)

)
], C = Cf − Cc, and

π(t) = πf(t)− πc(t) = µ[nf(t)Zf(t) +
(
1− nf(t)

)
Zc(t)][Zf(t)− Zc(t)]− C.
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Figure 3.1. Bifurcation diagram of the market price with respect

to τ in (a) and β in (b);

By assuming that the fundamental price is a constant F (t) ≡ F̄ and there is no

market noise σM = 0, system (3.2) becomes a deterministic delay differential system

with (P, u, U) = (F̄ , F̄ ,−C) as the unique fundamental steady state. He and Li

(2012) show that the steady state is locally stable for either small or large time delay

τ when the market is dominated by the fundamentalists. Otherwise, the steady state

becomes unstable through Hopf bifurcations as the time delay increases. This result
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is in line with the results obtained in discrete-time HAMs. However, different from

discrete-time HAMs, the continuous-time model shows that the fundamental steady

state becomes locally stable again when the time delay is large enough. This is

illustrated by the bifurcation diagram of the market price with respect to τ in Fig.

3.1(a).9 It shows that there are two Hopf bifurcation values 0 < τo < τ1 occuring at

τ = τ0 (≈ 8) and τ = τ1 (≈ 28). The fundamental steady state is locally stable when

the time delay is small, τ ∈ [0, τ0), then becomes unstable for τ ∈ (τo, τ1), and then

regains the local stability for τ > τ1. Due to the problem of high dimensionality, such

analysis on the effect of historical price on market price in discrete-time HAMs can

become very complicated, see Chiarella, He and Hommes (2006) that examining

the effect of different moving averages on market stability. It is the continuous-

time model that facilitates such analysis on the stability effect of time horizon of

historical prices and stability switching. The bifurcation diagram of the market

price with respect to the switching intensity β is given in Fig. 3.1(b). It shows that

the fundamental steady state is locally stable when the switching intensity β is low,

becoming unstable as the switching intensity increases, bifurcating to periodic price

with increasing fluctuations. This is consistent with the discrete-time HAMs.

For the deterministic model, when the steady state becomes unstable, it bifurcates

to stable periodic solutions through a Hopf bifurcation. The periodic fluctuations of

the market prices are associated with periodic fluctuations of the market fractions,

illustrated in Fig. 3.2 (a). Based on the bifurcation diagram in Fig. 3.1(a), the

steady state is unstable for τ = 16. Fig 3.2 (a) shows that both price and market

fraction fluctuate periodically. It shows that, when the fundamental steady state

becomes unstable, the market fractions tend to stay away from the steady state

market fraction level most of the time and a mean of nf below 0.5 clearly indicates

the dominance of the trend following strategy. To examine the effect of population

evolution, we compare the case without switching β = 0 to the case with switching

β 6= 0. Fig 3.2 (a) clearly shows that the evolution of population increases the

fluctuations in both price and market fraction.

9Unless specified otherwise, the parameter values for Figs 3.1 and 3.2 are: k = 0.05, µ = 1,

βf = 1.4, βc = 1.4, η = 0.5, β = 0.5, C = 0.02, F̄ = 1, σF = 0.12 and σM = 0.05.
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(b) Stochastic prices P with and without switching for τ = 3
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(c) Stochastic prices P with and without switching for τ = 16

Figure 3.2. Time series of (a) deterministic market price P (solid

line) and market fraction nf(t) of fundamentalists (dotted line) for

τ = 16 and stochastic fundamental price (the dotted line) and market

price (the solid line) for two delays (b) τ = 3 and (c) τ = 16 with and

without switching.
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For the stochastic model with a random walk fundamental price process, Fig. 3.2

(b) demonstrates that the market price follows the fundamental price closely when

τ = 3, while Fig. 3.2 (c) illustrates that the market price fluctuates around the fun-

damental price in cyclical fashion for τ = 16. To examine the effect of population

evolution, we compare the case without switching β = 0 to the case with switching

β 6= 0. Fig 3.2 (b) shows that the evolution of population has insignificant impact on

the price dynamics when the fundamental steady state of the underlying determin-

istic model is locally stable for τ = 3. However, when the fundamental steady state

becomes unstable for τ = 16, the fluctuations in both price and market fraction

become more significant. Therefore the stochastic price behaviour is underlined by

the dynamics of the corresponding deterministic model. He and Li (2012) further

explore the potential of the stochastic model in generating volatility clustering and

long range dependence in volatility. The underlying mechanism and the interplay

between the nonlinear deterministic dynamics and noises are very similar to the

discrete-time HAM by He and Li (2007). The framework can be used to study the

joint impact of many heterogeneous strategies based on different time horizons of

historical prices on market stability.

3.2. Profitability of momentum and contrarian strategies. Momentum and

contrarian strategies are widely used by market practitioners to profit from mo-

mentum in the short-run and mean-reversion in the long-run in financial markets.

Empirical profitability of these strategies based on moving averages with different

time horizon of historical prices and different holding period has been extensively in-

vestigated in the literature (Lakonishok et al. (1994), Jegadeesh and Titman (1993,

2001), and Moskowitz et al. (2012)).

To explain the profitability and the underlying mechanism of time series momen-

tum and contrarian strategies, He and Li (2015a) propose a continuous-time HAM

consisting of fundamental, momentum, and contrarian traders. They develop an

intuitive and parsimonious financial market model of heterogeneous agents to study

the impact of different time horizons on market price and profitability of fundamen-

tal, momentum and contrarian trading strategies. They show that the performance
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of momentum strategy is determined by the historical time horizon, investment hold-

ing period, and market dominance of momentum trading. More specifically, due to

price continuity, the price trend based on the moving average of historical prices be-

comes very significant (apart from over very short time horizon). Therefore, when

momentum traders are more active in the market, the price trend becomes very

sensitive to the shocks, which is characterized by the destabilizing role of the mo-

mentum trading to the market. This provides a profit opportunity for momentum

trading with short, not long, holding time horizons. When momentum traders are

less active in the market, they always loose. The results provide some insights into

the profitability of time series momentum over short, not long, holding periods. We

now brief the main results of He and Li (2015a).

Consider a continuous-time model with fundamentalists who trade according to

fundamental analysis and momentum and contrarian traders who trade differently

based on price trend calculated from moving averages of historical prices over differ-

ent time horizons. Let P (t) and F (t) denote the log (cum dividend) price and (log)

fundamental value10 of a risky asset at time t, respectively. The fundamental traders

buy (sell) the stock when the current price P (t) is below (above) the fundamental

value F (t). For simplicity, we assume that the fundamental return follows a pure

white noise process dF (t) = σFdWF (t) with F (0) = F̄ , σF > 0, and WF (t) is a

standard Wiener process.

Regarding the momentum and contrarian trading, as in the previous section, we

assume that both momentum and contrarian traders trade based on their estimated

market price trends, although they behave differently. Momentum traders believe

that future market price follows a price trend um(t), while contrarians believe that

future market price goes opposite to a price trend uc(t). The price trend used

for the momentum traders and contrarians can be different in general. Among

various price trends used in practice, the standard moving average (MA) rules with

different time horizons are the most popular ones, ui(t) =
1
τi

∫ t

t−τi
P (s)ds for i = m, c,

where the time delay τi ≥ 0 represents the time horizon of the MA. Assume the

excess demand of the momentum traders and contrarians are given, respectively,

10For convenience of return calculations, we use log-price instead of price
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by Zm(t) = gm
(
P (t) − um(t)

)
and Dc(t) = gc

(
uc(t) − P (t)

)
, where gi(x) satisfies

gi(0) = 0, g′i(x) > 0, g′i(0) = βi > 0, xg′′i (x) < 0 for x 6= 0 and i = m, c, and

parameter βi represents the extrapolation rate when the market price deviation

from the trend is small.

Assume a zero net supply in the risky asset and let αf , αm and αc be the fixed mar-

ket population fractions of the fundamental, momentum, and contrarian traders11,

respectively, with αf+αm+αc = 1. Following Beja and Goldman (1980) and Farmer

and Joshi (2002), the price P (t) at time t is determined by

dP (t) = µ[αfZf(t) + αmZm(t) + αcZc(t)]dt+ σMdWM(t), (3.3)

where µ > 0 represents the speed of the price adjustment of the market maker,

WM(t) is a standard Wiener process, independent of WF (t), capturing the random

demand of either noise or liquidity traders, and σM ≥ 0 is constant.

By assuming a constant fundamental price F (t) ≡ F̄ and no market noise σM = 0,

system (3.3) becomes a deterministic delay integro-differential equation,

dP (t)

dt
=µ
[
αfβf

(
F̄ − P (t)

)
+ αm tanh

(
βm
(
P (t)− 1

τm

∫ t

t−τm

P (s)ds
))

+ αc tanh
(
− βc

(
P (t)− 1

τc

∫ t

t−τc

P (s)ds
))]

. (3.4)

It is easy to see that P (t) = F̄ , the fundamental steady state, is the unique steady

state price of system (3.4). He and Li (2015a) examine different role of the time

horizon used in the MA by either the contrarians or momentum traders. When both

strategies are employed in the market, the market stability of system (3.4) can be

characterized by the following proposition.

Proposition 3.1. If τm = τc = τ , then the fundamental steady state price P = F̄

of system (3.4) is

(1) locally stable for all τ ≥ 0 when γm < γc + γf/(1 + a);

(2) locally stable for either 0 ≤ τ < τ ∗l or τ > τ ∗h and unstable for τ ∗l < τ < τ ∗h

when γc + γf/(1 + a) ≤ γm ≤ γc + γf ; and

(3) locally stable for τ < τ ∗l and unstable for τ > τ ∗l when γm > γc + γf .

11To track the profitability of the trading strategies easily, we do not consider the adaptive

evolution of the market fractions.
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Here τ ∗1 = 2(γm − γc)/(γf − γm + γc)
2, and τ ∗l (< τ ∗1 ) and τ ∗h(∈ (τ ∗l , τ

∗
1 )) are the

minimum and maximum positive roots, respectively, of the equation

τ

γm − γc
(γf − γm + γc)

2 − cos

[√
2(γm − γc)τ − (γf − γm + γc)2τ 2

]
− 1 = 0.

The three conditions (1) γm < γc +
γf
1+a

, (2) γc +
γf
1+a

≤ γm ≤ γc + γf , and

(3) γm > γc + γf in Proposition 3.1 characterize three different states of market

stability, having different implications to the profitability of momentum trading. For

convenience, market state k is referred to condition (k) for k = 1, 2, 3 in the following

discussion. Numerical analysis shows that for market state 1, the fundamental

price is locally stable, independent of the time horizon; for market state 2, the

fundamental price is locally stable when τ ∈ [0, τ ∗l )∪ (τ ∗h ,∞) and becomes unstable

when τ ∈ (τ ∗l , τ
∗
h) (the stability switches twice); while for market state 3, the first

(Hopf bifurcation) value τ ∗l (≈ 0.22) leads to stable limit cycles for τ > τ ∗l (the

stability switches only once at τ ∗l ).

The profitability of different strategies based on the stochastic model is closely

related to the market states and holding period. In market state 1, the market is

dominated jointly by the fundamental and contrarian traders (so that γm < γc +

γf/(1 + a)). In this case, the stability of the fundamental price of the underlying

deterministic model is independent of the time horizon. Monte Carlo simulations

show that the contrarian and fundamental strategies are profitable, but not the

momentum strategy and the market maker, underlined by significant and negative

ACs for small lags and insignificant ACs for large lags. This corresponds to market

overreaction in short-run and hence the fundamental and contrarian trading can

generate significant profits. Without under-reaction in this case, the momentum

trading is not profitable.

In market state 2, the momentum traders are active, but their activities are bal-

anced by the fundamental and contrarian traders. In this case, the fundamental and

contrarian trading strategies are still profitable, but not the momentum traders and

the market maker. This is illustrated by the average accumulated profits based on

a typical simulation with time horizon τ = 0.5 and holding period h = 2 in Fig.

3.3(a). The return ACs based on Monte Carlo simulation show some significantly
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(a) τ = h = 0.5 in state 2
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(b) τ = h = 0.5 in state 3
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(c) τ = h = 3 in state 3

0 10 20 30 40 50 60
−0.1

−0.05

0

0.05

0.1

t

Profits

 

 
Fundamentalists
Momentum Traders
Contrarians
Market Maker

(d) τ = 3 and h = 0.5 in state 3

Figure 3.3. The average accumulated profits based on a typical sim-

ulation with different time horizon τ and holding period h in different

market state: (a) τ = h = 0.5 in market state 2; (b) τ = h = 0.5 in

market state 3; (c) τ = h = 3 in market state 3; and (d) τ = 3, h = 0.5

in market state 3. Here γf = 20, γm = 22.6 and γc = 5 in (a) and

γf = 2, γm = 20 and γc = 10 in (b)-(d).

negative ACs over short lags, indicating the profitability of the fundamental and

contrarian trading due to market overreaction, but not for the momentum trading.

In market state 3, the market is dominated by the momentum traders and their

destabilizing role. Over short time horizon, the market price fluctuates due to

the unstable fundamental price of the underlying deterministic system. When the

market price increases, the price trend follows the market price closely and increases

too. The momentum trading with short holding period hence becomes profitable
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by taking long positions. Similarly, when the market price declines, the price trend

follows and hence the momentum trading with short holding period is profitable by

taking short positions. Therefore, the momentum trading strategies are profitable,

but not the contrarians, illustrated by Fig. 3.3(b) for τ = h = 0.5 and (c) for

τ = h = 3 respectively. Over long time horizon, the market price fluctuates widely

due to the unstable fundamental value of the underlying deterministic system. A

longer time horizon makes the price trend less sensitive to the changes in price and

the shocks. The dominance of the momentum trading and market price continuation

make the momentum trading with short holding period more profitable, illustrated

by Fig. 3.3(d) for τ = 3 and h = 0.5. With long holding period, the momentum

trading mis-matches the profitability opportunity and hence becomes less profitable.

With long time horizon and long holding period, Fig. 3.3(c) also illustrates that

the fundamental and contrarian strategies are profitable, but not the momentum

strategy. For time horizon and holding period from 1 to 60 months, the model is

able to replicate the time series momentum profit explored for the S&P 500. The

results are consistent with Moskowitz et al. (2012) who find that the time series

momentum strategy with 12 months horizon and one month holding is the most

profitable among others.

In summary, the stochastic delay integro-differential system of the model provides

a unified approach to deal with different time horizons of momentum and contrarian

strategies. The profitability is closely related to the market states defined by the sta-

bility of the underlying deterministic model. In particular, in market state 3 where

the momentum traders dominate the market, the momentum strategy is profitable

with short, but not long, holding periods. Some explanations to the mechanism

of the profitability through autocorrelation patterns and the under-reaction and

overreaction hypotheses are also provided in He and Li (2015a).

3.3. Optimal trading with time series momentum and reversal. Short-run

momentum and long-run reversal are two of the most prominent financial market

anomalies. Though market timing opportunities under mean reversion in equity

return are well documented (Campbell and Viceira (1999) and Wachter (2002)),

time series momentum (TSM) has been explored recently in Moskowitz et al. (2012).
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Intuitively, if we incorporate both return momentum and reversal into a trading

strategy optimally, we would expect to outperform the strategies based only on

return momentum or reversal, and even the market index. To capture this intuition,

He et al. (2015) develop a continuous-time asset price model, derive an optimal

investment strategy theoretically, and test the strategy empirically. They show that,

by combining market fundamentals and timing opportunity with respect to market

trend and volatility, the optimal strategy based on the time series momentum and

reversal significantly outperforms, both in-sample and out-of-sample, the S&P 500

and pure strategies based on either time series momentum or reversal only. We now

outline the main results and refer the details to He et al. (2015).

Consider a financial market with two tradable securities. A riskless asset B sat-

isfies dBt/Bt = rdt with a constant risk-free rate r. The risky asset St satisfies

dSt/St =
[
φmt + (1− φ)µt

]
dt+ σ′

SdZt, dµt = α(µ̄− µt)dt+ σ′

µdZt,

where α > 0, µ̄ > 0 and mt = (1/τ)
∫ t

t−τ
dSu

Su
. Here φ is a constant, µ̄ is the constant

long-run expected return, α measures the speed of the convergence of µt to µ̄, σS

and σ′
µ are two-dimensional volatility vectors, and Zt is a two-dimensional vector

of independent Brownian motions. Therefore, the expected return is given by a

combination of a momentum component mt based on a moving average of the past

returns and a long-run mean-reversion component µt based on market fundamentals

such as dividend yield.

Consider a typical long-term investor who maximizes the expected log utility of

terminal wealth at time T (> t). Let Wt be the wealth of the investor at time t and

πt be the fraction of the wealth invested in the stock. Then

dWt

Wt

= (πt[φmt + (1− φ)µt − r] + r)dt+ πtσ
′

SdZt. (3.5)

By applying the maximum principle for optimal control of stochastic delay differen-

tial equations, He et al. (2015) derive the optimal investment strategy

π∗

t =
φmt + (1− φ)µt − r

σ′
SσS

. (3.6)
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That is, by taking into account the short-run momentum and long-run reversal,

as well as the timing opportunity with respect to market trend and volatility, a

weighted average of the momentum and mean-reverting strategies is optimal.

This result has a number of implications. (i) When the asset price follows a geo-

metric Brownian motion process with mean-reversion drift µt, namely φ = 0, the

optimal investment strategy (3.6) becomes π∗
t = µt−r

σ′

SσS
. This is the optimal invest-

ment strategy with mean-reverting returns obtained in the literature (Campbell and

Viceira (1999) and Wachter (2002)). In particular, when µt = µ̄ is a constant, the

optimal portfolio collapses to the optimal portfolio of Merton (1971). (ii) When the

asset return depends only on the momentum, namely φ = 1, the optimal portfolio

(3.6) reduces to π∗
t = mt−r

σ′

SσS
. If we consider a trading strategy based on the trad-

ing signal indicated by the excess moving average return mt − r only, with τ = 12

months, the strategy of long/short when the trading signal is positive/negative is

consistent with the TSM strategy used in Moskowitz et al. (2012). Therefore, if we

only take fixed long/short positions and construct simple buy-and-hold momentum

strategies over a large range of look-back and holding periods, the TSM strategy of

Moskowitz et al. (2012) can be optimal when the mean reversion is not significant

in financial markets.
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Figure 3.4. Time series of the optimal portfolio (a) and the utility

(b) of the optimal portfolio wealth (lnW ∗
t ) from January 1876 until

December 2012 for τ = 12.
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He et al. (2015) then examine the performance of the optimal portfolio in terms

of the utility of the portfolio wealth empirically. As a benchmark, the log utility of

$1 investment in the S&P 500 index from January 1876 grows to 5.765 at December

2012. With a time horizon of τ = 12 and one month holding period, the optimal

portfolio wealth fractions and the evolution of the utility of the optimal portfolio

wealth (lnW ∗
t ) based on the estimated model from January 1876 to December 2012

are plotted in Fig. 3.4 (a) and (b), showing that the optimal portfolios outperform

the market index measured by the utility of wealth (lnWt).

4. HAMs of multi-asset markets and financial market interlinkages

A recent literature has been developed to understand the joint dynamics of mul-

tiple asset markets from the viewpoint of HAMs. In particular, research in this area

investigates how investors’ heterogeneity and changing behavior (including dynamic

strategy and market selection) affect the comovement of prices, returns and volatili-

ties in a multiple-asset framework. Modelling such interlinkages naturally introduces

additional nonlinearities into HAMs and has the potential to address key issues in

financial markets.

4.1. Stock market comovement and policy implications. A number of mod-

els extend the single-risky asset frameworks of Brock and Hommes (1998), Chiarella

and He (2002), and Westerhoff (2003) to allow agents to switch not only across

strategies but also across different asset markets. Westerhoff (2004) provides one of

the first HAMs of interconnected financial markets in which both fundamentalists

and chartists are simultaneously active. In each market, chartist demand is posi-

tively related to the observed price trends but negatively related to the risk of being

caught in a bursting bubble. Asset prices react to the excess demand according to

a log-linear price impact function. Chartists may switch between markets depend-

ing on short-run profit opportunities. The basic model of interacting agents and

markets can naturally produce complex dynamics. A simple stochastic extension

of the model can mimic the behavior of actual asset markets closely, offering an

explanation for the high degree of stock price comovements observed empirically.
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Westerhoff and Dieci (2006) extend the basic framework of Westerhoff (2004)

to investigate the effect of transaction taxes when speculators can trade in two

markets, and the related issue of regulatory coordination. The market fractions of

fundamentalists and chartists active in each market evolve depending on the realized

profitability of each ‘rule-market’ combination, which is affected by the adoption of

transaction taxes. Log-price adjustments depend on excess demand and are subject

to i.i.d. random noise (uncorrelated across markets). The joint dynamics of the two

markets is investigated with and without transaction taxes. Moreover, the effective-

ness12 of transaction taxes is assessed when tax is imposed in one market only and

when a uniform transaction taxes are imposed in both markets. It turns out that,

while the market subject to a transaction tax becomes less distorted and less volatile,

the other market may be destabilized. On the contrary, a uniform transaction tax

tends to stabilize, by forcing agents to focus more strongly on fundamentals.

Building on the above frameworks, Schmitt and Westerhoff (2014) focus on coe-

volving stock prices in international stock markets. In their model, the demand of

heterogeneous speculators is subject to different types of exogenous shocks (global

shocks and shocks specific to markets or to trading rules). Investors switch between

strategies and between markets depending on a number of behavioural factors and

market circumstances. Besides reproducing a large number of statistical proper-

ties of stock markets (‘stylized facts’), the model shows how traders’ behavior can

amplify financial market interlinkages and generate stock price comovements and

cross-correlations of volatilities.

Other recent papers are closely related to the above topics. For instance, Huang

and Chen (2014) develop a nonlinear model with chartists and fundamentalists that

generalizes the framework of Day and Huang (1990) to the case of two regional

stock markets with a common currency, in order to investigate the global effects of

financial market integration and of possible stabilization policies. In an agent-based

model where portfolio managers allocate their funds between two asset markets,

Feldman (2010) shows how fund managers’ aggregate behavior can undermine global

12Effectiveness refers to the ability of transaction taxes to reduce volatility, distortion (i.e.

misalignment from the fundamental price), and weight of chartism.
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financial stability. Whenever they enter the markets in large numbers, their leverage

increases and their investment strategies are affected by behavioral factors (such

as loss aversion). Overall, such models demonstrate the potential of HAMs for

understanding the global effects of financial market interlinkages.

4.2. Heterogeneous beliefs and evolutionary CAPM. A further strand of re-

search investigates the impact of behavioral heterogeneity in an evolutionary CAPM

framework. More precisely, this literature adopts standard mean-variance portfolio

selection across multiple assets (or asset classes/markets) and develops a dynamic

CAPM framework with fundamental and technical traders. Investors update their

beliefs about the means, variances and covariances of the prices or returns of the

risky assets, based on fundamental information and historical prices. They may

either use fixed rules (Chiarella, Dieci and He (2007, 2013) or switch between differ-

ent strategies based on their performance (Chiarella, Dieci, He and Li (2013)). This

framework is helpful to understand how investors’ behaviour can produce changes

of the market portfolio and spillovers of volatility and correlation across markets. In

particular, through the construction of a consensus belief, Chiarella, Dieci, He and

Li (2013) develop a dynamic CAPM relationship between the market-average ex-

pected returns of the risky assets and their ex-ante betas in temporary equilibrium.

Results show that systematic changes in the market portfolio and risk-return rela-

tionships may occur due to changes of investor sentiment (such as chartists acting

more strongly as momentum traders). Besides providing behavioral explanations

for the debated on time-varying betas, such models allow to compare theoretical ex-

ante betas to commonly used ex-post beta estimates based on rolling-windows. The

remainder of this section presents the model setup and key findings of Chiarella,

Dieci, He and Li (2013).

4.2.1. A dynamic multi-asset model. Consider an economy with H agent-types, in-

dexed by h = 1, · · · , H , where the agents within the same group are homogeneous

in their beliefs and risk aversion. Agents invest in portfolios of a riskless asset (with

a risk-free gross return Rf = 1 + rf) and N risky assets, indexed by j = 1, · · · , N
(with N ≥ 1). Vectors pt = (p1,t, · · · , pN,t)

⊤, dt = (d1,t, · · · , dN,t)
⊤ and xt := pt+dt

denote prices, dividends and payoffs of the risky assets at time t. Assume that an
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agent of type h maximizes expected CARA utility, uh(w) = −e−θhw, of one-period-

ahead wealth, where θh is the agent’s absolute risk aversion coefficient. Then the

optimal demand for the risky assets (in terms of number of shares) is determined

as the N -dimensional vector zh,t = θ−1
h Ω−1

h,t[Eh,t(xt+1) − Rfpt], where Eh,t(xt+1)

and Ωh,t = [Covh,t(xj,t+1, xk,t+1)]N×N are the subjective conditional expectation and

variance-covariance matrix of the risky payoffs. Moreover, denote by nh,t the market

fraction of agents of type h at time t. Market clearing requires:

H∑

h=1

nh,tzh,t =

H∑

h=1

nh,tθ
−1
h Ω−1

h,t[Eh,t(xt+1)− Rfpt] = zst , (4.1)

where zst = s + ξt is a N -dimensional supply vector of the risky assets, subject to

random supply shocks satisfying ξt = ξt−1 + σκκt, where κt is standard normal

i.i.d. with E(κt) = 0, Cov(κt) = I. Likewise, dividends dt are assumed to follow a

N -dimensional martingale process, dt = dt−1 + σζζt, where ζt is standard normal

i.i.d. with E(ζt) = 0, Cov(ζt) = I, independent of κt
13. In spite of heterogeneous

beliefs about asset prices, conditional beliefs about dividends are assumed to be

homogenous across agents and correct.

4.2.2. Price dynamics under consensus belief. Solving Equation (4.1) one obtains

the temporary equilibrium asset prices, pt, as functions of the beliefs, risk attitudes,

and current market proportions of the H agent-types. The solution can be rewritten

as if prices were determined by a homogeneous agent endowed with average risk

aversion θa,t := (
∑H

h=1 nh,tθ
−1
h )−1 and a ‘consensus’ belief about the conditional first

and second moments of the payoff process, {Ea,t,Ωa,t}, where

Ωa,t = θ−1
a,t

(
H∑

h=1

nh,tθ
−1
h Ω−1

h,t

)−1

, Ea,t(xt+1) = θa,tΩa,t

H∑

h=1

nh,tθ
−1
h Ω−1

h,tEh,t(xt+1).

From (4.1) and the assumption of homogeneous and correct beliefs about dividends,

one obtains

pt =
1

Rf

[Ea,t(pt+1) + dt − θa,tΩa,tz
s
t ] . (4.2)

13Matrix σζ is not necessarily diagonal; that is, the exogenous dividend processes may be

correlated across assets. The same holds for matrix σκ, characterizing the supply process.
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Equation (4.2) represents pt in a standard way as the discounted value of the ex-

pected end-of-period payoffs. The adjustment for the risk takes place through a

negative correction to the dividends. The equilibrium prices decrease with the dis-

count rate and increase with the expectations of future prices and dividends (other

things being equal), whereas they tend to be negatively affected by risk aversion,

risk perceptions, and the supply of assets.

4.2.3. Fitness and strategy switching. Based on the discrete choice model adopted in

HAMs, the fraction nh,t of agents of type h depends on their strategy’s fitness vh,t−1,

namely, nh,t = eηvh,t−1/Zt, where Zt =
∑

h e
ηvh,t−1 and η > 0 is the intensity of the

choice. The fitness is specified as vh,t = πh,t − πB
h,t −Ch, where Ch ≥ 0 measures the

cost of the strategy, and

πh,t := z⊤h,t−1(pt + dt − Rfpt−1)−
θh
2
z⊤h,t−1Ωh,t−1zh,t−1, (4.3)

πB
h,t :=

(
θa,t−1

θh
s

)⊤

(pt + dt −Rfpt−1)−
θh
2

(
θa,t−1

θh
s

)⊤

Ωh,t−1

(
θa,t−1

θh
s

)
. (4.4)

This performance measure generalizes the risk-adjusted profit introduced by Hommes

(2001) represented by (4.3)14. It views strategy h as a successful strategy only to

the extent that portfolio zh,t−1 outperforms (in terms of risk-adjusted profitability)

portfolio zBh,t−1 :=
θa,t−1

θh
s. The latter can be naturally interpreted as a ‘benchmark’

portfolio for type-h agents, based on their risk aversion θh
15. Moreover, as shown

in Chiarella, Dieci, He and Li (2013), the fitness measure vh,t is not affected by the

differences in risk aversion across agents.

4.2.4. Fundamentalists and trend followers. In particular, the model focuses on the

interplay of fundamentalists and trend followers, indexed by h ∈ {f, c}, respec-

tively. Based on their beliefs in mean reversion, the price expectations of the fun-

damentalists are specified as Ef,t(pt+1) = pt−1 + α(Ef,t(p
∗
t+1) − pt−1), where p∗

t =

(p∗1,t, · · · , p∗N,t) is the vector of fundamental values at time t, α := diag[α1, · · · , αN ],

14Hommes (2001) considers a simplified case where the stock of the risky asset is endogenous

(zst ≡ 0), in which case market clearing leads to Ea,t(xt+1) = Rfpt and the performance measure

reduces to the risk-adjusted profit (corrected for the strategy cost), πh,t − Ch.
15Benchmark portfolio zBh,t−1

, proportional to the ‘market portfolio’ s, is more (less) aggressive

than the market portfolio iff θh is smaller (larger) than the average risk aversion θa,t−1.
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and αj ∈ [0, 1] reflects their confidence in the fundamental price for asset j. The

beliefs of the fundamentalists about the covariance matrix of the payoffs are as-

sumed constant, Ωf,t = Ω0 := (σjk)N×N . Fundamental prices p∗
t are assumed to

evolve exogenously as a martingale process, consistent with the assumed dividend

and supply processes. Moreover, p∗
t is also consistent with equation (4.2) under the

special case of homogeneous and correct first-moment beliefs, constant risk aversion

θ, and constant second moment beliefs Ω0. This results in

p∗

t =
1

rf
(dt − θΩ0(s+ξt)), (4.5)

which implies p∗
t+1 = p∗

t + ǫt+1, where ǫt+1 := 1
rf
(σζζt+1 − θΩ0σκκt+1) ∼ i.i.d.

normal. The fundamental price process can be treated as ‘steady state’ of the dy-

namic heterogeneous-belief model.

Unlike the fundamentalists, trend followers form their beliefs about price trends

based on the observed prices and (exponential) moving averages. Their conditional

mean and covariance matrices are assumed to satisfy Ec,t(pt+1) = pt−1 + γ(pt−1 −
ut−1), Ωc,t = Ω0 + λVt−1, where ut−1 and Vt−1 are sample means and covariance

matrices of historical prices pt−1,pt−2, · · · . Moreover, γ = diag[γ1, · · · , γN ] > 0, γj

measures the ‘strength’ of extrapolation for asset j, and λ measures the sensitivity

of the second-moment estimate to the sample variance. Quantities ut and Vt are

updated recursively according to ut = δut−1 + (1 − δ)pt and Vt = δVt−1 + δ(1 −
δ)(pt−ut−1)(pt−ut−1)

⊤, where parameter δ ∈ [0, 1] is related to the weight of past

information.

The optimal portfolios of fundamentalists and chartists are then given by, respec-

tively,

zf,t = θ−1
f Ω−1

0 [pt−1 + dt +α(p∗

t − pt−1)−Rfpt], (4.6)

zc,t = θ−1
c [Ω0 + λVt−1]

−1[pt−1 + dt + γ(pt−1 − ut−1)−Rfpt]. (4.7)
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4.2.5. Dynamic model and stability properties. The stochastic nonlinear multi-asset

HAM with two belief-types results in the following recursive equation for asset prices

pt =
θa,t
Rf

Ωa,t

[
nf,t

θf
Ω−1

0

(
pt−1 +α(p∗

t − pt−1)

)

+
nc,t

θc
(Ω0 + λVt−1)

−1 (pt−1 + γ(pt−1 − ut−1))− s− ξt

]
+

1

Rf

dt, (4.8)

where the average risk aversion and second-moment beliefs satisfy θa,t =
(

nf,t

θf
+ nc,t

θc

)−1

and Ωa,t =
1

θa,t

(
nf,t

θf
Ω−1

0 + nc,t

θc
(Ω0 + λVt−1)

−1
)−1

. In (4.8), market fractions evolve

based on performances vf,t−1 and vc,t−1, as follows:

nf,t =
1

1 + e−η(vf,t−1−vc,t−1)
, nc,t = 1− nf,t,

where

vf,t =

(
zf,t−1 −

θa,t−1s

θf

)⊤ [
pt + dt − Rfpt−1 −

θf
2
Ω0

(
zf,t−1 +

θa,t−1s

θf

)]
− Cf ,

vc,t =

(
zc,t−1 −

θa,t−1s

θc

)⊤ [
pt + dt −Rfpt−1 −

θc
2
(Ω0 + λVt−2)

(
zc,t−1 +

θa,t−1s

θc

)]
−Cc,

and Cf ≥ Cc ≥ 0.

Despite the large dimension of the dynamical system, insightful analytical results

about the steady state and its stability properties are possible for the ‘deterministic

skeleton’, obtained by setting the supply and dividends at their unconditional mean

levels ξt = 0, dt = d̄. The model admits a unique steady state16 (pt,ut,Vt, nf,t) =

(p∗,p∗, 0, n∗
f) := F∗, where p∗ = 1

rf
(d̄ − θ∗aΩ0s) is the fundamental price vector of

the deterministic system, θ∗a = 1/(n∗
f/θf + n∗

c/θc) is the average risk aversion and

n∗
f = 1/(1 + eη(Cf−Cc)), n∗

c = 1 − n∗
f are the market fractions of the fundamentalist

and chartist, respectively, at the steady state. It turns out that the local stability

of F∗ is based on clear-cut and intuitive analytical relationships between chartist

extrapolation and memory, fundamentalist confidence, and switching intensity. We

set θ0 := θf/θc, C∆ := Cf −Cc, and denote by Jo ⊆ {1, · · · , N} the subset of assets

characterized by ‘sufficiently’ strong extrapolation from the chartists, namely, by

16For consistency between the model’s unique steady state and the fundamental price, we set

θ̄ = θ∗a in equation (4.5).
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γj > Rf/δ − 1. In the typical case C∆ > 0, the local stability results can be

summarized as follows:

(i) If the chartist extrapolation is not very strong in general (namely, γj ≤
Rf/δ−1 for all j ∈ {1, · · · , N}), the steady state F∗ is locally stable for any

level of the switching intensity η;

(ii) If chartist extrapolation is sufficiently strong for some (possibly for all) assets

(Jo 6= ∅), then F∗ is locally stable when the switching intensity is not too

strong, namely η < η̂m := minj∈Jo η̂j, where η̂j for asset j is defined by

η̂j :=
1

C∆
ln

Rf − δ(1− αj)

θ0[δ(1 + γj)− Rf ]
. (4.9)

Moreover, for increasing switching intensity F∗ undergoes a Neimark-Sacker

bifurcation at η = η̂m.

Roughly speaking, investors’ switching intensity η is not sufficient, per se, to

destabilize the steady state F∗ (case (i)), but the possibility that investors’ behavior

destabilizes the system depends on the joint effect of the switching intensity η and the

chartists’ strengths of extrapolation γj, j = 1, 2, ..., N . In case (ii), the threshold η̂j is

determined for each asset according to (4.9), depending, amongst others, negatively

on γj and positively on αj. Hence, even when chartist extrapolation is strong enough

for some asset j (so that γj > Rf/δ − 1), the system can still be stable when

the fundamentalists dominate the market at the steady state and the switching

intensity is not too large. Conversely, since the stability depends on the lowest

threshold amongst assets (η̂m), a large extrapolation on one or few assets is sufficient

for the whole system to be eventually destabilized for large enough η. Numerical

investigations confirm that, by increasing η in case (ii), fluctuations are initially

‘confined’ to the asset with the lowest η̂j and then spill over to the whole system of

interconnected assets. As for the ‘non asset-specific’ parameters, the above results

show that increases in δ, Cf and θf (respectively Rf , Cc, and θc) tend to reduce

(respectively to increase) all thresholds η̂j , j = 1, 2, ..., N . In particular, larger

values of the ratio θ0 = θf/θc of the fundamentalist and chartist risk aversion and of

the strategy cost differential C∆ = Cf − Cc reduce the stability domain, whereas a
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larger risk-free return Rf or a faster decay in chartist moving averages (i.e. a smaller

δ) widens the stability domain.

4.2.6. Nonlinear risk-return patterns. Further results concern the impact of the dy-

namic correlation structure on the global properties of the stochastic model. Al-

though the levels of the fundamental prices do depend on the ‘exogenous’ subjective

beliefs about variances and covariances, Ω0, such beliefs have no influence on the

local stability properties17. However, second-moment beliefs and their evolution

turn out to be very important for the dynamics of the nonlinear system buffeted

by exogenous noise. The nonlinear stochastic model is characterized by emerging

patterns and systematic changes in risk-return relationships that can by no means

be explained by the linearized model. One important example concerns the non-

linear stochastic nature of the time-varying ex-ante beta coefficients implied by the

model (based on the consensus beliefs), and of the realized betas, estimated using

rolling windows18. The value at time t and the payoff at time t + 1 of the mar-

ket portfolio are given by Wm,t = p⊤
t s and Wm,t+1 = x⊤

t+1s, respectively, while

rj,t+1 = xj,t+1/pj,t − 1, rm,t+1 = Wm,t+1/Wm,t − 1 represent the returns of risky as-

set j and of the market portfolio, respectively. Hence, under the consensus belief,

Ea,t(Wm,t+1) = Ea,t(xt+1)
⊤s, V ara,t(Wm,t+1) = s⊤Ωa,ts, Ea,t(rj,t+1) =

Ea,t(xj,t+1)

pj,t
− 1,

Ea,t(rm,t+1) =
Ea,t(Wm,t+1)

Wm,t
−1. Following Chiarella, Dieci and He (2011), one obtains

the CAPM-like return relation19

Ea,t(rt+1)− rf1 = βa,t[Ea,t(rm,t+1)− rf ], (4.10)

17Note that the threshold (4.9) for asset j is independent of the parameters specific to any other

asset, since the fitness measure and the variance-covariance matrices are in higher order terms.

They can affect the nonlinear dynamics, but not the dynamics of the linearized system.
18A large literature on time-varying betas has been developed within the conditional CAPM,

which proves successful in explaining the cross-section of returns and a number of empirical ‘anom-

alies’ (see, e.g. Jagannathan and Wang (1996)). However, most models of the time-varying betas

are motivated by econometric estimation and generally lack economic intuition.
19The CAPM relation (4.10) is evolutionary, since asset and market returns, as well as the corre-

sponding consensus beliefs, co-evolve endogenously, based on the dynamic HAM with expectations

feedback.
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where rt+1 is the vector collecting the risky returns and βa,t = (β1,t, · · · , βN,t)
⊤, βj,t =

Cova,t(rm,t+1,rj,t+1)

V ara,t(rm,t+1)
are the ex-ante beta coefficients, in the sense that they reflect the

temporary market equilibrium condition under the consensus beliefs Ea,t and Ωa,t.

In the case of two risky assets, Fig. 4.2.6 (from the top-left to bottom-right) shows

the time series of asset prices (pt), asset returns (rt), the aggregate wealth shares

invested in the risky assets (i.e. the market portfolio weights, denoted as ωt :=

(ω1,t, ω2,t)
⊤), the ex-ante betas of the risky assets under the consensus belief (βa,t),

and the estimates of the betas using rolling windows of 100 and of 300 periods20. In

particular, the variation of the ex-ante beta coefficients is significant and seems to

indicate substantially different levels over different subperiods. Although the rolling

estimates of the betas do not necessarily reflect the nature of the ex-ante betas

implied by the CAPM (see also Chiarella, Dieci and He (2013)), the 100-period and

the (smoother) 300-period rolling betas also reveal systematic changes in risk-return

relationships, with patterns similar to the ex-ante betas.

Finally, further numerical results on the relationship between trading volume and

volatility indicate that the ACs for both volatility and trading volume are highly

significant and decaying over long lags, which is close to what we have observed

in financial markets. Moreover, the correlation between price volatility and trad-

ing volume of the risky assets is remarkably influenced by the assets’ correlation

structure.

20The parameter used in Figure 4.2.6 are θf = θc = 1, Cf = 4, Cc = 1, γ = diag[0.3, 0.3], α =

diag[0.4, 0.5], λ = 1.5, δ = 0.98, η = 1.5, s = (0.1, 0.1)T , rf := Rf − 1 = 0.025, d = (0.08, 0.05)T ,

Ω0 = [σ2
1 , ρσ1σ2; ρσ1σ2, σ

2
2 ], where σ1 = 0.6, σ2 = 0.4, ρ = 0.5. Parameters rf , Ω0, α, γ, δ,

d, Cf and Cc are expressed in annual terms and converted to monthly via the factor 1/12 (δ is

converted to a monthly value of 0.9983, in such a way to preserve the average memory length).

Supply and dividend noise parameters are σκ = diag[0.001, 0.001] and σζ = diag[0.002, 0.002]. The

parameter setting is one where the underlying deterministic model has a stable fundamental steady

state, namely, η < η̂m := minj∈Jo
η̂j . When the system is no longer stable due to larger switching

intensity η, even stronger effects can be observed.



HETEROGENEOUS AGENT MODELS IN FINANCE 51

Figure 4.1. Dynamics of the evolutionary CAPM (monthly time step).

From a broader perspective, the results described in this section are part of a

growing stream of research. They show that asset diversification in a dynamic set-

ting where investors rebalance their portfolios based on heterogeneous strategies and

behavioral rules may produce aggregate effects that different substantially from risk

reduction and equilibrium risk-return relationships predicted by standard mean-

variance analysis and finance theory. Amongst recent work in this area, Brock,

Hommes and Wagener (2009) show that the introduction of additional hedging in-

struments in the baseline asset pricing setup of Brock and Hommes (1998) may have

destabilizing effects in the presence of heterogeneity and adaptive behavior accord-

ing to performance-based reinforcement learning. In an evolutionary finance setting

that allows for the coexistence of different trading strategies, the stochastic multi-

asset model of Anufriev, Bottazzi, Marsili and Pin (2012) shows the existence of

strong trading-induced excess covariance in equilibrium, which is a key ingredient of
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systemic risk. Corsi, Marmi and Lillo (2016) investigate the dynamic effect of finan-

cial innovation and increasing diversification in a model of heterogeneous financial

institutions subject to Value-at-Risk constraints. They show that this may lead to

systemic instabilities, through increased leverage and overlapping portfolios. Simi-

lar channels of contagion and systemic risk in financial networks are investigated by

Caccioli, Farmer, Foti and Rockmore (2015).

4.3. Interacting stock market and foreign exchange market. The recent

work of Dieci and Westerhoff (2010) and Dieci and Westerhoff (2013b) investigates

how the trading activity of foreign-based stock market speculators - who care both

about stock returns and exchange rate movements - can affect otherwise independent

stock markets denominated in different currencies and the related foreign exchange

market. We brief the main findings in the following.

Let us abstract from the impact of international trade on exchange rates, and

focus on the sole effect of financial market speculators. For simplicity, let us define

cross-market traders the investors from one country who are active in the stock

market of the other country, in contrast to home-market traders21. Quantities Pt,

Qt and St denote the price of the domestic asset (in domestic currency), the price of

the foreign asset (in foreign currency) and the exchange rate,22 while P ∗, Q∗ and S∗

denote their fundamental values, respectively. We use lowercase letters for log-prices

pt, qt, st, p
∗, q∗, s∗, respectively.

Exchange rate movements are driven by the excess demand for domestic currency.

As such, they are directly affected by foreign exchange speculators, but they also

depend, indirectly, on stock transactions of cross-market traders. This is captured

by:

st+1 − st = αS(Ut +Xt + Yt), αS > 0, (4.11)

21In general, we use a ‘tilde’ to denote demand components and behavioral parameters charac-

terizing cross-market traders, whereas analogous quantities without the tilde be related to home-

market traders.
22For convenience, we define the exchange rate S as the price of one unit of domestic currency

in terms of the foreign currency.
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where (positive or negative) quantities Ut, Xt and Yt are different components of the

excess demand for domestic currency, expressed in currency units. More precisely, Ut

is the excess demand for domestic currency due to direct speculation in the foreign

exchange market (to be specified later), Xt := PtD̃t = D̃t exp(pt) is the currency ex-

cess demand from foreign traders active in the domestic stock market (and demand-

ing/supplying D̃t units of domestic asset), and Yt := −QtZ̃t/St = −Z̃t exp(qt−st) is
the excess demand generated by domestic traders active in the foreign stock market

(since Z̃t units of foreign stock correspond to QtZ̃t units of foreign currency and

thus result in a counter transaction of −QtZ̃t/St units of domestic currency).

Similar price adjustment mechanisms are assumed for the two stock markets:

pt+1 − pt = αPD
E
t , qt+1 − qt = αQZ

E
t , αP , αQ > 0 (4.12)

where DE
t and ZE

t denote the excess demand for the domestic and foreign stock,

respectively, including the components D̃t and Z̃t from cross-market traders, as

explained below. In a framework with two agent-types, both DE
t and ZE

t can be

modelled as the sum of four components, representing the demand of domestic and

foreign chartists and fundamentalists. At time t, the excess demand DE
t for the

domestic asset is given by:

DE
t = β(pt − pt−1) + θ(p∗ − pt) + D̃t, (4.13)

where D̃t = β̃(st + pt − st−1 − pt−1) + θ̃(s∗ − st + p∗ − pt) and β, θ, β̃, θ̃ ≥ 0.

Both β(pt − pt−1) and θ(p
∗ − pt) represent the demand from domestic chartists and

fundamentalists, based on the observed price trend and the observed mispricing,

respectively. Similar comments hold for demands β̃(st+ pt− st−1− pt−1) and θ̃(s
∗−

st + p∗ − pt) from foreign chartists and fundamentalists, respectively, which depend

also on the observed trend and misalignment of the exchange rate. Symmetrically,

demand ZE
t for the foreign asset is given by:

ZE
t = γ(qt − qt−1) + ψ(q∗ − qt) + Z̃t, (4.14)

where Z̃t = γ̃(−st+qt+st−1−qt−1)+ψ̃(−s∗+st+q∗−qt) and γ, ψ, γ̃, ψ̃ ≥ 0. The four

terms γ(qt−qt−1), ψ(q
∗−qt), γ̃(−st+qt+st−1−qt−1) and ψ̃(−s∗+st+q∗−qt) represent
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Figure 4.2. Destabilization of two symmetric markets, due to the

entry of new cross-market speculators. For parameters (β, θ) in the

dark grey region, the markets are stable when considered in isolation,

but the system of interacting market has an unstable FSS. Left panel:

case β̃ < θ̃/2 . Right panel: case β̃ ≥ θ̃/2.

the demands from foreign chartists, foreign fundamentalists, domestic chartists and

domestic fundamentalists, respectively.

Dieci and Westerhoff (2013b) investigate the case without foreign exchange spec-

ulators (Ut ≡ 0 in equation (4.11)). Even if demand in the stock markets is linear in

(log-)prices, the joint dynamics (4.11)-(4.14) of the three markets results in a nonlin-

ear dynamical system, by construction, due to the products, ‘price×quantity’, which

govern the exchange rate dynamics (4.11)23. Moreover, although system (4.11)-

(4.14) is 6-dimensional, analytical stability conditions of the unique ‘fundamental’

steady state (FSS henceforth)24 can be derived in the case of symmetric markets,

namely, β = γ, β̃ = γ̃, θ = ψ, θ̃ = ψ̃, q∗ = p∗ + s∗, thanks to a factorization of

the characteristic polynomial of the Jacobian matrix at the FSS. This allows an

exhaustive comparison of the stability condition for the integrated system with that

of otherwise independent stock markets.

23Further nonlinearities may result from speculative demand Ut, as shown below.

24At the FSS, stock prices and the exchange rate are at their fundamental values.
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Fig. 4.2 illustrates the impact of parameters β̃ and θ̃ of the cross-market traders on

the stability of the steady state of otherwise independent symmetric stock markets.

The stability region is represented in the plane of parameters β and θ of home-

market traders. In both panels, the area bounded by the axes and by the two

(thick) lines of equations θ = 2(1 + β) and β = 1 is the stability region for isolated

symmetric markets, which we denote by S. Therefore, the markets in isolation

may become unstable in the presence of sufficiently large chartist extrapolation (β)

or fundamentalist reaction (θ) from the home-market traders. If the two markets

interact (β̃, θ̃ 6= 0), the FSS of the resulting integrated system is unstable for at least

all the parameter combinations (β, θ) originally in area S and now falling within

the dark grey region, say area R ⊂ S. The shape and extension of area R depend

on the behavioural parameters of the cross-market chartists and fundamentalists,

β̃ and θ̃. In particular, a larger chartist impact β̃ tends to enlarge area R. The

left panel depicts the case β̃ < θ̃/2, in which the integration is always destabilizing

(the new stability area is strictly a subset of the original one). A destabilizing effect

prevails also in the opposite case, as shown in the right panel, for β̃ ≥ θ̃/2. However,

in this case there exists a parameter region (light grey area) in which the otherwise

unstable isolated markets (due to overreaction of fundamentalists) may be stabilized

by strong extrapolation of the cross-market traders.

We may interpret parameters β and θ as proportional to the total number of

chartists and fundamentalists trading in their home markets, while β̃ and θ̃ rep-

resent the number of additional cross-market traders of the two types. From this

standpoint, the above results indicate a destabilizing effect of the market entry of

additional cross-market speculators, once the two stock markets become intercon-

nected. In addition, an even stronger result holds in the case of simple relocation

of the existing mass of speculators across the markets, namely, the case when the

total population of chartists (β+ β̃) and fundamentalists (θ+ θ̃) remains unchanged,

while parameters β̃, θ̃ are increased (and β, θ are decreased accordingly). In this

case the stability conditions for the integrated system are definitely more restrictive

than for the markets in isolation, as proven in Dieci and Westerhoff (2013b). Further
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numerical investigations show the robustness of such results to the introduction of

asymmetries between the two stock markets.

In a related paper, Dieci and Westerhoff (2010) investigate the case in which insta-

bility originates in the foreign exchange market due to speculative currency trading,

and then it propagates to the stock markets. Different from Dieci and Westerhoff

(2013b), only the fundamental traders are active in the two stock markets, while

the foreign exchange market is populated by the speculators who switch between

two behavioral rules, based on extrapolative and regressive beliefs, depending on the

exchange rate misalignment. Therefore, the general setup (4.11)-(4.14) is reduced

to a special case where β = β̃ = γ = γ̃ = 0, whereas currency excess demand Ut is

specified as:

Ut = nc,tD
FX
c,t + (1− nc,t)D

FX
f,t , (4.15)

DFX
c,t = κ(st − s∗), DFX

f,t = ϕ(s∗ − st), nc,t =
[
1 + ν(s∗ − st)

2
]−1

, (4.16)

where κ, ϕ, ν > 0 and nc,t is the weight of extrapolative beliefs in period t. By

equations (4.15) and (4.16), chartist and fundamentalist demand are then propor-

tional to the current exchange rate deviation. That is, the chartists believe that

the observed misalignment will increase further, whereas the fundamentalists be-

lieve that the exchange rate will revert to the fundamental. However, the more the

exchange rate deviates from its fundamental value, the more regressive beliefs gain

in popularity at the expense of extrapolative beliefs, as speculators perceive the

risk that the bull or bear market might collapse. Moreover, the higher parameter

ν is in (4.16), the more sensitive the mass of speculators becomes with regard to

a given misalignment25. Intuitively, when considered in isolation (θ̃ = ψ̃ = 0), the

foreign exchange market is unstable (since the extrapolative beliefs prevail and tend

to increase the misalignment if st is sufficiently close to s∗), whereas the two stock

markets converge to their fundamental prices, thanks to the stabilizing activity of

fundamental traders.

Dieci and Westerhoff (2010) investigate the dynamics under market integration,

which results in a 3-dimensional nonlinear dynamical system, having two additional

25Similar weighting mechanisms have also been used in de Grauwe et al. (1993), Bauer,

de Grauwe and Reitz (2009), and Gaunersdorfer and Hommes (2007).
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non-fundamental steady states (NFSS), beside the FSS. Analytical conditions for

the FSS to be locally stable can be derived in terms of the model parameters and

compared with the stability conditions of each market, considered in isolation. Bi-

furcation diagrams are particularly useful to understand how the ‘strength’ of the

interaction between the stock markets (captured by parameters θ̃ and ψ̃) and chartist

extrapolation in the foreign exchange market (parameter κ) jointly affect the sta-

bility properties. In the left panels of Fig. 4.3, the asymptotic behavior of the

domestic (log-)stock price p (top) and (log-)exchange rate s (bottom) is plotted

against extrapolation parameter κ. In the no-interaction case (illustrated by the

superimposed dashed lines), the fundamental (log-)exchange rate s∗ is unstable and

the exchange rate misalignment in the NFSS increases with κ, whereas the fun-

damental (log-)prices in the stock markets, p∗ and q∗, are stable. The plots show

that the connection with stable stock markets can be beneficial, to some extent, by

bringing the exchange rate back to its fundamental value (for κ < κ̂ ≈ 0.6015), or

by reducing such misalignments. However, if κ is large enough, the integration can

destabilize the stock markets, too, and introduce cyclical and chaotic behavior in

the whole system of the interacting markets, with fluctuations of increasing ampli-

tude. In particular, for κ > κ∗ ≈ 4.856, the fluctuations range across a much wider

area than for κ < κ∗. While for κ < κ∗, two different attractors coexist, implying

that the asymptotic dynamics of prices and exchange rate are confined to different

regions depending on the initial condition (‘bull’ or ‘bear’ markets), at κ = κ∗ they

merge into a unique attractor (through a homoclinic bifurcation)26. The right panels

of Fig. 4.3 represent the fluctuations of p (top) and s (bottom) for very large κ,

characterized by sudden switching between bull and bear markets. The dynamic

analysis thus reveals a double-edged effect of market interlinkages, where behavioral

factors appear to play a substantial role.

26Tramontana et al. (2009, 2010)) investigate how bull and bear market phases may arise

in a HAM of stock and foreign exchange markets similar to Dieci and Westerhoff (2010), using

techniques from nonlinear dynamics and the theory of global bifurcations.
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Figure 4.3. Bifurcation diagrams of log-price p and log-exchange

rate s against extrapolation parameter κ (left panels) and their time

paths under strong extrapolation (right panels). The superimposed

dashed lines in the left panels depict the case of isolated markets.

Parameters are: p∗ = q∗ = s∗ = 0, αP = 1, αQ = 0.8, αS = 1, θ = 1,

ψ = 1.5, θ̃ = ψ̃ = 0.4, ϕ = 0.8, ν = 10000 and (in the right panels)

κ = 5.3.

The interaction of foreign and domestic investors using heterogeneous trading

rules, and its effect on the dynamics of the foreign exchange market, has been the

subject of further research in recent years. Amongst others, Kirman, Ricciotti and

Topol (2007) show that the mere interplay of speculative traders with wealth mea-

sured in two different currencies and buying or selling assets of both countries can

produce bubbles in foreign exchange market and realistic features of the exchange
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rate series. Corona, Ecca, Marchesi and Setzu (2008) develop and investigate a com-

putationally oriented agent-based model of two stock markets and a related foreign

exchange market. They focus, in particular, on the resulting volatility, covariance

and correlation of the stock markets, both during quiet periods and during a mon-

etary crisis. Overall, such models highlight a number of dynamic features that are

intrinsic to a system of asset markets linked via and with foreign exchange market

and that simply arise from the structural properties of such interlinkages combined

with the behavior of heterogeneous traders.

5. HAMs and house price dynamics

This section surveys recent research on the impact of investors’ behavioural het-

erogeneity on the dynamics of house prices and markets. Similarly to financial

market dynamics, the main body of literature on house price dynamics relies on

the theoretical framework of fully rational and forward looking investors (see, e.g.

Poterba (1984), Poterba, Weil and Shiller (1991), Clayton (1996), Glaeser and Gy-

ourko (2007), Brunnermeier and Julliard (2008)). Broadly speaking, in this frame-

work house price movements are due to sequences of exogenous shocks affecting

the fundamentals of the housing market (rents, population growth, the user cost

of capital, etc.), and to the resulting ‘well-behaved’ adjustments to new long-run

equilibrium levels. Real estate market efficiency is an implication of such rationality

assumptions.

Despite the remarkable achievements in this literature, a number of housing

market phenomena are far from being fully understood. This includes the exis-

tence of boom-bust housing cycles unrelated to changes in underlying fundamen-

tals (Wheaton (1999), Shiller (2007)) - as the house price bubble and crash of the

2000s. Further empirical evidence challenges real estate market efficiency, in partic-

ular the short-term positive autocorrelation and long-term mean-reversion of house

price returns (Capozza and Israelsen (2007), Case and Shiller (1989), Case and

Shiller (1990)). For this reason, research on housing market dynamics has gradually

accepted the view that investors’ bounded rationality (optimism and pessimism,
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herd behavior, adaptive expectations, etc.) may play a role in house price fluctua-

tions, for instance Cutler, Poterba and Summers (1991), Wheaton (1999), Malpezzi

and Wachter (2005), Shiller (2005), Shiller (2008), Glaeser et al. (2008), Piazzesi

and Schneider (2009), Sommervoll, Borgersen and Wennemo (2010) and Burnside,

Eichenbaum and Rebelo (2012).

Recently, a number of HAMs of housing markets have been developed and esti-

mated, inspired by the well-established heterogeneous-agent approach to financial

markets. A stylized two-belief (chartist-fundamentalist) framework has been devel-

oped to incorporate in a tractable way the behavioral heterogeneity of agents. It

proves to be a useful tool to understand housing bubbles and crashes and the way

they interact with the ‘real side’ of housing markets, as well as other phenomena

that are at odds with the standard approach. The framework of housing models is

very close to HAMs of financial markets. It is based on housing demand consistent

with mean-variance optimization and on a benchmark ‘fundamental’ price linked

to the expected rental earnings (Bolt et al. (2014)). However, unlike other asset

markets, housing markets have specific features that need to be taken into account

(such as the dual nature of housing, endogenous housing supply). Such features

generate important interactions between the real and financial side of housing mar-

kets, which may be amplified by the interplay of heterogeneous speculators (Dieci

and Westerhoff (2012), Dieci and Westerhoff (2016)).

5.1. An equilibrium framework with heterogeneous investors. The housing

market models developed by Bolt et al. (2014) and Dieci and Westerhoff (2016) are

based on a common temporary equilibrium framework for house prices. This frame-

work generalizes standard asset pricing relationships to the case of heterogeneous

expectations. Denote by Pt the price of a housing unit at the beginning of the time

interval (t, t+ 1), Pt+1 the end-of-period price, and Qt+1 the (real or imputed) rent

in that period. The sum Pt+1+Qt+1 represents the one-period payoff on the invest-

ment in one housing unit. Despite the time subscript, quantity Qt+1 is assumed to

be known with certainty at time t (since rental prices are typically agreed in ad-

vance). At time t, housing market investors form expectations about price Pt+1 by
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choosing among a number of available rules. Denote by Eh,t(·) and nh,t the subjec-

tive expectation and the market proportion of investors of type h, respectively, and

P e
t,t+1 :=

∑
h

nh,tEh,t(Pt+1) the average market expectation. Note that price Pt is not

known yet to investors when they form expectations about Pt+1. In a single-period

setting, the current price is determined by the expectation as follows:

Pt =
P e
t,t+1 +Qt+1

1 + kt + ξt
, (5.1)

where kt represents the so-called user cost of housing and ξt can be interpreted

as the risk premium for buying over renting a house. In particular, the user cost

kt includes the risk-free interest rate (or mortgage rate), denoted as rt, as well as

other costs, such as depreciation and maintenance costs, property tax, etc. (see,

e.g. Himmelberg, Mayer and Sinai (2005)). As shown in Bolt et al. (2014) and

Dieci and Westerhoff (2016), Equation (5.1) is consistent with the assumptions of

mean-variance demand and market clearing in the housing market.

5.1.1. Heterogeneous expectations, fundamentals, and temporary bubbles. In this sec-

tion we discuss the model of Bolt et al. (2014). They address the issue of house price

bubbles and crashes, disconnected from the dynamics of the rent and fundamental

price, in a model of the housing market with behavioral heterogeneity and evolu-

tionary selection of beliefs. Following Boswijk, Hommes and Manzan (2007), the

rent Qt in (5.1) follows an exogenous process, namely, a geometric Brownian motion

with drift, Qt+1 = (1 + g)ǫtQt, where {ǫt} are i.i.d. log-normal, with unit con-

ditional mean. The user cost kt (here reduced to the interest rate for simplicity)

and the risk premium ξt in (5.1) are assumed constant kt = rt = r, ξt = ξ, with

r+ξ > g27. In the reference case of homogeneous and correct expectations, a bench-

mark ‘fundamental’ solution P ∗
t can be obtained from equation (5.1), namely, P ∗

t =

Et [
∑

∞

s=1Qt+s(1 + r + ξ)−s] = Qt+1 [
∑

∞

s=1(1 + g)s−1(1 + r + ξ)−s] = Qt+1/(r+ξ−g).
Heterogeneity in expectations is captured by the interplay of regressive (funda-

mentalist) and extrapolative (chartist) beliefs (indexed by h ∈ {f, c}, respectively),

27Quantity ξt is positively related to investors’ second-moment beliefs and risk aversion, and to

the stock of housing at time t. This quantity is kept constant both for analytical tractability and

for estimation purposes.
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with time-varying proportions nc,t and nf,t = 1 − nc,t. More precisely, investors

form their beliefs about the relative deviation between the price and the fundamen-

tal in the next period, Xt+1 := (Pt+1 − P ∗
t+1)/P

∗
t+1, according to the linear rules

Eh,t(Xt+1) = φhXt−1, h ∈ {f, c}, where φf < 1 and φc > 1 characterize regressive

and extrapolative beliefs, respectively. As a consequence28, asset pricing equation

(5.1) takes the following recursive form in relative deviations from the fundamental

price, given proportions nc,t and nf,t:

Xt =
(1 + g)

1 + r + ξ
(nf,tφf + nc,tφc)Xt−1, (5.2)

where (nf,tφf + nc,tφc)Xt−1 is the average market expectation of Xt+1. It is also

clear from (5.2) that the direction of the price change is remarkably affected by

the current belief distribution. Strategies’ proportions are determined by a logistic

switching model with a-synchronous updating (see, e.g. Diks and van der Weide

(2005)), according to nc,t = δnc,t−1+(1− δ) {1 + exp[−β(Uc,t−1 − Uf,t−1)]}−1, where

Uc,t−1 and Uf,t−1 are fitness measures for chartists and fundamentalists, based on

the realized excess profits in the previous period29. The model is described by a

high-dimensional nonlinear dynamical system.

Based on earlier literature and on quarterly data on house price and rent in-

dices from OECD databases, Bolt et al. (2014) calibrate the fundamental model

parameters and obtain the price-fundamental deviations Xt for each of eight dif-

ferent countries (US, UK, NL, JP, CH, ES, SE and BE)30. In a second step, the

behavioral parameters of the agent-based model are estimated baed on the time

28Under the assumed belief types, equation (5.1) simplifies to (5.2) provided that Xt+1 and

Qt+2 are regarded as conditionally and mutually independent in agents’ beliefs at time t.
29Performance measures Uc,t−1 and Uf,t−1 are related to investors’ demand and realized returns

in the previous period. Under simplifying assumptions, they can be rewritten as nonlinear functions

of past relative deviations Xt−i (i = 1, 2, 3), as well.
30Calibration of the fundamental model parameters R̄ := (1 + r)/(1 + g) and ξ̄ := ξ/(1 + g)

is based on estimates of average housing risk premia from earlier literature (in particular Him-

melberg et al. (2005)) and on average quarterly rental yields (average of Qt/Pt) obtained from

OECD housing datasets. Based on the datasets of prices and rents and the calibrated fundamental

parameters, the time series Xt = lnPt − lnP ∗

t is obtained. See Section 3 in Bolt et al. (2014) for

detailed data description and parameter calibration.
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series Xt (with the fundamental parameters fixed during the estimation). Since the

model is governed by a nonlinear time-varying AR(1) process, once white noise is

added to equation (5.2), it can be estimated by nonlinear least squares. In partic-

ular, among the estimated behavioural parameters, φc is significantly larger than 1

(chartists expect that the bubble will continue in the near future) and the difference

∆φ := φf −φc is significant for all countries. This confirms the destabilizing impact

of extrapolators and the presence of time-varying heterogeneity in the way agents

form expectations. For all countries, long-lasting temporary house price bubbles are

identified, driven or amplified by extrapolation (in particular, US, UK, NL SE and

ES display strong housing bubbles over the period 2004-2007). When these bub-

bles burst, the correction of housing prices is reinforced by investors’ switching to a

mean-reverting fundamental strategy. Remarkably, for all countries, the estimated

parameters are close to regimes of multiple equilibria and/or global instability of

the underlying nonlinear switching model. This fact has important policy implica-

tions, as the control of certain parameters may prevent the system from getting too

close to bifurcation. For instance, the (mortgage) interest rate turns out to be one

of the parameters that may shift the nonlinear system closer to multiple equilibria

and global instability, whenever it becomes too low. The paper also shows that

the qualitative in-sample and out-of-sample predictions of the non-linear switching

model differ considerably from those of standard linear benchmark models with a

rational representative agent, which is also important from a policy viewpoint.

5.1.2. Heterogeneous beliefs, boom-bust cycles and supply conditions. In a similar

two-beliefs asset pricing framework for housing markets, Dieci and Westerhoff (2016)

investigate how expectations-driven house price fluctuations interact with supply

conditions (namely, housing supply elasticity and the existing stock of housing).

For this purpose, an evolving mix of extrapolative and regressive beliefs is nested

into a traditional stock-flow housing market framework (DiPasquale and Wheaton

(1992), Poterba (1984)) that connects the house price to the rent level and housing

stock. Although the house price is still determined by a temporary equilibrium

condition formally similar to (5.1), the model has a number of peculiar features.

First, the (constant) user cost kt = k now includes also the depreciation rate d,
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namely, k = r + d. Second, the rent paid in period (t, t + 1), Qt+1, is determined

endogenously and, ceteris paribus, negatively related to the current stock of housing

Ht, namely, Qt+1 = q(Ht), with q′ < 0. This is due to market clearing for rental

housing, where supply of housing services is assumed to be proportional to the

stock of housing while demand is a downward-sloping function of the rent. Third,

the stock of housing evolves due to depreciation and new constructions, where the

latter depends positively on the observed price level:

Ht+1 = (1− d)Ht + h(Pt) h′ > 0. (5.3)

In each period, investment demand for housing based on standard mean-variance

optimization (see, e.g. Brock and Hommes (1998)) results in the following market

clearing condition31:

1

α

[
P e
t,t+1 + q(Ht)− dPt − (1 + r)Pt

]
= Ht, (5.4)

where P e
t,t+1 is the average market expectation (across investors) and parameter

α > 0 is directly related to investors’ risk aversion and second moment beliefs,

assumed to be constant and identical across investors. The left-hand side of (5.4)

represents the average individual demand (desired holdings of housing stock) and is

proportional to the expected excess profit on one housing unit, taking both rental

earnings and depreciation into account. Note that a larger stock Ht and/or a larger

risk perception α require a larger expected excess profit in order for the market to

clear, which results in a lower market clearing price, ceteris paribus. By defining the

‘risk-adjusted’ rent q̃(Ht) := q(Ht) − αHt, one obtains the following house pricing

equation:32

Pt =
P e
t,t+1 + q̃(Ht)

1 + r + d
. (5.5)

Dynamical system (5.5) and (5.3) admits a unique steady state, implicitly defined

by P ∗ = q̃(H∗)
r+d

andH∗ = h(P ∗)
d

, which can be regarded as the fundamental steady state

(FSS), where the fundamental price P ∗ obeys to a standard ‘discounted dividend’

31Note that Ht is interpreted as the current housing stock per investor.
32In equation (5.5), the adjustment for risk affects the expected payoff instead of the discount

rate in the denominator (similar to equation (4.2) in section 4.2.2). This equation can be reduced

to the standard form (5.1) by simple algebraic manipulations.
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representation. Consistently, the price-rent ratio at the FSS can be expressed as the

reciprocal of the user cost (including the required housing risk premium):

π∗ =
P ∗

Q∗
=

1

r + d+ ξ
, ξ := αH∗/P ∗. (5.6)

Although the model admits the same FSS under a wide spectrum of expectations

schemes, investors’ beliefs may remarkably affect the nature of the dynamical system,

the way it reacts to shocks, and how it behaves sufficiently far from the FSS. In the

reference case of perfect foresight, with homogeneous price expectation satisfying

P e
t,t+1 = Pt+1, the FSS is saddle-path stable. In the presence of a ‘fundamental’ shock

(e.g., an unanticipated and permanent interest rate reduction) shifting the FSS in

the plane (P,H), the adjustment process towards the new FSS implies an initial price

overshooting followed by a monotonic decline toward the new equilibrium price P ∗′,

whereas the stock adjusts to level H∗′ gradually, without overbuilding, as shown in

Fig. 5.1. This dynamic pattern is due to the assumed full rationality of housing

market investors, by which the system can jump to the new saddle path immediately

after the shock. Remarkably, the qualitative pattern illustrated Fig. 5.1 is extremely

robust to changes of the parameters (in particular, it is unaffected by the response

of housing supply).

In contrast, by assuming backward-looking and heterogeneous expectations, the

stability properties of the FSS and the nature of price and stock fluctuations depend

on the way investors’ beliefs coevolve with the housing market itself. The average

price expectation is specified as

P e
t,t+1 = ϕ(Pt−1) = nc,tϕc(Pt−1) + nf,tϕf (Pt−1), nf,t = 1− nc,t, (5.7)

where ϕc(P ) = P + γ(P − P ∗) and φf(P ) = P + θ(P ∗ − P ), γ, θ > 0, represent the

extrapolative and regressive components, respectively. Similar to (4.16), the market

weight of extrapolative and regressive beliefs evolves endogenously, depending on

market circumstances. The market proportion of extrapolators is specified as nc,t =
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Figure 5.1. The case of perfect foresight : ‘well-behaved’ price and

stock adjustments in response to an unanticipated shock.

w(Pt−1), where w(P ) = [1+ν(P−P ∗)2]−1, is a ‘bell-shaped’ function of the observed

mispricing, governed by a (possibly state-dependent) sensitivity coefficient ν > 033.

The rent and the supply of new constructions are modelled as isoelastic functions,

namely, q(H) = λ0H
−λ, h(P ) = µ0P

µ, λ0, µ0, λ, µ > 0. Dynamical system (5.5) and

(5.3) has a locally stable FSS34 only for sufficiently weak extrapolation (low param-

eter γ). For large enough γ, the model predicts that an initial positive deviation

from the fundamental price tends to be amplified by investors’ behavior. However,

the stability loss generated by strong extrapolation may result in different scenarios,

33See Section 4.3 for a behavioral interpretation of this endogenous rule. In Figs. 5.2 and 5.3,

ν = ν(P ) is specified in such a way that the bell-shaped function w(P ) is asymmetric, featuring

stronger reaction to negative mispricing.
34Note, however, that the local stability of the FSS in this model is conceptually different from

the saddle-path stability in the model with perfect foresight.
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Figure 5.2. Impact of different degrees of supply elasticity (from

top-left to bottom right: µ = 1, µ = 2.5, µ = 4, µ = 5), in the

presence of strong extrapolative behavior. House price (black) and

stock (grey) are expressed in relative deviations from their fundamen-

tal levels. Other parameters are: P ∗ = H∗ = 100, r = d = ξ = 0.5%,

γ = 0.15, θ = 0.125, α = 0.005, λ = 4. State-dependent switch-

ing coefficient is modelled as ν = 1/100 for P ≥ 100, whereas

ν = ν(P ) = (101− P )/100 for P < 100.

depending on the elasticity of housing supply, µ. Under a relatively inelastic housing

supply, the extrapolation generates two additional (locally stable) non-fundamental

steady states (NFSS), via a so-called pitchfork bifurcation. Such ‘bubble equilibria’

are characterized by higher (respectively lower) levels of the price-rent ratio than the

fundamental price-rent ratio π∗ in equation (5.6). Therefore, under a weak supply

response, a positive mispricing at time t = 0 results in a long-lasting price bubble

and overbuilding, in the absence of exogenous shocks (the top left panel of Fig. 5.2).
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Figure 5.3. Changes of the basin (boundary) of the bubble steady

state, for increasing supply elasticity (from top-left to bottom right:

µ = 1, µ = 1.2, µ = 1.4, µ = 1.57). Other parameters are as in Fig.

5.2.

Things are quite different under a more elastic housing supply. Although the initial

price path is very similar, a prompt supply response results in a larger growth of the

housing stock, which causes a price decline and, ultimately, the endogenous bursting

of the bubble (the top right panel). This second scenario is associated with a stable

closed orbit, generated via a Neimark-Sacker bifurcation. The larger the supply re-

sponse, the larger and faster the growth of the stock, the shorter the bubble period

(the bottom panels of Fig. 5.2).

Fig. 5.3 illustrates a further scenario in which supply elasticity may affect bubbles

in a similar manner. The top-left panel is a phase-space representation in the plane
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of house price and stock (in relative deviations from P ∗ and H∗, respectively) of the

dynamics depicted in the top-left panel in Fig. 5.2. The underlying regime has three

equilibria, two of which are visible in Fig. 5.3, namely, the FSS and the ‘upper’

NFSS. The light and dark gray regions represent the basins of attraction of the

coexisting NFSS, whereas the (saddle) FSS lies on the boundary of the basins. The

top panels and the bottom-left panel indicate that, the larger the supply elasticity,

the closer the NFSS gets to the boundary of its basin. The bubble equilibrium thus

becomes less and less robust to exogenous noise, although it continues to be locally

stable. In particular, its basin of attraction may become very small (white area in

the bottom-right panel of Fig. 5.3)35. From the viewpoint of nonlinear dynamics, the

phenomena illustrated in Fig. 5.3 are global, in the sense that they are independent

of the local stability properties of the coexisting steady states.

The qualitative results produced by this model are in agreement with recent re-

search on housing market bubbles and urban economics, reporting that a more

elastic housing supply is associated to shorter bubbles, smaller price increases and

larger stock adjustments (see, e.g. Glaeser et al. (2008))36. This model thus pro-

vides a ‘nonlinear economic dynamics’ interpretation on the observed role of supply

elasticity in shaping housing bubbles and crashes, based on bifurcation analysis and

on a simple HAM framework.

5.2. Disequilibrium price adjustments. Further HAMs of the housing market

depart from equilibrium asset pricing equation (5.1) and rest on the view that prices

adjust to excess demand in each period in disequilibrium. This may lead to differ-

ent dynamics from that observed under market clearing. However, the phenomena

reported in the previous section appear to be quite robust to such alternative spec-

ifications. In particular, Dieci and Westerhoff (2012) consider the following linear

price adjustment equation

Pt+1 − Pt = ψ(DR
t +DS

t −Ht). (5.8)

35In the bottom-right panel of Fig. 5.3, the dark gray region represents the basin of a coexisting

attracting closed orbit.
36Further experimental evidence on the negative feedback and the stabilizing role of elastic

housing supply is provided by Bao and Hommes (2015) in a related heterogeneous-agent setting.
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Housing stock Ht evolves similarly to (5.3), namely, Ht = (1−d)Ht−1+mPt, m > 0.

The housing demand DR
t +DS

t := Dt (interpreted as the desired stock of housing) is

made up of ‘real demand’ DR
t (from consumers of housing services) and speculative

demandDS
t (from investors motivated by short-term capital gains). The two demand

components are modeled, respectively, as follows:

DR
t = a− bPt, a, b > 0, (5.9)

DS
t = nc,tDc,t + nf,tDf,t = nc,tγ̂(Pt − P ∗) + nf,tθ̂(P

∗ − Pt), γ̂, θ̂ > 0, (5.10)

where Dc,t and Df,t are chartist and fundamentalist demand, respectively. Again,

the proportion of extrapolators nc,t = w(Pt) evolves according to weighting function

w(P ) introduced in Section 5.1.2. In particular, while real demand DR
t depends

linearly and negatively on the current price level, speculative demand DS
t results in

a nonlinear, cubic-like function of Pt
37. In (5.10), P ∗ is the FSS, corresponding to

the unique steady state of the baseline case without speculative demand, namely,

P ∗ := ad
m+bd

, H∗ = m
d
P ∗ = am

m+bd
. Using the change of variables πt := Pt − P ∗,

ζt := Ht−1 − H∗, one obtains the following two-dimensional nonlinear system in

deviations from the FSS:

πt+1 = πt − ψ

[
(b+m)πt −

γ̂πt − θ̂νπ3
t

1 + νπ2
t

+ (1− d)ζt

]
,

ζt+1 = mπt + (1− d)ζt.

The analytical and numerical study of the dynamical system delivers clear-cut re-

sults about the emergence of housing bubbles and crashes and the joint role played

by chartist demand parameter, γ̂, and the slopes of ‘real’ demand and supply sched-

ules, b and m. In particular, similar to Dieci and Westerhoff (2016), parameter γ̂

may destabilize the steady state via a pitchfork bifurcation, if the housing supply

curve is sufficiently flat (low m), or via a Neimark-Sacker bifurcation, if the supply

schedule is sufficiently sloped (large m). Moreover, in both scenarios, large γ̂ re-

sults in a ‘route’ to complexity and endogenous irregular bubbles and crashes. In

particular, in the pitchfork scenario, two locally attracting NFSS may evolve into

37In an interesting recent paper, Diks and Wang (2016) find a similar cubic-type nonlinearity,

by applying stochastic catastrophe theory to housing market dynamics.
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more complex (disjoint) attractors and, ultimately, merge into a unique attractor

(through a so-called homoclinic bifurcation). The motion of the system on this at-

tractor is characterized by irregular dynamics in the bull or bear market regions, and

by sudden, seemingly unpredictable switching between the bull and bear markets

(the top-left panel of Fig. 5.4) and slow change of the stock level (the top-right

panel)38. In the Neimark-Sacker scenario, irregular bubbles of different size and du-

ration, followed by sudden crashes, can be observed (the bottom-left panel), with

larger and more frequent stock fluctuations (the bottom-right panel). This kind of

motion is also due to a complex attractor, originally born as a regular closed curve

via a Neimark-Sacker bifurcation.

Kouwenberg and Zwinkels (2015) develop and estimate a housing market model

with a structure similar to Dieci and Westerhoff (2012). For estimation purposes,

their model is expressed in log price, pt := lnPt, and the log-fundamental p∗t :=

lnP ∗
t is modelled as a time-varying reference value. The demand functions from

consumers and investors are interpreted as flows (desired transactions) and so is

supply (identified with the flow of new constructions). While fundamentalist demand

is based on current mispricing, chartist demand is based on the extrapolation of a

time average of past returns. The proportions of chartists and fundamentalists

evolve endogenously based on past performances (related to past observed forecast

errors), according to a standard logit switching model. The model is expressed as:

ρt+1 := pt+1 − pt = ψ(dt − ht) + ǫt+1, (5.11)

where ρt+1 is the log-return on housing investment, ǫt+1 is a random noise term.

The demand and supply are defined as follows:

dt = (a− bpt) + nc,tγ̂

L∑

l=1

ρt−l+1 + nf,tθ̂(p
∗

t − pt), ht = c+mpt. (5.12)

Chartist proportion is given by nc,t = [1 + exp (−βAt)]
−1, where At = (Πf,t −

Πc,t)/(Πf,t + Πc,t), and Πh,t =
∑J

j=1 |Eh,t−j(ρt−j+1)− ρt−j+1| is a sum of past ab-

solute forecast errors of agents of type h, h ∈ {f, c}. Similar to equations (5.9)

38See also Dieci and Westerhoff (2013a) for similar dynamics in a housing market model with

different specifications of housing supply and demand.
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Figure 5.4. Irregular bubbles and crashes in the presence of strong

extrapolation. Top panels: house price and stock (in deviations from

the steady state) in the ‘pitchfork scenario’ (b = 0.6, m = 0.0003,

γ̂ = 7.28). Bottom panels: house price and stock in the ‘Neimark-

Sacker’ scenario (b = 0.05, m = 0.5, γ̂ = 6). Other parameters are

d = 0.02, θ̂ = 1, ν = 1 for all panels.

and (5.10), the housing demand dt in (5.12) includes the consumer demand com-

ponent and the speculative demand terms due to chartists and fundamentalists,

respectively39.

The model can be estimated by rewriting it as single non-linear equation and ap-

plying maximum likelihood estimation. Estimation results (based on U.S. quarterly

39Chartist and fundamentalist speculative demand is assumed to be proportional to their ex-

pected log-returns.
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time-series data on prices and rents)40 reveal that the coefficients for the fundamen-

talist and chartist rules are significant and have the expected signs. The positive

and significant sign of the estimated intensity of choice parameter (β) implies that

agents tend to switch following recent prediction performance. Interestingly, simu-

lation of the deterministic skeleton of the model (with the parameters set equal to

the estimated values) shows that the price does not converge to a stable steady state

value, but to a stable limit cycle. Hence, an endogenous nonlinear motion appears

to be an important part of U.S. housing market dynamics.

A widely reported empirical fact about real estate returns is the presence of short-

term positive autocorrelation and long-term mean-reversion (see, e.g. Capozza and

Israelsen (2007), Case and Shiller (1989), Case and Shiller (1990)). This fact is, more

or less explicitly, part of the motivation for the chartist-fundamentalist framework

adopted in the models reviewed in this section. Kouwenberg and Zwinkels (2014)

build an econometric model that includes explicitly these two competing components

of housing returns. The model is based on a VECM equation, modified to allow for

smoothly changing weights of the autoregressive and error correction components,

conditional on the value of a transition variable that depends on past relative fore-

cast errors (a so-called smooth transition model). In fact, the econometric model is a

particular case of the behavioural model described above (Kouwenberg and Zwinkels

(2015)). The analysis shows that house prices are cointegrated with a rent-based

estimate of the fundamental value. Estimation results (using quasi-maximum like-

lihood estimation, based on quarterly US national house price index data) indicate

that the strength of the autocorrelation and the long-term mean reversion in housing

returns vary significantly over time, depending on recent forecasting performances.

The time variation captured by the smooth transition model can produce better

out-of-sample forecasts of house price index returns than alternative models.

6. HAMs and Market Microstructure

Limit order markets (LOM) are the most active and dominating financial mar-

kets (O’Hara (2001), Easley, de Prado and O’Hara (2013), O’Hara (2015)). A core

40Eichholtz, Huisman and Zwinkels (2015) develop and estimate a similar HAM based on a

long-term time series of house prices in Amsterdam.
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and challenging issue in dynamical LOM models is the endogenous order choice of

investors to submit either market or limit orders. It is important to understand how

investors trade based on their asymmetric information and what they can learn from

order book information. The current literature of limit order market models faces

two main challenges. First, they mainly focuses on perfectly rational information-

based trade and order choice of informed traders. However, within rational ex-

pectation equilibrium framework, “a model that incorporates the relevant frictions

of limit-order markets (such as discrete prices, staggered trader arrivals, and asym-

metric information) does not readily admit a closed-form solution (Goettler, Parlour

and Rajan (2009))”. This limits the explanatory power of this framework. Second,

rational expectation framework simplifies the order choice behavior of uninformed

traders by introducing either private value or time preferences exogenously. How-

ever, as pointed out by O’Hara (2001), ‘It is the uninformed traders who provide

the liquidity to the informed, and so understanding their behavior can provide sub-

stantial insight and intuition into the trading process”. Therefore what uninformed

traders can learn from order book information and how learning affects their order

choice and the behavior of informed traders are not clear.

Recent development of HAMs and computationally oriented agent-based simula-

tions provide a framework to deal with these challenges in LOM models. With great

flexibility in modelling complexity and learning, this framework offers a very promis-

ing and integrated approach to the research in market microstructure. Within this

framework, many features including asymmetric information, learning, and order

choice can be articulated. It can provide an insight into the impact of heteroge-

neous trading rules on limit order book and order flows (Chiarella and Iori (2002),

Chiarella, Iori and Perello (2009), Chiarella, He and Pellizzari (2012), Kovaleva and

Iori (2014)), interplay of different market architectures and different types of reg-

ulatory measures, such as price limits (Yeh and Yang (2010)), transaction taxes

(Pellizzari and Westerhoff (2009)), short-sales constraints (Anufriev and Tuinstra

(2013)). It also sheds light on the costs and benefits of financial regulations (Lens-

berg et al. (2015)).
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This section discusses briefly the recent developments along this line, in partic-

ular the contributions of Chiarella, He and Wei (2015), Chiarella et al. (2017) and

Arifovic et al. (2016). We first focus on how computationally oriented HAMs can be

used to replicate the stylized facts in LOM and provide possible mechanism expla-

nation to these stylized facts in Section 6.1. We then discuss how genetic algorithm

(GA) learning with a classifier system can help to understand the joint impact of

market information, market microstructure mechanisms, and behavioral factors on

the dynamics of LOM characterized by information asymmetry and complexity in

order flows and trading in Section 6.2. We also examine the impact of high frequency

trading (HFT) and learning on information aggregation, market liquidity, and price

discovery in Section 6.3, demonstrating that the incentive for high frequency traders

not to trade too fast can be consistent with price information efficiency. We also

discuss some implications on market design and regulation in Section 6.4.

6.1. Stylized facts in limit order markets. Agent-based computational finance

has made a significant contribution to characterize the stylized facts in financial

markets, as discussed in Section 2. As pointed out in Chen et al. (2012) and Gould,

Porter, Williams, McDonald, Fenn and Howison (2013), after several prototypes

have successfully replicated a number of financial stylized facts of the low frequency

data, the next milestone is to see whether HAMs can also be used to replicate the

features in high frequency domain.

Various stylized facts in limit order markets have been documented in market

microstructure literature. According to surveys by Chen et al. (2012) and Gould

et al. (2013), apart from the stylized facts in the time series of returns, including

fat tails, the absence of autocorrelation in returns, volatility clustering, and long

memory in the absolute returns, the limit order market has its own stylized facts.

They include long memory in the bid-ask spread and trading volume, hump shapes in

order depth profiles of order books, non-linear relationship between trade imbalance

and mid-price return, and diagonal effect or event clustering in order submission

types, among the most common and important statistical regularities in LOM. They

have become the most important criteria to justify the explanatory power of agent-

based LOM.
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A number of HAMs of market microstructure have been able to replicate some of

the stylized facts. They include zero-intelligence models and HAMs (see Chen et al.

(2012) and Gould et al. (2013) for surveys). The zero-intelligence models show that

some of the stylized facts, such as fat tail and possible volatility and event clus-

terings, are generated by trading mechanism, instead of agents’ strategic behavior.

Different from the zero-intelligence models, HAMs consider agents’ strategic behav-

iors as potential explanations to the stylized facts. Chiarella and Iori (2002) argue

that substantial heterogeneity must exist between market participants in order for

the highly non-trivial properties of volatility to emerge in real limit order markets.

By assuming that agents use strategies that blend three components (fundamental-

ist, chartist, and noisy), Chiarella, Iori and Perello (2009) provide a computational

HAM of an order-driven market to study order book and flow dynamics. Inspired by

the theoretically oriented dynamic analysis of moving average rules in Chiarella, He

and Hommes (2006), Chiarella, He and Pellizzari (2012) conduct a dynamic analy-

sis of a more realistic microstructure model of continuous double auctions. When

agents switch between either fundamentalists or chartists based on their relative

performance, they show that the model is able to characterise volatility clustering,

insignificant autocorrelations (ACs) of returns and significantly slow-decaying ACs

of the absolute returns. The result suggests that both behavioural traits and realistic

microstructure have a role in explaining several statistical properties of returns.

In a modified version of Chiarella, Iori and Perello (2009), Kovaleva and Iori

(2014) investigate the interrelation between pre-trade quote transparency and styl-

ized properties of order-driven markets populated by traders with heterogeneous

beliefs. The model is able to capture negative skewness of stock returns and volatil-

ity clustering once book depth is visible to traders. Their simulation analysis reveals

that full quote transparency contributes to convergence in traders actions, while ex-

ogenously partial transparency restriction may exacerbate long-range dependencies.

However, replicating most of these stylized facts in LOM simultaneously remains

very challenging.

When modelling agents’ expectation, behavioral sentiment plays an important

role. Barberis, Shleifer and Vishny (1998) and Daniel et al. (1998) point out that
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certain well-known psychological biases, including conservatism, representativeness

heuristic, overconfidence and biased self-attribution, not only characterize how peo-

ple actually behave, but can also explain a range of empirical findings, such as

underreation and overreaction of stock prices to news, excess volatility and post-

earnings announcement drift. By incorporating behavioral sentiment to a LOM

model, Chiarella et al. (2017) show that the behavioral sentiment not only helps to

replicate most of the stylized facts simultaneously in LOM, but also plays a unique

role in explaining these stylized facts that cannot be explained by noise trading.

They include fat tails in the return distribution, long memory in the trading volume,

an increasing and non-linear relationship between trading imbalance and mid-price

returns, as well as the diagonal effect or event clustering in order submission types.

6.2. Information and learning in limit order market. Because of informa-

tion asymmetry and growing complexity in order flows and trading in LOM, the

endogenous order choice based on the order book conditions is a core and chal-

lenging issue, as highlighted by Rosu (2012). How traders’ learning, in particular

uninformed traders, from order book information affect their order choice and limit

order market becomes important. Recently, Chiarella, He and Wei (2015) provide

a LOM model with adaptive learning through genetic algorithm (GA) with classi-

fier system, trying to explore the joint impact of adaptive learning and information

asymmetric on trading behavior, market liquidity, and price discovery.

Since introduced firstly by Holland (1975), GA and classifier system have been

used in agent-based models to examine learning and evolution in Santa Fe Institute

artificial stock market (SFI-ASM) (Arthur, Holland, LeBaron, Palmer and Tayler

(1997a), LeBaron, Arthur and Palmer (1999)) and economic models (Marimon, Mc-

Grattan and Sargent (1990), Lettau and Uhlig (1999), Allen and Carroll (2001)).

In LOM, LeBaron and Yamamoto (2008) employ GA to capture the imitation be-

haviour among heterogenous beliefs. Darley and Outkin (2007) use adaptive learning

to evolve trading rules of market makers and apply their simulations to the Nasdaq

market in 1998. The adaptive learning has been widely used in financial markets.

However most HAMs with adaptive learning and trading are largely driven by the
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market price instead of asymmetric information, which is the focus of microstructure

literature in LOM. This brings a significantly difference in the dynamics of LOM.

Unlike informed traders, uninformed traders do not have the information about

the current, but lagged fundamental value. By combining information processing of

market conditions and order choice into GA with a classifier system, Chiarella, He

and Wei (2015) show that behavior heterogeneity of traders is endogenously emerged

from their learning and trading. This approach fills the gap between agent-based

computational finance and the mainstream market microstructure since Kyle (1985).

They show that, measured by the average usage of different market information,

trading rules under the GA learning become stationary and hence effective in the

long-run. In particular, the learning of uninformed traders improves market infor-

mation efficiency, which is not necessarily the case when informed traders learn. The

learning also makes uninformed traders submit less aggressive limit orders but more

market orders, while it makes informed traders submit less market orders and more

aggressive limit orders. In general, both informed and uninformed traders provide

liquidity to market at approximately the same rate. The results provide some in-

sight into the effect of learning on order submission behavior, market liquidity and

efficiency.

6.3. High frequency trading. With technology advance, high frequency trading

(HFT) becomes very popular. It also brings a hot debate on the benefit of and

market regulation on HFT (O’Hara (2015)). In particular, do financial market

participants benefit from HFT and how does HFT affect market efficiency? To

examine the effect of HFT and learning in limit order markets, Arifovic et al. (2016)

extend the LOM model of Chiarella, He and Wei (2015) and introduce fast and

slow traders with GA learning. Consistent with Grossman and Stiglitz (1980), they

show a trade-off between information advantage and profit opportunity for informed

HFT. This trade-off leads to a hump-shaped relation between HFT profit, market

efficiency, and trading speed. When informed investors trade fast, their information

advantage makes HFT more profitable. However, the learning, in particular from

uninformed traders, improves information aggregation and efficiency. This then

reduces the information advantage of HFT and hence the profit opportunity. HFT in
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general improves market information efficiency and hence price discovery. However,

the trade-off between the information advantage and trading speed of HFT also leads

to a hump-shape relation between liquidity consumption and trading speed. HFT

improves liquidity consumption and price discovery in general due to information

aggregation through the learning. When HFT trade too fast, they submit more

market order, which enlarges the spread and reduces market liquidity. This implies

that there is an incentive for not trading too fast, which in turn improves price

efficiency. The results provide an insight into the the profitability of HFT and

the current debates and puzzles about the impact of HFT on market liquidity and

efficiency.

6.4. HAMs and microstructure regulation. Lensberg et al. (2015) build an

agent-based framework with market microstructure and delegated portfolio man-

agement in order to forecast and compare the equilibrium effects of different regu-

latory measures: financial transaction tax, short-selling ban and leverage ban. The

financial market is characterized by fund managers who trade stocks and bonds in

an order-driven market. The process of competition and innovation among different

investment styles is modelled through a genetic programming algorithm with tour-

nament selection. However, the heterogeneous trading strategies that emerge from

the evolutionary process can be classified by a relatively small number of ‘styles’

(interpreted as value trading, news trading/arbitrage and market making/liquidity

supply). The model contributes to understand the pros and cons of different regu-

lations, by providing detailed information on the equilibrium properties of portfolio

holdings, order flow, liquidity, cost of capital, price discovery, short-term volatility

and long-term price dynamics. By including an exogenous business cycle process,

the model also allows to quantify the effects of different regulations during periods

of market distress. In particular, it turns out that a financial transaction tax may

have a negative impact on liquidity and price discovery, and limited effect on long

swings in asset prices.
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7. Conclusion and Future Research

This chapter has discussed the latest development of heterogeneous agent models

(HAMs) in finance over the last ten years since the publications of the Handbook

of Computational Economics in 2006 and, in particular, the Handbook of Financial

Markets: Dynamics and Evolution in 2009. It demonstrates a significant contribu-

tion of HAMs to finance theory and practice from five broad aspects of financial

markets. First of all, inspired by the rich and promising perspectives of the earlier

HAMs, we have witnessed a growing supporting evidence on the explanatory power

of HAMs to various market anomalies and, in particular, the stylized facts through

calibrations and estimations of HAMs to real data in various financial markets over

the last decade. More importantly, different from traditional empirical finance and

financial econometrics, HAMs provide some insights into economic mechanisms and

driving forces of these stylized facts. They therefore lead to some helpful implications

in policy and market design. Moreover, the basic framework of earlier HAMs has

been naturally developed and extended in two different directions. The first exten-

sion to a continuous-time setup provides a unified framework to deal with the effect

of historixal price information. The framework can be used to examine profitability

of fundamental and non-fundamental, such as momentum and contrarian, trading

strategies that have been widely used and discussed in financial market practice and

finance theory. It also enables to develop optimal asset allocation to incorporate

time series momentum and reversal, two of the most important anomalies in finan-

cial markets. The second extension to a multiple-risky-asset framework helps to

examine the impact of heterogeneous expectations on asset comovements within a

financial market, as well as the spill-over effects across markets, and to characterize

risk-return relations through an evolutionary CAPM. Moreover, inspired by HAMs

of financial markets, a new heterogeneous-agent framework for housing market dy-

namics has been developed recently. It can well explain house bubbles and crashes,

by combining behavioral facts and the real side of housing markets. Finally, the

advantage of HAMs in dealing with market complexity plays a unique role in the

development of market microstructure modelling. This provides a very promising
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approach to understand the impact of information, learning, and trading on trading

behavior, market liquidity, and price discovery.

The research streams reviewed in this chapter can be developed further in several

directions. First, instead of heuristic assumptions on agents’ behavioral heterogene-

ity currently assumed in HAMs, there is a need to provide micro-foundation to en-

dogenize such heuristic heterogeneity among agents. Most of the HAMs investigate

the endogenous market mechanism by focusing on the interaction of heterogeneous

agents with different expectations (typically fundamentalists and trend followers).

Their explanatory power is mainly demonstrated by combining the insights from the

nonlinear dynamics of the underlying deterministic model with various noise pro-

cesses, such as fundamental shocks and noise trading. To a large extent, the HAM

literature has not explored the impact of asymmetric information or information

uncertainty on agents’ behavioral heterogeneity. By considering asymmetric infor-

mation, which is the focus of traditional finance literature and plays a very impor-

tant role in financial markets, agents’ heterogeneity can be endogenized and micro-

founded. This has been illustrated in Section 2.3, based on He and Zheng (2016),

by showing how trading heterogeneity can arise endogenously among traders due

to uncertainty about the fundamental value information of the risky asset. The

development along this line would help to provide economic foundation to the as-

sumed behavioral heterogeneity of agent-based models, which is often critiqued by

traditional finance.

Second, as a different aspect of information uncertainty, ambiguity has been in-

troduced in the literature to address various market anomalies and asset pricing

(Epstein and Schneider (2006)). More recently, Aliyev and He (2016) discuss the

possibilities of capturing efficient market hypothesis and behavioral finance under a

general framework based on a broad definition of rationality. They argue that the

root of behavioral anomalies comes from the imprecision and reliability of informa-

tion. A natural combination of heterogeneity and ambiguity would provide a broader

framework to financial market modelling and to rationalize market anomalies.
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Third, when asset prices are affected by historical price information, we need to

develop a portfolio and asset pricing theory in continuous-time to characterize cross-

section returns driven by time series momentum in short-run and reversal in long-

run. The continuous-time HAMs discussed in Section 3 illustrate the challenging

but promising perspectives of this development. Recently, Li and Liu (2016) study

the optimal momentum trading strategy when asset prices are affected by historical

price information. They provide an optimal way to hedge the momentum crash risk,

a newly-found empirical feature, and to significantly improve momentum profits.

The techniques developed can potentially be applied to a range of problems in

economics and finance, such as momentum, long memory in volatility, post-earnings

announcement drift, indexation lags in the inflation-linked bonds.

Fourth, incorporating social interactions and social networks to the current HAMs

would be helpful for examining their impact on financial markets and asset pricing.

Social interactions are well documented in financial markets, in particular when

facing information uncertainty. He, Li and Shi (2016) recently develop a simple

evolutionary model of asset pricing and population dynamics to incorporate social

interactions among investors with heterogeneous beliefs on information uncertainty.

They show that social interactions can lead to mis-pricing and existence of multiple

steady state equilibria, generating two different volatility regimes, bi-modal distribu-

tion in population dynamics, and stochastic volatility. As pointed out by Hirshleifer

(2015), [T]he time has come to move beyond behavioral finance to ‘social finance’.

This would provide a fruitful area of research in the near future.

Fifth, HAMS of multiasset markets and financial market interlinkages could be

developed further. An interesting research issue is understanding the effect of an

increase in the number of risky assets in a setup similar to Chiarella, Dieci, He and

Li (2013) and the extent to which standard results on the role of diversification

continue to hold in the presence of momentum trading. A related issue concerns the

profitability of different trading strategies in a multi-asset framework, their ability

to exploit the emerging correlation patterns, and their joint impact on financial

market stability. Furthermore, the ability of the evolutionary, heterogeneous-agent

CAPM discussed in Section 4.2 to produce a time variation of ex-ante betas has
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been illustrated through simulation results only. There is a need to have formal

statistical tests on the observations based on the numerical simulations. Finally, it

would be interesting to see if the time variation of either beta coefficients or risk

premia plays a role in explaining the cross section of asset returns.

Sixth, housing market dynamics has only very recently been investigated from the

perspective of HAMs. The existing models are mainly aimed at qualitative or quan-

titative investigations of the role of price extrapolation in generating house price

fluctuations. Among the possible interesting developments of this baseline setup is

the joint impact of interest rate changes, credit conditions, and investor sentiment

on house price fluctuations. In particular, the role of interest rates and credit in

triggering house price booms and busts is crucial for policy makers and highly de-

bated in academic literature (see, e.g. Himmelberg et al. (2005) and Jord, Schularick

and Taylor (2015)). A related issue concerns the dynamic interplay among housing,

stock and bond markets, driven by both fundamental shocks, such as interest rate

movements, and behavioral factors, such as investors switching to better investment

opportunities. Dieci, Schmitt and Westerhoff (2017) provide a first attemp in this

direction.

Finally, an integrated approach of agent-based models and market microstructure

literature would provide a very promising approach, if not the only one, to un-

derstand information aggregation, learning, trading, market liquidity and efficiency

when facing information asymmetry and growing complexity in market microstruc-

ture. This has been illustrated by the discussion in Section 6, but remains largely

unexplored.
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