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Abstract

We establish identifying assumptions and estimation procedures for the ATT in a

Di↵erence-in-Di↵erences setting with staggered treatment adoption in the presence

of spillovers. We show that the fully interacted TWFE regression approach of

Wooldridge [2022] can be extended to our proposition. We broaden our framework

to the non-linear case of count data and revisit a corresponding application from

the crime literature. Monte Carlo simulations show that our estimator performs

competitively.
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1 Introduction

The Di↵erence-in-Di↵erences literature, particularly the one concerned with staggered

treatment adoption, has experienced significant advances in the last few years, and pa-

pers by Roth et al. [2023] and de Chaisemartin and D’Haultfœuille [2021] have tried to

summarize these developments. Within this array of advances, one area still understud-

ied is the one linked to spillovers, which can be assumed to be present—and relevant—in

many empirical settings (Roth et al., 2023). Spillovers imply that the Stable Unit Treat-

ment Value Assumption (SUTVA) assumption does not hold. Our work contributes to

this area and links to two active Di↵erence-in-Di↵erences literature strands.

The first one studies the identification of average treatment e↵ects in the presence of

spillover e↵ects. Work by Berg et al. [2021], Butts [2023], Clarke [2017], and Huber and

Steinmayr [2021] highlights the potential for biased estimates of the ATT if the treatment

also impacts units that are not formally treated. Hereafter, we refer to this body of work

as the Spillover literature. One issue is that untreated units are no longer valid controls.

So far, proposed solutions mostly centre around ruling out spillovers for a given group

of units, often based on some spatial distance, allowing the researcher to use this latter

group as a control. Alternatively, if su�cient information exists, one can parametrize

how units are exposed to spillovers. Another drawback is that multiple treatment e↵ects

can be defined in the presence of spillovers. The researcher might be interested in the

treatment e↵ect without interference (e.g., the one normally identified under SUTVA)

or in a broader e↵ect that accounts for spillovers. We contribute to this literature by

providing an argument for identifying several treatments of interest. Our setting also

departs from this literature since we focus on the more complex staggered treatment

adoption, which has the potential for cumulative spillovers. Nevertheless, our results also

apply to the more classical, simultaneous treatment case, which is the focus of the work

mentioned above.

The second strand of the literature focuses on estimation issues under said stag-

gered adoption and heterogeneous treatment e↵ects across units and time. Borusyak

et al. [2021], de Chaisemartin and D’Haultfoeuille [2020], Callaway and Sant’Anna [2020],

Goodman-Bacon [2021], Sun and Abraham [2020] and Wooldridge [2022] highlight how

OLS estimation of the Two Way Fixed E↵ect (TWFE) model might lead to point es-

timates that are di↵erent from the ATT, and most other estimands of interest, to the

extreme of being uninterpretable. This constitutes an estimation issue rather than an

identification problem, and the authors suggest alternative estimators that recover mean-

ingful estimands by re-weighting appropriately. Hereafter, we refer to this body of work

as the Weighting literature. We contribute to this literature by extending it to the case
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of spillovers in both linear and non-linear models.

Specifically regarding contributions, we first establish the identifying assumptions for

the ATT given a staggered Di↵erence-in-Di↵erences set up in the presence of spillovers.

We show that aside from the canonical i) treatment irreversibility, ii) no-anticipation,

and iii) parallel trends assumptions, identification requires that once a unit is treated,

it does not experience spillovers, past, present, and future. We name this assumption

treated-immune. This assumption also unifies the ATTs, because they are the same

with or without spillovers, simplifying policy evaluation and joining with the definition

of ATT under SUTVA. Similar to the existing Spillover literature, we also assume that

a set of never-treated units is not exposed to spillovers. The combination of these two

assumptions allows for the identification of the ATT. Below, we argue that such a scenario

applies to many contexts. Di↵erently from Butts [2023], who is closest to our work, we

directly focus on the staggered treatment scenario and, importantly, provide identification

assumptions for all the ATTs, including the direct e↵ect.1

Our second contribution regards estimation. We show that either the imputation

approach of Borusyak et al. [2021] or the extended TWFE model approach of Wooldridge

[2022] can be used to account for spillovers. Furthermore, we discuss identification and

estimation in the non-linear case of count data, broadening the range of applications

where our setup can be applied to.2 For our empirical application, we revisit Gonzalez-

Navarro [2013], who studied the e↵ects of installing a device tracking cars in the event

of theft. Gonzalez-Navarro [2013] does consider spillovers, but does not correct for the

staggered treatment. Since car theft is a count data outcome, we implement the non-

linear Poisson Di↵erence-in-Di↵erences adjusted for spillovers. Our correction leads to a

larger e↵ect of the policy relative to the original contribution’s specification.

Finally, we perform a Monte Carlo analysis, highlighting the bias-variance trade-o↵

implicit in the correction for staggered treatment and spillovers. Identification of time

and group fixed e↵ects can neither rely on the already treated units due to heterogeneous

treatment e↵ects, nor on the untreated units potentially exposed to spillovers. However,

the benefit of excluding such units from estimation can be small if treatment e↵ects are

relatively homogeneous and if spillovers are small, while costing the researcher precision.

We compare the traditional TWFE estimator, which ignores both staggered adoption and

spillovers, the Borusyak et al. [2021] imputation estimator, which accounts for staggered

adoption but not for spillovers, and our estimator, which corrects for both. We do so

under di↵erent sample sizes, degrees of staggered treatment, and degrees of spillovers,3

1
Butts [2023] is concerned with establishing identification of the sum of direct and spillover e↵ects.

2
While we extend identification and estimation to the non-linear case, Butts [2023] focuses his dis-

cussion on the linear setting.
3
Borusyak et al. [2021]’s imputation estimator and Wooldridge [2022]’s extended TWFE estimator
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showing that our estimator performs competitively in circumstances that reflect staggered

treatment adoption and the presence of spillovers.

The remainder of the paper is organized as follows. Section 2 provides intuition along-

side two motivating examples, after which Section 3 lays out the formal DiD setup with

staggered treatment adoption. Section 4 establishes conditions for identifying the ATT,

while Section 5 discusses estimation and inference considering the formerly established

assumptions. Section 6 extends our model to the non-linear case, and Section 7 discusses

a corresponding application, namely, Gonzalez-Navarro [2013]. Section 8 provides Monte

Carlo simulations, and Section 9 concludes.

2 Motivating Examples and Intuition

To illustrate our setting, consider the case of three groups, A, B, and Z, observed over

three periods, 1, 2, and 3. Groups are defined based on the timing of their treatment.

Group A is treated in period 2, group B is treated in period 3, and group Z is not yet

treated by the last period. Each group has two units, denoted a, a0, b, b0, z, z0. Figure 1

illustrates the treatment and spillover mechanisms using a DAG. For clarity, we omit

nodes for untreated units and unit b0. Solid edges (i.e., lines) indicate e↵ects under no

interference (�it), equivalent to a setting with SUTVA. We call them direct e↵ects. Dotted

edges indicate spillovers from unit j to other treated units (�j
it), and dashed ones represent

spillovers from unit j to untreated units (⌘jit). This Figure highlights the key issues in

the presence of spillovers: there are no valid controls and many treatment e↵ects. Under

SUTVA, only the solid edges would exist.

With some parametrization, we can also visualize a possible data pattern. Let the

outcome of interest be deterministic and given by:

Yit = 1 + �t + �it ·Dit +Dit ·

X

j 6=i

�j
it ·Djt + (1�Dit) ·

X

j 6=i

⌘jit ·Djt, (1)

where Dit is a binary variable equal to 1 when unit i is treated. Equation (1) is an

example of a scenario where unit i’s outcome is not only impacted by its own treatment

e↵ect, �it but also by the treatment of other units via �j
it and ⌘jit. Let the policy e↵ect in

the absence of interference be homogeneous across units and time: �it = � = �0.5 8i, t.

Therefore, ATT ⌘ E(� | Dit = 1) = �0.5. Let the time e↵ect �t = 0.1 · t.

Without spillovers, the data would look like the left panel in Figure 2. The estimators

proposed in the Weighting literature would exploit the never-treated group Z and the

not-yet-treated observations in group-time B2 as the control group to identify the time

are numerically equivalent in our simulations.
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Figure 1: A DAG with Treatment and Spillover paths

e↵ects and, in turn, the ATT .4 Let Gi = min{t | Dit = 1} be the first period in which a

unit is treated (Gi = 1 if never treated). Wooldridge [2022] proposes a regression where

Dit is interacted with indicators of Gi:

Yit = ↵i + �t +
X

g

TX

t0=g

�gt0 · 1(Gi = g, t = t0) ·Dit + "it (2)

Under suitable conditions, it identifies the ATT for each group Gi at each time t by

�gt = E(�it | Gi = g), all equal to -0.5 in our example.

We introduce two alternative scenarios with spillovers that we will use throughout the

paper to motivate our assumptions and the empirical application—called examples 1 and

2 below. In the first scenario, the spillover is in the form of a di↵usion e↵ect, meaning

that �it and (�j
it, ⌘

j
it) have the same sign, hence, the direct e↵ect and the spillover e↵ect

reinforce each other. In the second scenario, the spillover is in the form of displacement

such that �it and (�j
it, ⌘

j
it) have opposite signs.

Example 1 (installation of a water treatment plant). Consider a scenario where we are

interested in the e↵ect of introducing a water treatment plant on the health outcomes of

villages situated along a river. Suppose nearby villages a and a0 are the first to adopt

4
In practice, given the homogeneous treatment e↵ect, even the already treated A3 observations are

valid controls, and the standard TWFE estimation would also recover the ATT.
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Figure 2: Data under equation (1)

the plant. Both of the group’s A villages and the not-yet-treated downstream—villages

might experience spillovers in the form of cleaner water. The data could then look like

the middle panel in Figure 2, where we set the spillovers to also be homogeneous across

units and time: �j
it = ⌘jit = � = ⌘ = �0.1 8i, j, t. First, there is no valid control group

because the never-treated and the not-yet-treated experience spillovers leading to biased

estimates of the time e↵ects:

E(Yit � Yi,t�1 | Dit = Di,t�1 = 0) = �t � �t�1 +
X

j 6=i

�
�j
it ·Djt � �j

i,t�1 ·Dj,t�1

�

For instance, in period 3, when only group Z is untreated, the bias would be �A
Z3 + �B

Z3 �

�A
Z2 = �0.1. Given the staggered treatment, even homogeneous spillovers would cause

identification issues. Second, even if the never-treated group Z were not exposed to

spillovers, allowing the researcher to identify the time e↵ects, it would not be possible to

identify the direct and spillover e↵ects separately. The estimation methods proposed in

the Weighting literature, such as (2), would at best identify the average sum of direct and

spillover e↵ects E(�+
P

j 6=i �
j
it) = �+ 7

3� = �0.73, equally weighting b�A2 = (�+�) = �0.6,

and b�A3 = b�B3 = (� + 3⇥ �) = �0.8.

Example 2 (installation of stolen vehicle recovery devices). Gonzalez-Navarro [2013]

studies the e↵ect of installing a stolen vehicle recovery device on car thefts. Treatment

adoption is staggered across states (within a country) and only applies to specific car

models. Hence, car theft might be displaced to unprotected models in treated states or

protected models in untreated states. Gonzalez-Navarro [2013] finds a 52% increase in
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theft for protected models in untreated states. The data could follow the patterns of the

right panel in Figure 2, where �j
it = ⌘jit = +0.1 8i, j, t. The same identification issues

apply. Note that, especially in the case of displacement, spillovers could sequentially

become very large as more and more treated units spill on an increasingly narrower

pool of untreated units, exacerbating such identification issues. In this example, E(� +
P

j 6=i �
j
it) = �0.26, equally weighting the A2 group-time, (�+�) = �0.4, and the A3 and

B3 ones, (� + 3⇥ �) = �0.2.5

In some scenarios, E(� +
P

j 6=i �
j
it) might be all the researcher needs to know. How-

ever, it does not disentangle the di↵erent types of e↵ects, limiting its usefulness for

policy-making. For example, when a unit i decides whether to participate in a policy

or treatment, it may only want to consider �it because other units’ decisions are out of

its control. Even a policy-maker whose jurisdiction spans all units might want to deter-

mine the di↵erent channels. Figure 3 illustrates our treated-immune assumption that all

treated units are not exposed to spillovers, combined with the assumption that a subset

of the never-treated units are also not exposed to spillovers. There are no longer edges

to treated groups, i.e., �j
it = 0, and there are no edges to unit z0, allowing for identifica-

tion of the time e↵ects.6 We also accomplish identification of the average spillovers to

the not-yet-treated and a sub-set of the never-treated, i.e. those exposed to spillovers,

allowing the researcher to shed light on the degree of interference across units.

Example 1 [continued]. We can use villages upstream from group A to identify time

e↵ects, because water only flows in the opposite direction. Alternatively, we could exploit

time variation in another health outcome that does not depend on water quality but

has similar trends pre-policy. We can then invoke the treated-immune assumption to

identify the ATT. Since there is now a water treatment installation, future treatment

of upstream villages should be inconsequential. Similarly, previous spillovers that had

ameliorated water quality should be irrelevant, because the water is now fully treated.

Health outcomes observed after the treatment would not incorporate any spillover e↵ects,

and only SUTVA-type direct e↵ects would be present.

Example 2 [continued]. We can use faraway states or di↵erent car models to identify

time e↵ects. This implies that car thieves are only willing to travel a limited distance

and that their network is geographically bounded, or that they focus on specific models.

Gonzalez-Navarro [2013] shows that the data supports both the geographical bounds con-

jecture and the car-model targeting conjecture. Our treated-immune assumption implies

5
For instance, under full displacement that is equally spread across untreated units, �it = ⌘it =

T
t ·�
U
t

,

where T
t and U

t are the number of treated and untreated units at time t, respectively.
6
In practice, we assume that multiple units in group Z are not exposed to spillovers to average out

idiosyncratic shocks.

7



Da2 Ya2

Da02 Ya02

Yb2

Yz2

Yz02

�a2

�a02

⌘ ab2⌘ a 0
b2

⌘
a
0

z2

⌘
a
z2

Da3 Ya3

Da03 Ya03

Db3 Yb3

Yz3

Yz03

�a3

�a03

�b3

⌘
a
0

z3

⌘
a
z3

⌘
b z3

Period 2 Period 3

Figure 3: DAG under the key identification assumptions

that adopting stolen vehicle recovery devices should lead thieves to target unprotected

states and models, leaving protected units una↵ected by spillovers. Again, car theft ob-

served after the treatment would include only SUTVA-type direct e↵ects. One could

argue that if the set of protected states and models were to expand to become almost

universal, thieves might resort to stealing the protected cars again, violating the assump-

tion. This is possible unless thieves switch their focus from cars to other, less protected

targets, or exit the illegal market altogether. Nevertheless, almost universal treatment is

an extreme case comprising other issues, such as a small set of control units to form a

counterfactual.

3 Setup

We consider a DID model with a staggered adoption design, observed over the time

periods t 2 {1, . . . , T}. For each unit at each time t, we consider a binary treatment

status indicating whether the unit is treated (1) or not treated (0). We assume that

the treatment is irreversible, meaning that once a unit undergoes treatment, it remains

treated in subsequent periods.
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Assumption 1 (irreversibility). For any two time periods (s, t) such that s < t, if a unit

has a treatment status of 1 at time s, then it also has a treatment status of 1 at time t.

Under Assumption 1, we define the group label G to be the subset of {1, . . . , T,1},

representing the collection of periods when units enter treatment. We then assign a unit

to a group g 2 G if it enters treatment at period g, except for the group labelled 1,

which remains untreated until time T . For each group g 2 G, we consider the population

of units indexed by i. We denote unit i in group g by a (i, g) pair, and we let ⇤g represent

the set of all (i, g) indices within group g in the population, with ⇤ ⌘
S

g ⇤g being the set

of all indices across all groups. We define Digt 2 {0, 1} as the binary treatment indicator

and let Dig ⌘ (Dig1, . . . , DigT ) represent the treatment history. Furthermore, we define

the vector dg as follows:

dg ⌘ (0, . . . , 0| {z }
t<g

, 1, . . . , 1| {z }
t�g

), (3)

which represents the treatment statuses for group g across all periods and let dtg denote

the treatment history up to time t. In cases with no ambiguity, we will use 0 to represent

d1, since d1 corresponds to the vector of zeros.

Let Yigt({djh}(j,h)2⇤) be the potential outcome for unit i in group g at time t when

{Djh}(j,h)2⇤ is set to {djh}(j,h)2⇤. It is important to note that the potential outcome

depends on the treatment statuses of all units (j, h) 2 ⇤, whereas under SUTVA it would

be a function of the unit’s own treatment status only, i.e., Yigt({djh}(j,h)2⇤) = Yigt(dig).

To facilitate future discussions, we rewrite the potential outcome by partitioning the

population’s treatment into the unit’s own treatment status and those of the other units:

Yigt(dig, {djh}(j,h)2⇤\{(i,g)}).

This notation emphasizes the possibility of unit (i, g) being a↵ected by spillover ef-

fects from units not included in the sample, as ⇤ represents the index set of the entire

population. Note that Assumption 1 and the definition of the group labels G imply that

we observe djh = dh for every (j, h) 2 ⇤ in the data.

We define d(i,g) to be a particular value of {djh}(j,h)2⇤\{(i,g)} where djh = dh for every

(j, h) 2 ⇤\{(i, g)}, representing the treatment status for units other than (i, g) according

to their group labels. In addition, we define 0(i,g) to be another value of {djh}(j,h)2⇤\{(i,g)}

where djh = 0 for every (j, h) 2 ⇤\{(i, g)}, representing the treatment status of no

treatment for units other than (i, g).

These definitions lead to the following four types of potential outcomes that are rele-

vant to our discussion:

• Yigt(dg,d(i,g)) corresponds to the observed treatment status where (i, g) is treated
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according to dg, and other units (j, h) are treated according to dh.

• Yigt(dg,0(i,g)) corresponds to a counterfactual treatment status where (i, g) is treated

according to dg, but all the other units (j, h) are untreated.

• Yigt(0,d(i,g)) corresponds to a counterfactual treatment status where (i, g) is un-

treated, but other units (j, h) are treated according to dh.

• Yigt(0,0(i,g)) corresponds to a counterfactual treatment status where both (i, g) and

all the other units (j, h) are untreated.

We assume that there is no anticipatory e↵ect for these four types of potential out-

comes, a standard assumption in DID models.

Assumption 2 (no anticipation). Yigt(dig, d(i,g)) = Yigt(dtig, d
t
(i,g)) where dig 2 {0, dg} and

d(i,g) 2 {0(i,g),d(i,g)}.

Under this assumption, the not-yet-treated group has the same potential outcomes

as the “never-treated” group. Hence, we will refer to the group labelled 1 as the never-

treated group. Assumption 2 still allows the treatment duration to a↵ect the potential

outcomes.

Next, we introduce the parallel trend assumption, specifically for a linear DID model.

We discuss nonlinear DID models in later sections.

Assumption 3 (parallel trend, linear model). For every group g at time t,

E(Yigt(0
t,0t

(i,g))|↵ig) = ↵ig + �t,

where ↵ig 2 R is the unit fixed e↵ect and �t 2 R is a common time e↵ect.

Assumption 3 can also be expressed in a standard form commonly found in the liter-

ature on DID models [Borusyak et al., 2021]:

Yigt(0
t,0t

(i,g)) = ↵ig + �t + "igt,

where E("igt|↵ig) = 0 for every group g at time t.

We now introduce the estimand of interest, which is the average treatment e↵ect on

the treated (ATT) for group g at time t, denoted as ATT (g, t). Without SUTVA, multiple

definitions of ATT (g, t) can be used. We first introduce ATT (g, t) without accounting

for any spillovers:

ATT0(g, t) ⌘ E(Yigt(d
t
g,0

t
(i,g))� Yigt(0

t,0t
(i,g))).

10



ATT0(g, t) captures the expected treatment e↵ect when unit i is the only treated unit

in the population, thereby excluding any spillover e↵ects from the other units. In other

words, ATT0(g, t) captures only the own direct e↵ect from the treatment, illustrated by

the solid edges in Figure 1, and corresponds to the standard definition of ATT when

SUTVA holds. We can then define an aggregate ATT0 by ATT0 =
P

g,t wgtATT0(g, t)

where wgt is a weight chosen by the econometrician (see Callaway and Sant’Anna [2020]).

We can also adopt an alternative definition of the ATT inclusive of the spillovers:

ATTS(g, t) ⌘ E(Yigt(d
t
g,d

t
(i,g))� Yigt(0

t,0t
(i,g))).

Relative to the ATT0(g, t), ATTS(g, t) incorporates the spillover e↵ect(s) from other

treated units. Note that, at time t, all units with group labels g  t are treated. There-

fore, ATTS(g, t) includes the spillover e↵ect(s) from all units with group labels g  t.

We refer to the di↵erence ATTS(g, t) � ATT0(g, t) as the average spillover e↵ect on

the treated :

AST (g, t) ⌘ E(Yigt(d
t
g,d

t
(i,g))� Yigt(d

t
g,0

t
(i,g))).

Finally, it is useful to define another estimand, which we refer to as the average spillover

e↵ect on the untreated :

ASUT (g, t) ⌘ E(Yit(0
t,dt

(i,g))� Yit(0
t,0t

(i,g))).

4 Identification

This section establishes the conditions for identifying the ATT0(g, t). The discussion

is structured into two steps. We first show that identifying ATT0(g, t) is equivalent

to identifying the sum of the time e↵ect and the spillover e↵ect on the treated. The

second step then introduces conditions that allow the identification of this sum. An

implication of our assumptions is that it unifies the definitions of the ATT by implying

that ATT0(g, t) = ATTS(g, t).

We first discuss the necessary and su�cient condition for identifying ATT0(g, t) when

spillovers are present.

Theorem 1. Suppose that Assumptions 1 to 3 hold, and that all units are untreated at

t = 1. Then, for t � g, the parameter ATT0(g, t) is identified if and only if �t+AST (g, t)

is identified.

Proof. See Appendix.
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The proof of Theorem 1 shows that, for t � g:

E(Yigt) = E(↵ig) + �t + ATT0(g, t) + AST (g, t).

The intuition for Theorem 1 is that since E(↵ig) is identified from the data for group g at

t = 1, it follows that identification of ATT0(g, t) requires knowledge of �t (time e↵ect) and

AST (g, t) (the average spillover e↵ect on the treated). In general, Assumptions 1 to 3 are

not su�cient to deliver identification of these two parameters. Note that AST (g, t) = 0

under SUTVA, in which case identification of the ATT only requires knowledge of the

time-e↵ects.

In what follows, we propose two additional assumptions that enable identification of

ATT0(g, t). We state the first assumption below:

Assumption 4 (No spillover e↵ects on treated units). For every group g at time t such

that t � g,

Yigt(d
t
g,d

t
(i,g)) = Yigt(d

t
g,0

t
(i,g)).

This assumption requires that once a unit receives treatment, it no longer experi-

ences spillover e↵ects. This means the unit forfeits any spillovers it may have previously

received and remains una↵ected by spillovers from subsequently treated groups. As pre-

viously discussed, it will likely apply to many contexts (see Examples 1 and 2). Under

Assumption 4, AST (g, t) = 0, and therefore ATT0(g, t) = ATTS(g, t), unifying the defi-

nition of ATT (g, t).7

Now, we state the second assumption.

For every group g 2 G, let ⇤0
g ✓ ⇤g be a collection of units such that, for every

untreated period t < g:

E(Yigt(0
t,dt

(i,g))|↵ig, (i, g) 2 ⇤0
g) = E(Yigt(0

t,0t)|↵ig, (i, g) 2 ⇤0
g) = ↵ig + �t. (4)

Hence, the ⇤0
g set consists of units within group g that are not a↵ected by spillover e↵ects

while they are untreated.

Assumption 5 (Existence of never-treated units without spillover e↵ects). ⇤0
1 has a

positive measure.

This assumption states that there exists a nontrivial proportion of never-treated units

that are not a↵ected by spillovers, allowing for the identification of the time e↵ects �t. In

7
This not to say that ATTS(g, t) is never interesting when Assumption 4 does not hold. However,

the researcher should be mindful that we can only identify ATTS(g, t) for the observed treatment status

dt
(i,g), weakening external validity. For example, we cannot make any statements about ATTS(g, t) when

other groups are treated earlier than what is observed in the data.
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practice, the econometrician may not have complete knowledge of ⇤0
g and take a conser-

vative approach by selecting the smaller subset of units strongly believed to be una↵ected

by spillovers, denoted by ⇤̃0
g ✓ ⇤0

g. We abuse notation and use ⇤0
g interchangeably with

⇤̃0
g. All the results we discuss below apply to both ⇤0

g and ⇤̃0
g.

Note that Assumption 5 does not impose any requirement about the size of ⇤0
g for

g 6= 1. For instance, in the staggered adoption setting of Gonzalez-Navarro [2013]

described in Example 2, the author used the never-treated Mexican states that are farthest

from the treated states as controls. Alternatively, assuming that spillover e↵ects occur

only among adjacent states, ⇤0
g can be set to be a nonempty set consisting of all units in

group g that are not adjacent to any treated states until they are treated. In this case,

the set of “controls” for time t, defined by
S

g>t ⇤
0
g, decreases in t as more states adopt

the treatment over time, resulting in fewer untreated states that are not adjacent to any

treated ones.8

We conclude this section by showing that ATT0(g, t) is identified under these two

additional assumptions, which is a direct consequence of Theorem 1.

Theorem 2. Suppose that Assumptions 1 to 5 hold, and all units are untreated at t = 1.

Then ATT0(g, t) is identified for all t � g.

Proof. See Appendix.

5 Estimation and inference

In this section, we discuss estimation and inference regarding ATT0(g, t) under Assump-

tions 1 to 5. Consider a balanced panel of T periods, where all units are untreated at

t = 1. The units are indexed as i = 1, . . . , Ng for each group label g 2 G. Given the sets

{⇤0
g}g2G, we define Sigt as a binary indicator denoting units a↵ected by spillover e↵ects.

Let Sigt = 0 for all pre-treatment periods (t < min{t|t 2 G}). For post-treatment periods

(t � min{t|t 2 G}), let

Sigt =

(
0 if (i, g) 2 ⇤0

g or Digt = 1

1 otherwise

where Sigt equals 0 if unit (i, g) is either treated (Assumption 4) or belongs to ⇤0
g.

We first consider the case where ⇤0
1 is the only nonempty set. We propose the

following extension of Wooldridge [2022] as the estimation procedure. Define an extended

8
The time e↵ects could also be identified from variation in a di↵erent type of unit or from a di↵erent

outcome. In Gonzalez-Navarro [2013], time e↵ects could be estimated from non-protected car models

(e.g. non-Ford) as long as they were not exposed to spillovers or from time variation in a di↵erent crime

outcome (e.g. robbery) as long as it shows similar trends.
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group label g, created by partitioning the never-treated group 1 into (1, 0) and (1, 1).

For example, if G = {2, . . . , T,1}, the extended group label is given by:

g 2 G̃ ⌘ {2, . . . , T, (1, 0), (1, 1)},

where these new group labels (1, 0) and (1, 1) represent units not a↵ected by spillovers

(⇤0
1) and those a↵ected (⇤1 � ⇤0

1), respectively. The other group labels {2, . . . , T} are

unchanged. With this, we also apply the definition of Yigt, Digt and Sigt to this extended

group label.

We estimate the linear regression model where Yigt is the outcome variable, and the

regressors are:

• indicators of g (the “extended group fixed e↵ects”),

• indicators of t (the “time fixed e↵ects”),

• interactions between indicators of (g, t) and Digt, and

• interactions between indicators of (g, t) and Sigt.

Yigt = ↵g + �t +
X

g02G\{1}

TX

t0=g0

�g0t0 · 1((g, t) = (g0, t0)) ·Digt

+
X

g02G̃

g0�1X

t0=2

�g0t0 · 1((g, t) = (g0, t0)) · Sigt + "igt.

(5)

Then, the estimate of �gt in this linear regression model, denoted by b�gt, is the estimate

of ATT0(g, t).

Note that the regressors involve indicators of g, the group fixed e↵ect, as opposed

to indicators of (i,g), the unit fixed e↵ect. This applies similarly to the treatment

e↵ects, where the regression model involves group-level treatment e↵ects (�gt) instead

of unit-level treatment e↵ects. This leads to simple steps for estimation and inference

of ATT0(g, t), because its estimate b�gt and standard error can be easily obtained using

any software package running linear regressions. Furthermore, estimation and inference

for an aggregate ATT is also simple because its estimate is given by
P

g,t wgt
b�gt and its

standard error is computed straightforwardly by

Var

 
X

g,t

wgt
b�gt

!
=
X

g,t

X

g0,t0

wgtwg0t0Cov(b�gt, b�g0t0)

where variances and covariances of b�gt’s are available in any software package.
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Alternatively, the following extension of the imputation procedure proposed by [Borusyak

et al., 2021] is a numerically equivalent method of obtaining �gt in (5) :

1. Estimate the linear model

Yigt = ↵ig + �t + "igt,

using observations (i, g, t) such that Digt = 0 and Sigt = 0. These observations

consist of all observations in the pre-treatment periods (t < min{t0|t0 2 G}) and

observations for units (i, g) belonging to ⇤0
1 across all post-treatment periods.

2. Let b↵ig and b�t be the estimates of ↵ig and �t from the previous linear model. Impute

the baseline outcome for unit (i,g) at time t as

bYigt(0
t,0t

(i,g)) = b↵ig + b�t.

3. Estimate ATT0(g, t) for each g 2 G by

1

Ng

NgX

i=1

h
Yigt �

bYigt(0
t,0t

(i,g))
i
.

In this procedure, ATT0(g, t) is estimated by the average di↵erence between the observed

(treated) outcome and the counterfactual (baseline) outcome. The baseline outcome is

estimated using observations in the control group that are una↵ected by spillovers.

Note that the estimate of ATT0(g, t) in the imputation procedure equals to

1

Ng

NgX

i=1

Yigt �
1

Ng

NgX

i=1

b↵ig �
b�t.

The regression in (5) directly computes (1/Ng)
PNg

i=1 b↵ig, and not individual b↵ig, through

the group-level fixed e↵ect ↵g to estimate ATT0(g, t). The following proposition shows

that, despite this simplification in estimation, the population regression of (5) correctly

identifies ATT0(g, t) in the presence of unit-and-time level treatment e↵ect heterogeneity.

The consistency and asymptotic normality of b�gt follows directly from the validity of the

population regression.

Proposition 1. Suppose that the assumptions of Theorem 2 hold. Consider the popula-

tion regression of (5), and let �gt be the population regression coe�cient for the interaction

between the indicator of (g, t) and Digt. Then �gt = ATT0(g, t).

Proof. See Appendix.
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Next, we consider the case where ⇤0
g might be non-empty for some g 6= 1. We define

an extended group label g by

g ⌘ (g,�) 2 G ⇥ {0, 1},

which partitions each group g further into (g, 0) and (g, 1), representing units not a↵ected

by spillovers (units within ⇤0
g) and those a↵ected (units within ⇤g � ⇤0

g), respectively.

We extend the definition of Yigt, Digt and Sigt to this new group label and define ATT0

accordingly:

ATT0(g, t) = E(Yigt(d
t
g,0

t
(i,g))� Yigt(0

t,0t
(i,g))).

The aggregate ATT can then be defined as ATT0 =
P

g,t wgtATT0(g, t) where wgt is

a weight chosen by the econometrician. The previously described regression procedure

in (5) can then be straightforwardly extended with this group label, except that the

coe�cients �gt on the interactions between indicators of (g, t) and Digt are replaced by

�gt where �gt = ATT0(g, t).

Lastly, if the data is an unbalanced panel, the population regression of (5) is no

longer valid. It is still possible to implement the imputation-based estimation procedure

of Borusyak et al. [2021], but the standard error will be conservative in general (see

Borusyak et al., 2021, Section 4.3). In contrast, in the case of a balanced panel, the

standard error computed from (5) maintains the size.

6 Extension to nonlinear DID models

This section focuses on situations where Yigt is a count variable, such that the linear

parallel trend condition (Assumption 3) does not hold. This extension contributes to the

literature on nonlinear DID models [Wooldridge, 2023], expanding the applicability of

our results to a wider array of empirical applications.

We introduce the following assumption regarding parallel trends in the context of

count data.

Assumption 3’ (parallel trend, Poisson model). For every group g at time t,

lnE(Yigt(0
t,0t

(i,g))|↵ig) = ↵ig + �t.

By replicating the arguments in Theorems 1 and 2, we can show that ATT0(g, t) is

identified under assumptions similar to those in Theorem 2.

In doing so, we abuse notation and define ⇤0
g ✓ ⇤g for every group g 2 G as a collection
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of units such that, for every untreated period t < g:

lnE(Yigt(0
t,dt

(i,g))|↵ig, (i, g) 2 ⇤0
g) = lnE(Yigt(0

t,0t)|↵ig, (i, g) 2 ⇤0
g) = ↵ig + �t. (6)

Theorem 3. Suppose that Assumptions 1 and 2 and assumption 3’ hold, and that all

units are untreated at t = 1. Then, for t � g, the parameter ATT0(g, t) is identified if

and only if E(exp{↵ig}|Gi = g) · exp{�t}+ AST (g, t) is identified.

Proof. See Appendix.

Theorem 4. Suppose that Assumptions 1, 2, 4 and 5 and assumption 3’ hold, and all

units are untreated at t = 1. Then ATT0(g, t) is identified for all t � g.

Proof. See Appendix.

Note that, despite a nonlinear setting, the identification holds in a short panel setting,

implying consistent estimation of ATT0(g, t) under the asymptotics where T remains

fixed.

Let Sigt be defined as in previous sections, and consider a balanced panel of T periods

where units are indexed as i = 1, . . . , Ng for each group label g, and all units are untreated

at t = 1. Our parameter of interest is still ATT0(g, t). In the case of count data, the

average treatment e↵ect in terms of percentage changes is also often reported:

ATTP0(g, t) =
ATT0(g, t)

E(Yigt(0t,0t
(i,g))|Gi = g)

.

which can also be aggregated to define an ATTP ⌘
P

g,t wgtATTP0(g, t).

The estimation and inference procedure discussed in Section 5 can be straightfor-

wardly extended to the count data. For example, when ⇤0
g is empty for all g 6= 1, we

define the extended group label g to be as defined in Section 5 and we use the following

simple estimation procedure that involves a parsimonious generalized linear model.

1. Estimate the Poisson regression model

lnE(Yigt|↵g, Digt, Sigt) = ↵g + �t +
X

g02G\{1}

TX

t0=g0

�g0t0 · 1((g, t) = (g0, t0)) ·Digt

+
X

g02G̃

g0�1X

t0=2

�g0t0 · 1((g, t) = (g0, t0)) · Sigt,

(7)

that is, the Poisson regression of Yigt on:

• indicators of g (the “extended group fixed e↵ects”),
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• indicators of t (the “time fixed e↵ects”),

• interactions between indicators of (g, t) and Digt, and

• interactions between indicators of (g, t) and Sigt.

Let b↵g, b�t, and b�gt be the estimates of ↵g, �t, and �gt from this model, respectively.

2. Estimate ATT (g, t) by

[ATT (g, t) = exp{b↵g + b�t + b�gt}� exp{b↵g + b�t}.

or estimate ATTP (g, t) by \ATTP (g, t) = exp{b�gt}� 1.

The validity of the population regression of (7) can be shown by an immediate exten-

sion of Proposition 1, and we omit the proof here. Then the consistency and asymptotic

normality of [ATT (g, t) and ATTP (g, t) follow directly from the validity of the population

regression.

Note that most software packages that run Poisson regressions produce standard er-

rors of (b↵g, b�t, b�gt) based on the maximum likelihood. This assumes that the distribu-

tion of Yigt(0t,0t
(i,g)) conditional on ↵ig follows Poisson distribution (as opposed to only

specifying its mean as in Assumption 3’), ruling out heteroskedasticity. The estimates’

standard errors that rely on Assumption 3’, therefore allowing for heteroskedasticity, can

be obtained by interpreting them as the quasi maximum likelihood estimator (QMLE).

Specifically, let ✓ be the vector of all coe�cients in the Poisson regression (i.e., all of ↵g,

�t, �gt and gt), ✓̂ be their maximum likelihood estimates (i.e., all of b↵g, b�t, b�gt and b�gt),
and Xigt be the vector of all regressors (i.e, all of the indicators of g, indicators of t,

interactions between indicators of (g, t) and Digt, and interactions between indicators of

(g, t) and Sigt). Define

S =
CX

c=1

2

4
X

(i,g)2⇤c

TX

t=1

Xigt(Yigt �
bYigt)

3

5

2

4
X

(i,g)2⇤c

TX

t=1

Xigt(Yigt �
bYigt)

3

5
0

be the clustered outer product of the score function, where bYigt = exp{X 0
igt✓̂} is the

“fitted value” of Yigt in the Poisson regression9 and {⇤c
}
C
c=1 refers to the partition of

units according to which the units are clustered. In addition, define

H =
X

(i,g)2[C
c=1⇤

c

X

t

XigtX
0
igt

bYigt

9
We abuse notation and let bYit represent a di↵erent object from the linear case.
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be the negative Hessian function. The variance-covariance matrix of ✓̂, when we interpret

✓̂ as the QMLE, is given by
dVar(✓̂) = H

�1
SH

�1.

This variance-covariance matrix can then be used to compute the standard error of ag-

gregate ATT and ATTP estimates via the delta method.

7 Application to auto theft prevention policy

In this section, we apply our method to the dataset of Gonzalez-Navarro [2013], who

studied the e↵ects of installing Lojack, a device tracking cars in the event of theft.

Lojack was implemented in Mexico through an exclusive agreement between the Ford

Motor Company and the Lojack company. Initially, the technology was introduced for a

particular Ford car model (Ford Windstar) in a specific state (Jalisco) among the 2001

car models. Subsequently, the installation of Lojack expanded to include other model ⇥

state combinations. By 2004, it was installed in 32 model ⇥ state combinations. The

dataset of Gonzalez-Navarro [2013] provides comprehensive information on car theft for

each model ⇥ state ⇥ vintage (referring to the year of the car model) combination, for

each calendar year. In our analysis, we use the labels m, s, v, and t to represent car

model, state, vintage, and the calendar year of the auto theft, respectively.

Gonzalez-Navarro [2013] points out two potential sources of spillover. Firstly, there is

the possibility of spillover to non-Lojack car models within the same state. Since it was

known that Lojack was installed in a particular car model and state, criminals involved

in auto theft within that state might shift their focus from Lojack-installed car models to

non-Lojack car models. Secondly, there could also be geographical spillover to the same

car model in other states where Lojack is not installed.

Gonzalez-Navarro [2013] estimates the treatment e↵ect of Lojack installation, consid-

ering these spillover e↵ects. However, the estimation does not account for heterogeneity

in the treatment e↵ect. In this section, we apply our method to the original dataset and

provide estimates of the treatment e↵ect across various combinations of g and t, which

also documents heterogeneity in the treatment e↵ect.

Once Lojack is installed in a specific combination of car model and state for a partic-

ular vintage, it is subsequently installed in all subsequent vintages. This setup allows us

to treat the situation as a staggered adoption design, where the unit of analysis is model

(m) ⇥ state (s) ⇥ age (a), with age defined as the di↵erence between the calendar year

(t) and the vintage year (v), meaning that a = t� v.

We define the binary treatment indicator as Dmsat. For example, consider newly

released (age = 0) Ford Windstar models in Jalisco. For this unit, Lojack is installed in
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new models in Jalisco starting from 2001. In this case, we have DWindstar,Jalisco,0,t = 1 for

t � 2001.

Our method requires Assumptions 4 and 5. Assumption 4 implies that once a model

⇥ state ⇥ age combination is Lojack-installed, it does not experience spillover e↵ects.

Generally, we can reasonably expect thieves to shift their target only to cars that are

not protected, which are either non-Lojack models within the same state or models in

states without Lojack installation, or to other goods. Thus, it is reasonable to assume

that Assumption 4 holds.

Assumption Assumption 5 requires that some model (m) ⇥ state (s) are not a↵ected.

Gonzalez-Navarro [2013] finds evidence that this is the case. That is, states far from the

treated ones and di↵erent car models do not seem exposed to spillovers.

Let Ymsat represent the number of auto thefts that occurred in a given calendar year

t for a specific combination of model (m), state (s), and age (a). We consider the two

models for the untreated outcomes. First, we consider a linear parallel trend:

E(Ymsat(0
t,0t

(msa,t))|↵msa) = ↵msa + �t.

This is equivalent to Assumption 3, where the combination (m, s, a) play the role of (i, g).

Second, we consider a Poisson parallel trend:

lnE(Ymsat(0
t,0t

(msa,t))|↵msa) = ↵msa + �t.

which is equivalent to Assumption 3’. The second model is motivated by Ymsat being a

count variable with a high frequency of zeros, in which case a Poisson regression model

is more appropriate.

We define Smsat to be a binary indicator, which is equal to 1 if Dmsat = 0 and the

state s is not adjacent to any state s0 that contains at least one combination (m0, s0, a0)

where Dm0s0a0t0 = 1 (that is, s is not adjacent to any of the treated states). We estimate

the following aggregate ATTs:

ATT =
X

(g,t):t�g�2

NgP
(g,t):t�g�2 Ng

ATT0(g, t),

ATT 0 =
X

g:gT

NgP
g:gT Ng

ATT0(g, g),

ATT 1 =
X

g:gT�1

NgP
g:gT�1 Ng

ATT0(g, g + 1),

ATT 2 =
X

g:gT�2

NgP
g:gT�2 Ng

ATT0(g, g + 2).

20



Here, ATT represents the sample-size-weighted average of all ATT (g, t) values across

g and t. ATT k represents the sample-size-weighted average of the ATTs for the k-th

year after installation of Lojack. For example, ATT 0 represents the e↵ect in the same

year when Lojack is installed, ATT1 represents the e↵ect one year after the installation

of Lojack, and so forth.

Table 1 displays estimates of the ATT values using the linear and Poisson specifi-

cations. Under the linear model, the impact of Lojack installation on theft reduction

becomes increasingly pronounced as more time elapses following installation. Compared

to the overall average reduction rate of 64% for the linear model and 61% for the Poisson

model, it becomes evident that the e↵ect intensifies starting one year after the installation

of Lojack. These findings remain robust across linear and Poisson specifications.

Linear Poisson
Estimate Std Error Reduction Estimate Std Error Reduction

ATT -6.1017 2.8893 -60% -5.6349 2.5086 -66%
ATT 0 -3.9455 2.9166 -38% -3.8738 2.4503 -50%
ATT 1 -6.7536 2.9801 -77% -6.2742 2.5453 -77%
ATT 2 -16.9622 2.9691 -79% -13.4790 4.2276 -85%

Table 1: Estimates of the aggregate ATTs. The standard errors are clustered at the model
(m) ⇥ state (s) ⇥ age (a) level. The “Reduction” columns stands for the reduction rate,
which is calculated using the formula for computing ATTP .

For comparison, we also report the estimated ATTs for the misspecified linear models.

Specifically, we consider the TWFE specification that does not account for staggered

adoption and the specification of Borusyak et al. [2021], Wooldridge [2022] that do not

account for spillover e↵ects. The estimates are presented in Table 2. We observe that the

TWFE regression estimate is similar to the estimates in the first line of Table 1, whereas

the policy estimates that do not account for spillover e↵ects are biased upward compared

to estimates in Table 1. This is what we would expect in the presence of displacement,

where installing Lojack in a treated unit increases theft for units without Lojack.

8 Monte Carlo

We study the finite sample properties of our estimator in a simulated dataset with either

a contemporaneous or staggered adoption design. No group is treated in period 1, and the

set of untreated units is always non-empty. Within a group, there are  units. Like the

estimators suggested in the Weighting literature, our approach trades precision for bias.

In the absence of actual spillovers, excluding group-time data points potentially exposed

to spillovers is ine�cient. However, when spillovers are present, those cells introduce bias.
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Linear-TWFE Linear-NoSpillover
Estimate Reduction Estimate Reduction

ATT -7.8595 -69% -7.8335 -72%
ATT 0 N/A -5.6375 -58%
ATT 1 N/A -8.4526 -82%
ATT 2 N/A -19.1385 -88%

Poisson-TWFE Poisson-NoSpillover
Estimate Reduction Estimate Reduction

ATT -5.4990 -61% -5.8514 -62%
ATT 0 N/A -3.9569 -43%
ATT 1 N/A -6.4894 -73%
ATT 2 N/A -14.5736 -94%

Table 2: Estimates of the aggregate ATTs using the TWFE specification that does not
account for staggered adoption (the “TWFE” columns), and the specification of Borusyak
et al. [2021], Wooldridge [2022] that do not account for spillover e↵ects (the “NoSpillover”
columns) for linear and Poisson specifications. The “Reduction” columns stands for the
reduction rate, which is calculated using the formula for computing ATTP .

When  is small, the lack of precision might be too costly if the bias from spillover is not

large. To highlight this, we use a tuning parameter (0  ⇢  1): ⇢ = 0 corresponds to no

spillovers, whereas ⇢ = 1 corresponds to full displacement. We do not consider di↵usion

since the source of the bias is the same, only of the opposite sign.

8.1 DGP

Our Data Generating Process embeds the identification assumptions Assumptions 1 to 5,

with Assumption 3 being replaced by 3’ if the data follows a Poisson distribution. The

Data Generating Process is given by:

E[Yit] = F

 
↵i + �t + �itDit + (1�Dit) ·

X

j 6=i

Djt · ⌘
j
it · S

j
it

!

where F (.) is the identity function or Poisson. We parametrize the DGP such that

• Groups are named alphabetically, A, B, ..., Z. Group A is treated first in period

2, group B is treated second in period 3, and so on. Groups W and Z are never

treated, but units in group W are immune to spillovers, while units in group Z

are not. Each group has the same number of units, and within a group, units are

identical.

• Starting in period 2, a set of units (group) is treated in each period until t = T .
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Hence, the number of groups is a function of the number of time periods, i.e.

G = T + 1. E.g. if T = 3, groups A, B, W and Z exist.

• Unit fixed e↵ects: ↵i = 26� g+1, where g is the group index starting from A = 1.

The first group to be treated has the largest fixed e↵ect, leading to selection into

treatment. The number 26 corresponds to the number of letters in the alphabet.

Unit fixed e↵ects are homogeneous within a group: ↵ig = ↵i0g 8i, i0 2 g.10

• Time e↵ects: �t = ↵̄ ⇥ 0.1 ⇥ ((t� 1) + sin(t)). The time e↵ect is divided into two

parts, both proportional to the average unit fixed e↵ect: a linear upward trend

(t� 1) and a period-specific e↵ect that follows a sin(.) pattern

• Direct policy e↵ect: �it =
0.5↵i

t . The policy e↵ect is heterogeneous across groups

and time but homogeneous within a group. It is largest for the first group with the

highest µi, decreasing over time. This parametrization implies sorting on gain since

↵i also correlates with treatment timing.

• Spillovers (Displacement): ⌘jit =
�jt·⇢P
i 6=j S

j
it

, where the denominator gives the number

of units exposed to unit j spillovers. Hence, the spillover from unit j generated by

unit j’s direct policy e↵ect spills evenly among the untreated groups at time t. The

magnitude of the spillover is regulated by the tuning parameter ⇢.

This parametrization is fixed over the simulations, so E[Yit] is constant. If F (�) is the

identity function, randomness is given by di↵erent draws of ✏it ⇠ N(0,max(↵i)/10) added

to E[Yit]. If F (.) is Poisson, then randomness is given by random generation from the

Poisson distribution with mean E[Yit]. The target estimand is E[�it|Dit = 1]. We compare

the mean Absolute Bias and the Mean Squared Error across the:

(b�1) TWFE estimator, which does not account either for the staggered treatment or for

spillovers.

(b�2) Imputation estimator suggested in Borusyak et al. [2021] which accounts for treat-

ment e↵ects heterogeneity by excluding group-time observation after treatment,

but does not account for spillovers. This estimator is numerically equivalent to

Wooldridge [2022] extended TWFE.

(b�3) Our estimator, which uses imputation but also excludes group-time observation

potentially exposed to spillovers.

10
In the case of Poisson data we replace ↵i with ↵̃i = log(↵i).
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(a) Identity

(b) Poisson

Figure 4: Monte Carlo Simulation - comparing MSE.
Cell background color is based on the best-performing estimator. Numbers in cells cor-
respond to MSE ratios MSE1

MSE3
and MSE2

MSE3
respectively. Subscript refers to: (1) TWFE, (2)

BJS estimator and (3) our approach accounting for spillovers.
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Table 3: Monte Carlo Simulation - identity

⇢ T  ATT |Bias1| |Bias2| |Bias3| MSE1 MSE2 MSE3

1 -6.500 3.589 3.589 4.235 19.642 19.642 27.519

3 -6.500 2.060 2.060 2.374 6.613 6.613 8.957

5 -6.500 1.615 1.615 1.873 3.991 3.991 5.335

2

10 -6.500 1.159 1.159 1.313 2.134 2.134 2.745

1 -2.297 0.898 1.038 2.336 1.244 1.693 8.651

3 -2.297 0.554 0.606 1.463 0.477 0.569 3.336

5 -2.297 0.463 0.473 1.051 0.334 0.350 1.789

0.00

8

10 -2.297 0.384 0.334 0.782 0.217 0.172 0.954

1 -6.500 3.807 3.807 4.321 22.129 22.129 28.292

3 -6.500 2.153 2.153 2.391 7.274 7.274 8.856

5 -6.500 1.715 1.715 1.824 4.584 4.584 5.280

2

10 -6.500 1.316 1.316 1.342 2.642 2.642 2.805

1 -2.297 1.403 1.335 2.456 2.776 2.717 9.587

3 -2.297 1.396 1.186 1.509 2.314 1.876 3.561

5 -2.297 1.355 1.116 1.114 2.054 1.559 1.917

0.25

8

10 -2.297 1.342 1.069 0.783 1.928 1.324 0.999

1 -6.500 3.870 3.870 4.012 23.616 23.616 25.838

3 -6.500 2.565 2.565 2.395 10.048 10.048 9.274

5 -6.500 2.139 2.139 1.877 6.991 6.991 5.448

2

10 -6.500 1.796 1.796 1.338 4.700 4.700 2.787

1 -2.297 2.403 2.284 2.465 6.923 6.688 9.499

3 -2.297 2.367 2.184 1.440 5.985 5.317 3.220

5 -2.297 2.374 2.178 1.087 5.858 5.073 1.847

0.50

8

10 -2.297 2.404 2.212 0.782 5.900 5.070 0.970

1 -6.500 4.138 4.138 4.162 26.753 26.753 28.210

3 -6.500 2.905 2.905 2.386 12.336 12.336 9.081

5 -6.500 2.652 2.652 1.869 9.928 9.928 5.476

2

10 -6.500 2.405 2.405 1.330 7.524 7.524 2.768

1 -2.297 3.448 3.346 2.581 13.089 12.935 10.172

3 -2.297 3.452 3.352 1.371 12.300 11.811 2.899

5 -2.297 3.417 3.290 1.099 11.884 11.162 1.912

0.75

8

10 -2.297 3.424 3.308 0.766 11.839 11.106 0.915

1 -6.500 4.373 4.373 4.148 29.442 29.442 26.621

3 -6.500 3.568 3.568 2.355 17.556 17.556 8.570

5 -6.500 3.370 3.370 1.906 15.018 15.018 5.723

2

10 -6.500 3.305 3.305 1.270 12.749 12.749 2.555

1 -2.297 4.473 4.419 2.453 21.073 21.098 9.491

3 -2.297 4.445 4.399 1.394 20.124 19.900 3.076

5 -2.297 4.446 4.389 1.134 19.983 19.587 2.051

1.00

8

10 -2.297 4.486 4.426 0.802 20.246 19.771 1.020

Note. Results over 1000 repetitions. Subscript refers to: (1) TWFE, (2) BJS estimator and

(2) our approach accounting for spillovers. Lowest value across estimators in bold.

Figure 4a and Table 3 show the linear DGP results. The Figure compares the MSE

across the three estimators to illustrate their relative performance under di↵erent scenar-

ios, while the Table provides MSE and Absolute Bias values. Note that When T = 2, the

TWFE and Imputation estimators are identical since treatment is not staggered. Overall,

the best-performing estimator depends on the degree of spillovers, staggered treatment,
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Table 4: Monte Carlo Simulation - Poisson

⇢ T  ATT |Bias1| |Bias2| |Bias3| MSE1 MSE2 MSE3

1 -26.780 9.701 9.701 11.905 153.431 153.431 239.845

3 -26.780 5.540 5.540 6.740 47.762 47.762 73.687

5 -26.780 4.245 4.245 5.032 29.219 29.219 40.018

2

10 -26.780 3.071 3.071 3.689 14.968 14.968 21.449

1 -30.865 9.057 8.085 27.674 121.582 105.769 1347.861

3 -30.865 8.280 4.863 15.381 85.855 36.796 404.870

5 -30.865 8.044 3.526 11.869 75.668 19.522 224.123

0.00

8

10 -30.865 8.125 2.536 7.890 71.494 9.967 98.496

1 -26.780 12.067 12.067 12.275 248.172 248.172 272.296

3 -26.780 7.698 7.698 6.889 93.040 93.040 75.998

5 -26.780 6.601 6.601 5.072 66.846 66.846 39.553

2

10 -26.780 5.781 5.781 3.857 47.955 47.955 22.876

1 -30.865 34.556 30.313 28.662 1266.576 1058.689 1518.343

3 -30.865 33.742 28.917 14.216 1161.546 882.219 341.538

5 -30.865 33.993 28.983 11.307 1169.549 866.469 204.729

0.25

8

10 -30.865 33.858 28.888 8.140 1153.220 847.927 106.282

1 -26.780 15.622 15.622 11.861 390.349 390.349 231.468

3 -26.780 12.878 12.878 6.984 231.040 231.040 78.199

5 -26.780 11.946 11.946 5.106 184.497 184.497 42.616

2

10 -26.780 12.066 12.066 3.646 167.718 167.718 20.788

1 -30.865 67.194 67.826 27.440 4603.887 4782.310 1398.162

3 -30.865 66.939 67.699 15.029 4508.284 4638.895 387.225

5 -30.865 66.675 67.477 11.203 4462.200 4587.222 199.809

0.50

8

10 -30.865 66.688 67.328 8.195 4456.398 4551.466 106.420

1 -26.780 22.597 22.597 12.162 762.129 762.129 244.327

3 -26.780 20.320 20.320 6.716 503.553 503.553 72.748

5 -26.780 19.418 19.418 5.204 430.610 430.610 43.640

2

10 -26.780 20.115 20.115 3.599 430.218 430.218 20.391

1 -30.865 108.579 118.317 26.869 11902.528 14259.553 1344.294

3 -30.865 108.185 117.445 15.289 11742.232 13877.573 375.027

5 -30.865 108.328 117.403 11.473 11757.889 13835.222 214.460

0.75

8

10 -30.865 108.571 118.043 7.979 11799.580 13960.016 102.759

1 -26.780 31.420 31.420 11.927 1297.693 1297.693 249.215

3 -26.780 30.005 30.005 6.688 1008.487 1008.487 71.590

5 -26.780 30.104 30.104 5.017 972.364 972.364 39.530

2

10 -26.780 29.547 29.547 3.566 906.943 906.943 19.970

1 -30.865 164.055 187.416 27.132 27086.351 35529.966 1257.582

3 -30.865 163.392 186.002 15.000 26748.599 34712.731 364.521

5 -30.865 163.930 186.676 11.684 26902.365 34921.680 215.341

1.00

8

10 -30.865 163.562 186.035 8.031 26768.157 34646.567 106.997

Note. Results over 1000 repetitions. Subscript refers to: (1) TWFE, (2) BJS estimator and (2) our

approach accounting for spillovers. Lowest value across estimators in bold.

and how many units are in each group. Intuitively, due to its e�ciency, the TWFE has

the lowest MSE in scenarios with no or little spillovers and with very few observations.

As the number of observations increases and spillovers remain small, the imputation es-

timator becomes the best-performing one. It corrects for staggered treatment and is not

too biased. Once spillovers are not negligible and observations increase, our estimator has
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the lowest MSE, often by a large margin. Our estimator also performs better as treat-

ment becomes more staggered (T = 8) since cumulative spillovers to untreated units will

strongly a↵ect the counterfactual. Figure 4b and Table 4 show the results for the Poisson

DGP. Our estimator performs even better relative to the TWFE and the Imputation

ones.

9 Conclusion

We establish identifying assumptions, and estimation procedures, for the ATT in a

Di↵erence-in-Di↵erences setting with staggered treatment adoption and spillovers. Aside

from the canonical Di↵erence-in-Di↵erences assumptions, identification requires that once

a unit is treated, it does not experience spillovers, past, present, or future. This as-

sumption, which is likely to hold in many contexts, unifies the ATTs simplifying policy

evaluation and joining with the definition of ATT under SUTVA.

To estimate the ATT we extend the TWFE model approach of Wooldridge [2022] and

the imputation approach of Borusyak et al. [2021] to account for spillovers in linear and

non-linear settings. In the case of a balanced panel, Wooldridge [2022] ’s approach can

also be used to directly calculate the ATT’s standard error. We then revisit Gonzalez-

Navarro [2013], who studied the e↵ects of installing a device tracking cars in the event of

theft. Our correction leads to a slightly larger e↵ect of the policy relative to the original

contribution’s specification.

Finally, our Monte Carlo analysis brings attention to the inherent bias-variance trade-

o↵ involved in addressing staggered treatment and especially spillovers. Point identifi-

cation requires excluding units a↵ected by spillovers from estimation. However, such

exclusions may have minimal benefits if spillovers are negligible, or if the number of units

is small, all the while sacrificing precision. We compare di↵erent estimators: the tra-

ditional TWFE estimator, which overlooks both staggered adoption and spillovers; the

Wooldridge [2022] and Borusyak et al. [2021] estimators, which consider staggered adop-

tion but not spillovers; and our proposed estimator, which addresses both factors. Our

estimator proves to be highly competitive in a majority of scenarios.
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A Proofs

A.1 Proof of Theorem 1

Under Assumption 2, we can write, for each group g at time t,

Yigt = Yigt(d
t
g,d

t
(i,g))

= Yigt(0
t,0t

(i,g)) +
⇥
Yigt(d

t
g,0

t
(i,g))� Yigt(0

t,0t
(i,g))

⇤
+
⇥
Yigt(d

t
g,d

t
(i,g))� Yigt(d

t
g,0

t
(i,g))

⇤

= ↵ig + �t +
⇥
Yigt(d

t
g,0

t
(i,g))� Yigt(0

t,0t
(i,g))

⇤
+
⇥
Yigt(d

t
g,d

t
(i,g))� Yigt(d

t
g,0

t
(i,g))

⇤
+ "igt.

Define
�igt = Yigt(d

t
g,0

t
(i,g))� Yigt(0

t,0t
(i,g)),

�igt = Yigt(d
t
g,d

t
(i,g))� Yigt(d

t
g,0

t
(i,g)).

We can then write

Yigt = ↵ig + �t + �igt + �igt + "igt.

The parameter of interest ATT0(g, t) is then given by

ATT0(g, t) = E(�igt|Gi = g),

and AST (g, t) is given by

AST (g, t) = E(�igt|Gi = g).

Then, under Assumption 3, we can write, for every group g at time t,

E(Yigt) = E(↵ig) + �t + ATT0(g, t) + AST (g, t).

Now we show that ATT0(g, t) is identified if and only if �t + AST (g, t) is identified.

First, suppose that �t + AST (g, t) is identified. Let d0 be the identified value. Then we

can write

E(Yigt) = E(↵ig) + d0 + ATT0(g, t).

Note that E(↵ig) is identified from the data for group g at t = 1:

E(Yig1) = E(↵ig). (8)

We can then write

ATT0(g, t) = E(Yigt)� d0 � E(Yig1).

This shows that ATT0(g, t) is identified.
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Next, suppose that ATT0(g, t) is identified. Let b0 be the identified value. Then:

E(Yigt) = E(↵ig) + �t + b0 + AST (g, t).

Using (8), we can write

�t + AST (g, t) = E(Yigt)� b0 � E(Yig1).

This shows that �t + AST (g, t) is identified. ⌅

A.2 Proof of Theorem 2

By Theorem 1, it su�ces to show that �t + AST (g, t) is identified. First, Assumption 4

implies that AST (g, t) = 0. In addition, for every group g at time t � 2, Assumptions 3

and 5 jointly implies:

E(Yigt|(i, g) 2 ⇤0
t )� E(Yig1) = E(Yigt(0

t,dt
(i,g))|(i, g) 2 ⇤0

t )� E(↵ig) = �t,

which implies that �t is identified for every t � 2. Consequently, it follows that

�t + AST (g, t) = E(Yigt|(i, g) 2 ⇤0
t )� E(Yig1) + 0,

which implies that �t + AST (g, t) is identified. ⌅

A.3 Proof of Proposition 1

As in the proof of Theorem 1, under Assumption 2, we can write, for each group g at

time t,

Yigt = Yigt(d
t
g,d

t
(i,g))

= Yigt(0
t,0t

(i,g)) +
⇥
Yigt(d

t
g,0

t
(i,g))� Yigt(0

t,0t
(i,g))

⇤
+
⇥
Yigt(d

t
g,d

t
(i,g))� Yigt(d

t
g,0

t
(i,g))

⇤

= ↵ig + �t +
⇥
Yigt(d

t
g,0

t
(i,g))� Yigt(0

t,0t
(i,g))

⇤
+
⇥
Yigt(d

t
g,d

t
(i,g))� Yigt(d

t
g,0

t
(i,g))

⇤
+ "igt.

Define
�igt = Yigt(d

t
g,0

t
(i,g))� Yigt(0

t,0t
(i,g)),

�igt = Yigt(d
t
g,d

t
(i,g))� Yigt(d

t
g,0

t
(i,g)).

We can then write

Yigt = ↵ig + �t + �igt + �igt + "igt.
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By the definition of ⇤0
1, it follows that

E("i,1,t|(i,1) 2 ⇤0
1) = 0.

In addition, since E("i,1,t) = 0 by Assumption 3, it follows that

E("i,1,t|(i,1) 2 ⇤1 � ⇤0
1) = 0.

Therefore, with the extended group label g 2 {2, . . . , T, (1, 0), (1, 1)}, we can write

Yigt = ↵ig + �t + �igt + �igt + "igt,

where E("igt) = 0 for every g.

Now, for each g 2 {2, . . . , T}, we have

Yig1 = ↵ig + "ig1,

Yigt = ↵ig + �t + �igt + "igt for 2  t < g,

Yigt = ↵ig + �t + �igt + "igt for g  t  T,

where we used the following to derive the above equations:

• For the first equality, we used that all units are untreated at t = 1 and that �1 is

set to 0 for normalization.

• For the second equality, we used that the units are untreated at t < g, in which

case �igt = 0.

• For the third equality, we used that the units are treated at t � g, in which case

�igt = 0 because the unit is not exposed to spillover e↵ects by Assumption 4.

We can then combine the three equations and write them as one equation where we write,

for each g 2 {2, . . . , T}:

Yigt = ↵ig + �t +
TX

t0=g

1(t = t0)�igt +
g�1X

t0=2

1(t = t0)�igt + "igt,

which we can further write

Yigt = ↵ig + �t +
TX

t0=g

1(t = t0)Digt�igt +
g�1X

t0=2

1(t = t0)Sigt�igt + "igt, (9)

since Digt = 1 for t � g and Sigt = 1 for 2  t < g for each g 2 {2, . . . , T} by definition.
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Now, for the group label g 2 {(1, 0), (1, 1)}, we can write

Yi,(1,0),1 = ↵ig + "ig1,

Yi,(1,0),t = ↵ig + �t + "igt for 2  t,

Yi,(1,1),1 = ↵ig + "ig1,

Yi,(1,1),t = ↵ig + �t + �igt + "igt for 2  t,

which can be summarized as

Yi,(1,0),t = ↵i,(1,0) + �t + "igt,

Yi,(1,1),t = ↵i,(1,1) + �t +
TX

t0=2

1(t = t0)�igt + "igt,

Then, these can be further written as, using that Digt = 0 for g 2 {(1, 0), (1, 1)} and

Sigt = 0 for (i,g) 2 ⇤0
1,

Yigt = ↵ig + �t +
TX

t0=g

1(t = t0)Digt�igt +
g�1X

t0=2

1(t = t0)Sigt�igt + "igt, (10)

where we define
Pg�1

t0=2 as
PT

t0=2 when g = 1.

We can then combine (9) and (10) and write them as

Yigt =
X

g0

1(g = g0)

 
↵ig + �t +

TX

t0=g

1(t = t0)Digt�igt +
g�1X

t0=2

1(t = t0)Sigt�igt + "igt

!

= ↵ig0 + �t +
X

g0

TX

t0=g

1(g = g0)1(t = t0)Digt�igt +
X

g0

g�1X

t0=2

1(g = g0)1(t = t0)Sigt�igt + "igt.

(11)

Let X be the vector of regressors for the regression in (5). Note first that there exists a

one-to-one mapping between the sequence (Digt, Sigt)Tt=1 and the extended group label g,

because (Digt)Tt=1 identifies the group label g 2 {2, . . . , T} and (Sigt)Tt=1 separates (1, 0)

and (1, 1). This implies that

E(Yigt|X) = E(Yigt|X,g) = E(Yigt|X).

where E refers to the expectation across all groups, while E refers to the expectation
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across i for a given g. Then, by (11):

E(Yigt|X) = E(↵ig0)+�t+
X

g0

TX

t0=g

1(g = g0)1(t = t0)DigtE(�igt)+
X

g0

g�1X

t0=2

1(g = g0)1(t = t0)SigtE(�igt),

which shows that the coe�cient on 1(g = g0)1(t = t0)Digt for g 2 {2, . . . , T} is

E(�igt) = E(Yigt(d
t
g,0

t
(i,g))� Yigt(0

t,0t
(i,g))),

where the right-hand side is the definition of ATT0(g, t). ⌅

A.4 Proof of Theorem 3

Similarly to the proof of Theorem 1, we can write, for each (i, g) 2 ⇤ and t  T ,

Yigt = Yigt(d
t
g,d

t
(i,g))

= Yigt(0
t,0t

(i,g)) +
⇥
Yigt(d

t
g,0

t
(i,g))� Yigt(0

t,0t
(i,g))

⇤
+
⇥
Yigt(d

t
g,d

t
(i,g))� Yigt(d

t
g,0

t
(i,g))

⇤
.

Then, under Assumption 3’, we can write

E(Yigt|Gi = g) = E(exp{↵ig}|Gi = g) exp{�t}+ ATT0(g, t) + AST (g, t),

where

ATT0(g, t) = E(Yigt(d
t
g,0

t
(i,g))� Yigt(0

t,0t
(i,g))|Gi = g),

and

AST (g, t) = E(Yigt(d
t
g,d

t
(i,g))� Yigt(d

t
g,0

t
(i,g))|Gi = g).

Then, by replicating the arguments in Theorem 1, it is straightforward to show that

ATT0(g, t) is identified if and only if E(exp{↵ig}|Gi = g) exp{�t}+AST (g, t) is identified.

A.5 Proof of Theorem 4

By Theorem 3, it su�ces to show that E(exp{↵ig}|Gi = g) · exp{�t} + AST (g, t) is

identified. In what follows, we show that the three objects E(exp{↵ig}|Gi = g), exp{�t},

and AST (g, t) are identified separately. First, Assumption 4 assumes that AST (g, t) = 0.

Second, to show that exp{�t} is identified, consider the units (i, g) such that (i, g) 2 ⇤0
1.

These are untreated units that are not a↵ected by spillover e↵ects. For these units, the

following moment equality holds for any t under Assumption 3’ [Mátyás and Sevestre,
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2008, Chapter 18.3.1]:

E
 
Yigt � exp{�t}

(1/T )
PT

t0=1 Yigt0

(1/T )
PT

t0=1 exp{�t0}

����� (i, g) 2 ⇤0t

!
= 0 for all t = 1, . . . , T,

which can be verified using the law of iterated expectations conditional on ↵i. Then,

evaluating this moment equality at t = 1 yields (with normalizing �1 = 0)

E
 
Yig1 �

(1/T )
PT

t0=1 Yigt0

(1/T )
PT

t0=1 exp{�t0}

����� (i, g) 2 ⇤0
1

!
= 0,

which identifies the term (1/T )
PT

t0=1 exp{�t0}. Based on this, evaluating the moment

equality at t � 2 identifies exp{�t} for each t � 2.

Lastly, because all units are untreated at t = 1 by assumption, it follows that

E(Yig1) = E(Yig1(0,0
1
(i,g))) = E(exp{↵ig}),

meaning that E(exp{↵ig}) is identified. ⌅
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