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Abstract

The paper predicts an Efficient Market Property for the equity market,
where stocks, when denominated in units of the growth optimal port-
folio (GP), have zero instantaneous expected returns. Well-diversified
equity portfolios are shown to approximate the GP, which explains the
well-documented good performance of equally weighted portfolios. Our
proposed hierarchically weighted index (HWI) is shown to be an even
better proxy of the GP. It sets weights equal within industrial and geo-
graphical groupings of stocks. When using the HWI as a proxy for the
GP the Efficient Market Property cannot be easily rejected and appears
to be robust.
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1 Introduction

For many decades the question whether markets are ‘efficient’, e.g., as described
in Fama (1970, 1991, 1998), has been widely discussed but never conclusively
answered in the literature. The current paper aims to answer this question for
developed equity markets. This answer is deeply linked to the respective growth
optimal portfolio (GP). We show, when using the GP (also called benchmark) as
a denominator, the benchmarked (denominated in units of the GP) value of any
portfolio has zero instantaneous expected return. Thus, its current benchmarked
value is the best forecast of its instantaneously next benchmarked value. We call
this fundamental fact the Efficient Market Property. It resembles various types
of efficient market hypotheses discussed in Fama (1970, 1991, 1998) and a sub-
sequent rich stream of literature. We emphasize that this is an objectively given
fact which holds true under extremely general model assumptions. The GP and,
thus, the Efficient Market Property are unique for a given investment universe
and the respective available evolving information. This property is robust, since
we do not need to involve any particular model assumptions or estimation for
constructing an excellent proxy for the GP for developed stock markets. We use
this proxy as a benchmark and show for equities in developed markets that the
Efficient Market Property cannot be easily rejected. The findings provide a new
understanding of market efficiency, which theoretically exists for any reasonable
market that has a GP. When the GP does not exist for a market model then
its candidate explodes in finite time, which means that there is economically
meaningful arbitrage in such a market and the model has to be dismissed.

The GP is the expected log-utility maximizing portfolio. It was discovered in
Kelly (1956) and has been widely studied; see MacLean et al. (2011) for an edited
collection of papers. It has the fascinating property that it maximizes pathwise
in the long run the long-term growth rate (GR). The GR is the logarithm of the
portfolio value normalized by the length of the observation window.

The key question we answer in the current paper is how to construct an ex-
cellent proxy of the GP. Despite decades of research on how to construct optimal
portfolios for stocks, the simple, model-independent, equally-weighted approach
seems to do at least as well as more complicated and theoretically grounded ap-
proaches. This stylized empirical fact has been established in DeMiguel et al.
(2009), where it has been shown that naive diversification (equal-weighting of
stocks) outperforms most known portfolio strategies. The current paper goes
beyond naive diversification and makes use of readily available information, cap-
turing key economic dependencies of stocks. This information does not involve
any estimation and is obtained through classification of economic activities of
respective companies. Companies which belong to the same industrial and geo-
graphical group are exposed to similar uncertainties and their own specific uncer-
tainty. The hierarchical groupings provided by such classification remain quite
stable over time and persist in periods of extreme market moves.

By naive diversification within each group and at each level of the hierarchy
a new proxy for the GP is constructed, which we call the hierarchically weighted
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index (HWI). To illustrate the excellent performance of the HWI for stocks of
developed markets we show in Figure 1.1 its trajectory, together with those of the
respective market capitalization weighted index (MCI), and the equally-weighted
index (EWI) in US dollar denomination. All three indexes are normalized such
that they start in 1984 at an initial value of one. In Figure 1.2 we display the
HWI’s and the EWI’s observed (annualized) long term growth rates (GRs) in
percent as functions of the end date of the observation period. For the longest
available observation window the long-term growth rate (GR) amounts for the
EWI to 11.6 and for the HWI to 14.5, whereas the GR for the MCI reaches only
9.4; see also Table 4.1. Theoretically, it is the GP that achieves pathwise the
highest GR in the long-run. This makes the GR for the longest available obser-
vation window a realistic performance measure to distinguish between proxies of
the GP.

By using the HWI as a benchmark and then studying more than 30 million
benchmarked stock returns we show that the theoretically predicted Efficient
Market Property cannot be easily rejected for stocks in developed markets. When
choosing the MCI or EWI as a benchmark, the Efficient Market Property can be
easily rejected at typical significance levels.

Figure 1.1: The trajectories of the HWI, EWI and MCI.

With the HWI we also propose a new benchmark for long-term equity fund
management. It is far more difficult to outperform in the long run than the
traditional benchmark, the MCI. Moreover, we propose with the HWI a practi-
cally feasible approximation of a theoretically optimal portfolio, the GP. Once
the GP is constructed, it is straightforward to obtain other optimal portfolios
with desired risk characteristics by involving the riskless asset in an appropri-
ate manner; see e.g. Chapter 11 in Platen and Heath (2010). This allows one
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Figure 1.2: Observed long term-growth rate (GR) (in percent) with dependence
on the final observation date for the HWI and the EWI.

to overcome the main practical obstacle in portfolio optimization, identified in
DeMiguel, Garlappi & Uppal (2009). It results from the fact that the standard
sample-based mean-variance methodology of modern portfolio theory, originated
by Markowitz (1959), is not, in general, accurate enough to provide useful proxies
for targeted optimal portfolios. The impossibility of implementing sample-based
portfolio optimization for large equity markets has also been noted, e.g., in Best
& Grauer (1991), Chopra & Ziemba (1993), Bai & Ng (2002), Ludvigson & Ng
(2007), Plyakha et al. (2014), Kan & Zhou (2007), Kan, Wang & Zhou (2016)
and Okhrin & Schmid (2006). The dilemma is that the available observation
windows are too short for estimating the most likely moving expected returns.

Building on Markowitz’s mean-variance approach, Sharpe (1964) introduced
the capital asset pricing model (CAPM), which became generalized in a stream of
literature. A consequence of the classical assumptions underpinning the CAPM
is that the market capitalization weighted index (MCI) should maximize the
Sharpe ratio. However, empirical evidence suggests that the MCI may, in reality,
not yield the highest Sharpe ratio; see e.g. Harvey, Liu & Zhu (2016). This fact
is also confirmed by our observations, where we report in Table 4.1 a Sharpe ratio
of 0.90 for the HWI, which is more than double that of 0.43 for the MCI.

Since market capitalization weighted indexes seem unlikely to be mean-variance
optimal, a wide range of rule-based investment strategies has emerged, aiming
mostly for higher Sharpe ratios. One group of rule-based strategies uses stock
characteristics, known as factors, which have been found in historical data to have
an effect on the expected returns of stocks; see e.g. Rosenberg & Marathe (1976),
Fama & French (1992), Carhart (1997) and Arnott et al. (2005). If investors
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systematically exploit such factors on a large scale, e.g. fundamental value, size
or momentum, then most of these effects are likely to weaken or even vanish
over time, as argued in Van Dijk (2011). Harvey et al. (2016) find that some
‘observed’ factor premia resulted from just ‘mining’ the available finite data set
and should be dismissed. In summary, factor-based strategies may not provide
sustained high Sharpe ratios in the long run.

Several rule-based strategies have emerged which exploit the inverse of esti-
mated covariance matrices of returns. These strategies aim at, e.g., the minimum
variance portfolio, as in Clarke et al. (2011); the risk parity portfolio, as in Mail-
lard et al. (2010); or the maximum diversification portfolio, as in Choueifaty &
Coignard (2008). As revealed in Plyakha et al. (2014), even for a rather small
number of stocks the arising estimation errors may easily offset the benefits of
such theoretically optimal portfolio strategies.

Despite an abundance of empirical and theoretical work; see e.g. Fernholz
(2002), Chow et al. (2011), Leote et al. (2012), Gander et al. (2013) and
Oderda (2015), no authors seem to have managed to extract convincingly the
theoretical reason why various rule-based strategies outperform the respective
MCI. The current paper reveals this reason through its Diversification Theorem,
which states that well-diversified portfolios asymptotically approximate the GP
for increasing number of constituents. Rule based portfolios are usually better
diversified than the MCI.

The paper is organized as follows: Section 2 summarizes several facts about
the GP and the Efficient Market Property. In Section 3 we construct the HWI.
Section 4 analyzes the performance of the HWI, while Section 5 empirically
explores the Efficient Market Property. Appendix A describes the data used,
whereas Appendix B proves the Efficient Market Property. Appendix C presents
the Diversification Theorem. Finally, Appendix D demonstrates that the HWI
equals the GP under a stylized hierarchical stock market model.

2 Efficient Market Property

In this section we summarize several properties related to the growth optimal
portfolio (GP), including the Efficient Market Property.

Let V π
t denote the value of a strictly positive portfolio at time t with strategy

π, which in turn denotes the weights invested. We can then write the respective
long-term growth rate (GR) at time T > 0 in the form

Gπ
T =

1

T
ln

(
V π
T

V π
0

)
. (2.1)

The value of the GP, at time t ≥ 0 is denoted by V π∗
t , where we set V π

0 = 1.
The GP is the portfolio that maximizes the expected GR, that is, E(Gπ

T ) for
all T ≥ 0. We assume that Gπ∗

T < ∞ for all T > 0, and have the following
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fundamental asymptotic relation

lim
T→∞

Gπ
T ≤ lim

T→∞
Gπ∗

T (2.2)

for any strictly positive portfolio V π; see Theorem 3.3 in Platen (2011).
One notes in Figure 1.2 that the GRs of the HWI and the EWI fluctuate

similarly, which is a consequence of the fact that both well-diversified indexes
are driven mostly by the non-diversifiable uncertainty of the equity market. This
observation supports our search for the ‘best’ proxy for the GP among various
competing, well-diversified portfolios. It leads us to aim for the largest GR in the
longest available observation window.

As previously mentioned, the GP is also called the benchmark, and values
denominated in units of the GP are called benchmarked values. We will prove in
Appendix B the following fundamental fact:

Theorem 2.1 (Efficient Market Property) In a continuous market, nonneg-
ative benchmarked portfolios have zero instantaneous expected returns and zero or
negative expected returns over any time period, as long as the respective GP exists.

For easier presentation, we prove this result for continuous markets. However,
it holds far more generally, even for semimartingale markets, see Karatzas &
Kardaras (2007). The GP is in many ways the ‘best’ performing portfolio. The
Efficient Market Property captures a vital property where it is the ‘best’ portfolio.
Any other portfolio, when used as a benchmark, would violate the statements of
Theorem 2.1 for some security and some time. The theorem states that, in the
very short term, the current value of any nonnegative benchmarked portfolio is
equal to or greater than its future benchmarked values. Note that this statement
refers to the given investment universe and the information captured by the state
variables of the model that determine the respective GP. In this precise sense the
market is efficient.

Since instantaneous expected returns are zero in the denomination of the GP,
there is no possibility of maximizing expected returns. Note that only when re-
placing the denominator, e.g. by the risk-free asset, do nonzero instantaneous
expected returns appear for the stock and portfolio dynamics in the new denomi-
nation as a consequence of Itô calculus. The mean-variance approach to portfolio
optimization has often aimed at maximizing instantaneous expected returns in
the denomination of the risk-free asset. The Efficient Market Property identifies
the GP as the only benchmark such that for all benchmarked portfolios their cur-
rent value is the ‘best’ forecast of their ‘next’ value over vanishing time periods.
The conditional expectation underpinning this statement is taken with respect
to the real world probability measure and the information employed is the one
captured by the evolution of all state variables of the underlying market model
up to the current time.
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3 Hierarchically Weighted Index

This section explains the construction of the hierarchically weighted index (HWI),
which we implement for stocks in developed markets. Details on the Industry
Classification Benchmark (ICB), see Reuters (2008), which we use when forming
hierarchical groupings, together with information about the data, are provided
in Appendix A.

Portfolio Construction

We assume four levels in our hierarchy for developed stock markets. This appears
to be reasonable but other numbers of levels are possible. At time t ≥ 0 we denote
by Mt the number of geographical regions, M j1

t the number of countries in the
j1-th region, M j1,j2

t the number of industrial groupings in the j2-th country of the
j1-th region and M j1,j2,j3

t the number of stocks in the j3-th industrial grouping of
the j2-th country of the j1-th region.

Let Sjt denote the cum-dividend price of the j-th stock (denominated in US
dollars) at time t ≥ 0, j = (j1, j2, j3, j4). The portfolio weight for the investment
in the j-th stock at time t is denoted by πjt . The vector process of weights of
a strictly positive, self-financing portfolio with value V π

t at time t ≥ 0 is (with
slight abuse of notation) denoted by π = {πt = (π1

t , π
2
t , . . . , π

Nt
t )>, t ≥ 0}, where

Nt =
Mt∑
j1=1

M
j1
t∑

j2=1

M
j1,j2
t∑
j3=1

M j1,j2,j3
t (3.1)

denotes the number of stocks in our investment universe at time t ≥ 0. We denote
here by x> the transpose of a vector or matrix x.

We introduce by 0 = t0 < t1 < · · · < ti < ti+1 < . . . the reallocation times for
a portfolio V π. Its value V π

ti
at time ti is calculated, recursively, via the relation

V π
ti

= V π
ti−1

1 +

Nti−1∑
j=1

πjti−1

Sjti − S
j
ti−1

Sjti−1

 (3.2)

for i ∈ {1, 2, . . . } with V π
t0

= 1. For all portfolios constructed in this paper the
rebalancing frequency is quarterly, which is adequate, but can be easily changed.
Additional rebalancing is performed when a stock ‘dies’ between the quarterly
rebalancing times. More frequent rebalancing, e.g. monthly, shows similar results
to what we report.

The ‘traditional’ benchmark for fund management is the market capitalization
weighted index (MCI) with the weight πMCI,j

ti invested in the j-th stock at time

ti. This weight is determined by the reported respective market value MV j
ti via

the formula

πMCI,j
ti =

MV j
ti∑Nti

k=1 MV k
ti

(3.3)
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Figure 3.1: The HWI and MCI weights of the stocks ordered by market capital-
ization.

for j ∈ {1, 2, . . . , Nti}, i ∈ {0, 1, . . . }.
The weights πEWI,j

ti for j ∈ {1, 2, . . . , Nti} of the equally-weighted index (EWI)
are set to be equal at each time ti,

πEWI,j
ti =

1

Nti

, (3.4)

for i ∈ {0, 1, . . . }.

HWI

The proposed hierarchically weighted index (HWI) uses region, country and in-
dustry groupings of stocks in a hierarchical manner to determine their respec-
tive weights. It invests equal fractions of wealth in the constituents of each
group. These constituents are themselves equally-weighted indexes or (on the
lowest level) stocks. The three geographical regions we distinguish are Europe,
Asia-Pacific and North-America. In the first column of Table 3.1 we list the 23
developed markets (countries) considered in this paper. These were chosen by
using the ICB classification. The base dates for the start of investments made
in each respective country are listed in column two. These are chosen by taking
into account the reported number of dead stocks at a given time. Due to the
downgrading of Greece to the status of an emerging market in 2013, we ignore
Greece. We include Israel, since it was acknowledged as a developed market in
2010.

Due to these (and other) deviations of our set of stocks when compared to
those of the MSCI Developed Markets, we form the MCI, which allows us to
make a fairer comparison with other constructed indexes. This constructed MCI
deviates only marginally from the MSCI, as we show later on. The total number
of stocks considered is over 40, 000. About 4, 810 stocks are selected dynamically
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at a given time from these stocks by the following rules, which make sure that
there is, on average, a reasonable number of stocks in the industrial groups formed
within each country: The rule for the selection of subsectors (in the ICB sense)
as an industrial grouping, is that the country needs to have more than 900 stocks
available. For countries with a number of stocks between 80 and 900 we employ
the sector grouping. For countries with fewer than 80 stocks the supersector
grouping is used as an industrial grouping. For instance, in the case of the
United States, we choose the 998 largest (by market value) stocks that are alive
at a rebalancing date. The list of the number of stocks chosen for a given country
is recorded in column three of Table 3.1. Column four in Table 3.1 indicates
the level of ICB grouping we use as an industrial grouping of stocks in the given
country.

Recall, for the j-th stock with j = (j1, j2, j3, j4) we denote by M j1,j2,j3
t the

number of stocks in the industrial grouping in its country. M j1,j2
t is then the

number of respective industrial groupings (subsectors, sectors or supersectors) in
the country the j-th stock belongs to. M j1

t denotes the number of countries in
the region of the j-th stock and Mt counts the number of regions considered at
time t ≥ 0.

We equally-weight in each group of the hierarchy the constituents we have
formed at the next lower level. The weight for the j-th stock, with j = (j1, j2, j3, j4),
is then of the form

πHWI,j
t =

1

Mt

1

M j1
t

1

M j1,j2
t

1

M j1,j2,j3
t

(3.5)

for t ≥ 0. As a result, the weights of industrial groupings and countries in the
HWI are rather different to those of the MCI and EWI, see Table 3.2. Another
illustration of how different the weights of the HWI are compared to those of the
MCI, is given in Figure 3.1. It shows the weights of stocks for the MCI and the
HWI, where the stocks are ordered by their market capitalization at the end of
our observation period. The HWI employs information about stock groups with
exposure to similar uncertainties, whereas the EWI uses no information.

Other Hierarchical Groupings

When forming the HWI we arguably use the most natural hierarchical groupings
of stocks, starting with an industry grouping located in a country, which is then
part of a region. Hierarchically weighted indexes can also be constructed in other
ways, e.g., by using only industrial or only geographical classifications of stocks.
Furthermore, one may first use in the lower levels of the hierarchy both geograph-
ical and industrial groupings and at higher levels only industrial groupings, as
illustrated in Platen & Rendek (2012). This would still group stocks according
to exposure to similar uncertainties.

An important question is, does it matter significantly if we have in our hier-
archy at the lower level industrial groupings or geographical groupings? As we
will see below, the performance of the resulting index appears to be better when
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Country HWI Country Base Date No. of Stocks Industrial Grouping

CANADA 01/01/1990 245 sector
UNITED STATES 02/01/1984 998 subsector
HONG KONG 01/01/1986 127 sector
JAPAN 01/01/1990 1000 subsector
UNITED KINGDOM 01/01/1985 539 sector
SPAIN 03/01/2000 116 sector
NETHERLANDS 01/01/1990 107 sector
AUSTRALIA 01/01/1988 160 sector
SWITZERLAND 01/01/1992 146 sector
BELGIUM 02/01/1984 90 sector
FRANCE 01/01/1993 247 sector
GERMANY 01/01/1990 235 sector
ITALY 01/01/1986 150 sector
SINGAPORE 03/01/2005 100 sector
NORWAY 01/01/1990 50 supersector
IRELAND 01/01/1991 37 supersector
SWEDEN 01/01/1991 62 supersector
FINLAND 01/01/1996 47 supersector
AUSTRIA 01/01/1992 49 supersector
PORTUGAL 01/01/1993 48 supersector
DENMARK 01/01/1993 47 supersector
NEW ZEALAND 03/01/2000 50 supersector
ISRAEL 03/01/2000 49 supersector

Table 3.1: Base dates, number of stocks and type of industrial grouping used in
a country for the construction of the HWI.

ICB Supersector HWI EWI MCI Country HWI EWI MCI

Industrial Goods & Services 13.95 16.19 11.42 CANADA 16.67 5.219 4.243
Personal & Household Goods 6.889 4.729 5.272 UNITED STATES 16.67 21.26 48.51
Real Estate 6.586 8.649 3.859 HONG KONG 6.667 2.706 4.499
Technology 6.051 6.966 9.503 JAPAN 6.667 21.28 9.917
Retail 5.932 5.944 5.492 AUSTRALIA 6.667 3.409 2.819
Basic Resources 5.917 3.622 2.244 SINGAPORE 6.667 2.13 1.27
Oil & Gas 5.482 6.221 8.978 NEW ZEALAND 6.667 1.065 0.1381
Food & Beverage 5.418 4.325 4.587 UNITED KINGDOM 2.083 11.48 7.865
Financial Services 5.146 7.861 4.23 SPAIN 2.083 2.45 1.807
Insurance 5.033 2.897 4.137 NETHERLANDS 2.083 2.28 1.238
Health Care 5.01 6.242 10.02 SWITZERLAND 2.083 3.11 3.293
Utilities 4.662 3.409 3.685 BELGIUM 2.083 1.917 0.8247
Telecommunications 4.491 1.513 4.183 FRANCE 2.083 5.262 4.531
Travel & Leisure 4.393 4.325 3.029 GERMANY 2.083 4.985 3.753
Construction & Materials 3.624 4.154 1.434 ITALY 2.083 3.174 1.397
Media 3.237 2.983 2.6 NORWAY 2.083 1.065 0.6474
Chemicals 3.107 2.812 2.699 IRELAND 2.083 0.7882 0.1599
Banks 2.956 4.708 9.696 SWEDEN 2.083 1.321 1.261
Automobiles & Parts 2.111 2.45 2.934 FINLAND 2.083 1.001 0.4259

AUSTRIA 2.083 1.044 0.2295
PORTUGAL 2.083 1.001 0.1515
DENMARK 2.083 1.001 0.6733
ISRAEL 2.083 1.044 0.3431

Table 3.2: Supersector and country weights for the HWI with comparison to the
EWI and MCI.

having an industrial grouping as lowest level and a geographical grouping at the
second lowest level.

To decide whether there may exist significantly better performing hierarchi-
cal portfolios than the proposed HWI we studied various alternative hierarchical
groupings to those we mention below. To illustrate our findings, we report ob-
served long-term growth rates (GRs) for selected hierarchically weighted indexes
and compare these to the HWI and EWI. First, we mention two illustrative exam-
ples of indexes that are diversified by their geographical origin at the stock level.
These are the hierarchically weighted index diversified by region only (HWI.r)
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Figure 3.2: The observed long-term growth rates (GRs) (in percent) for the
EWI and the hierarchically weighted indexes HWI.r and HWI.c.r, diversified by
geographical origin, together with those of the HWI.

and the hierarchically weighted index diversified by country and then by region
(HWI.c.r). The GRs of the EWI and these two indexes are compared in Figure
3.2 to the GR of the HWI. We observe that the HWI outperforms the HWI.c.r,
which outperforms the HWI.r, and then the EWI. This figure illustrates that the
addition of an extra hierarchical level provides consistently also an improvement
in the GR. Note in Figure 3.2 that the use of information about the region already
provides a slight improvement over the performance of the EWI. Introducing the
country level in the hierarchy visually produces the main improvement in the long
run. The GR improves further by introducing appropriate industrial groupings
of stocks in each country, which leads to the HWI.

We emphasize that the GRs of all these indexes fluctuate similarly, which
already allows us to distinguish between their GRs after a few years of observation.
The index with the highest GR at the end of the observation period is the HWI,
as is also shown in Table 4.2 in the next section.

For further illustration, we mention three other examples of indexes grouped
by their industrial origin on the stock level. These are: the hierarchically weighted
index HWI.s diversified by global industry sector only, the hierarchically weighted
index HWI.c.g diversified by country industry sector first and global industry sec-
tor second and the hierarchically weighted index HWI.c.r.g, diversified first by
country sector, then by regional sector and, finally, by global sector. In compar-
ison to these indexes and all similar indexes studied we find that our proposed
HWI generates the highest observed GR. For this reason, and by the theoretical
underpinning we give in Appendix C and Appendix D, we consider the HWI to
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be the best proxy for the GP for the stocks in developed markets compared to
the indexes studied in this paper.

4 Further Empirical Results

This section presents further empirical results concerning the performance of
the HWI, EWI and MCI. In column two of Table 4.1 we report the observed
(annualized) long-term growth rate (GR) over the available observation window
of T = 31 years, calculated according to formula (2.1). We re-emphasize that this
has been our key performance measure throughout the paper, since it directly
targets the GP when maximized. The traditionally used benchmark in equity
fund management, the MSCI total return index for developed markets, is included
in Tables 4.1-4.5 for comparison. This index draws stocks from the same 23
developed markets we consider. However, it is based only on approximately
1,700 stocks, while the HWI, the MCI and our other indexes are based on over
4,700 stocks. Since the investment universe of the MSCI captures fewer sources
of uncertainty than that of the MCI, one should expect a lower GR for the GP of
the constituents of the first, which most likely leads also to the lower GR observed
for the MSCI compared to that of the MCI.

Figure 4.1: Average return versus average volatility of selected indexes.

In Table 4.2 we show the average (with 95% confidence intervals) of the differ-
ence between the GRs of the HWI and those of the MSCI, MCI, EWI, HWI.r and
HWI.c.r, respectively, estimated from all available observation windows of length
1, 2, 3, 4, 5, 6, 7 and 8 years. Note that the HWI performs best for all observation
windows. As we have seen in Figure 1.1 and observe now in Table 4.2, due to
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Index GR Average Return Risk Premium Volatility Sharpe Ratio

MSCI 9.23 10.48 6.26 15.79 0.3963
MCI 9.37 10.38 6.16 14.19 0.4343
EWI 11.58 12.33 8.11 12.20 0.6650
HWI 14.50 15.26 11.05 12.28 0.8997

Table 4.1: Long-term growth rate (GR), average return, risk premium, volatility
and Sharpe ratio for the MSCI, MCI, EWI and HWI.

Period (years) MSCI MCI EWI HWI.r HWI.c.r

1 5.418 (5.220,5.616) 5.216 (5.040,5.392) 2.783 (2.680,2.885) 2.536 (2.438,2.635) 0.6297 (0.5989,0.6606)
2 5.518 (5.364,5.673) 5.350 (5.223,5.477) 2.938 (2.877,2.999) 2.633 (2.573,2.693) 0.6329 (0.6080,0.6578)
3 5.631 (5.494,5.769) 5.351 (5.240,5.461) 3.005 (2.963,3.047) 2.654 (2.611,2.697) 0.6290 (0.6066,0.6514)
4 5.771 (5.642,5.900) 5.323 (5.221,5.425) 2.989 (2.957,3.022) 2.728 (2.695,2.761) 0.6312 (0.6102,0.6523)
5 5.914 (5.793,6.035) 5.303 (5.208,5.399) 3.012 (2.986,3.037) 2.811 (2.786,2.836) 0.6413 (0.6212,0.6614)
6 5.973 (5.859,6.086) 5.248 (5.160,5.336) 3.002 (2.979,3.025) 2.847 (2.825,2.869) 0.6504 (0.6312,0.6696)
7 5.964 (5.856,6.073) 5.172 (5.090,5.254) 2.990 (2.968,3.012) 2.870 (2.849,2.891) 0.6639 (0.6452,0.6826)
8 5.986 (5.880,6.091) 5.154 (5.076,5.231) 2.992 (2.972,3.011) 2.904 (2.886,2.921) 0.6696 (0.6515,0.6877)

Table 4.2: Difference in average percentage long-term growth rate (GR) over
observation windows reaching from one to eight years with 95% confidence interval
between HWI and MSCI, MCI, EWI, HWI.r and HWI.c.r, respectively.

EWI HWI

Daily 0.526793 0.539724
Monthly 0.557688 0.605034
Quarterly 0.596067 0.654559
Half-yearly 0.618356 0.689812
Yearly 0.670045 0.747530
2 Yearly 0.748774 0.866499
3 Yearly 0.801810 0.885338
5 Yearly 0.777516 0.886695

Table 4.3: Relative frequency of outperforming the MCI over a given period
length for the EWI and HWI.

Index VaR (95%) ES (95%)

MCI -0.012834 -0.021029
EWI -0.011252 -0.018382
HWI -0.010636 -0.018680

Table 4.4: Value at Risk (VaR) and Expected Shortfall (ES) for MCI, EWI and
HWI at a 95% level.

the similar fluctuations of the well-diversified portfolios considered it seems to
take an observation window of only about one year to distinguish reasonably well
between the GRs of the HWI, the MCI and the EWI. We emphasize that in Table
4.2 one can observe with 95% confidence that after one year the typical difference
between the GRs of the HWI and MCI is already at least about 5%. This is a
substantial difference in performance, which only decreases by about 0.35% when
taking a realistic 40 basis points proportional transaction cost into account, as
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Index Av. Drawdown Av. Recovery

MCI 0.0199 14.7533
EWI 0.0187 11.9556
HWI 0.0169 9.4541

Table 4.5: Average relative drawdown and average recovery time (in days) for
the MCI, EWI and HWI.

shown below in Table 4.6.
Despite our strategic focus on maximizing the GR, in this section we also

provide some popular short term performance and risk measures. The annualized
percentage average returns are displayed in column three of Table 4.1 and the
risk premium is estimated in column four. The risk premium of the HWI is
the highest and reaches approximately 11% compared to 6% for the MCI. The
annualized percentage volatility is recorded in column five, and equals 12% for
the HWI, which is close to the volatility of the EWI, whereas the volatility of the
MCI is higher at about 14%.

Figure 4.1 plots the annualized average daily return against the annualized
average volatility for selected indexes, including those with the alternative hierar-
chical groupings mentioned in the previous section. The HWI exhibits the most
favorable annualized average return, and has the highest Sharpe ratio, as shown
in column six of Table 4.1. Furthermore, in Table 4.1 it can be seen that the
improvement of the HWI in its average return on that of the MCI is about 4.9%,
which is above that of the EWI, which is about 2.9%. As indicated in the intro-
duction, the Sharpe ratio of the MCI is about 0.43, that of the EWI is 0.67, and
that of the HWI about 0.90. The latter is the highest Sharpe ratio observed in our
study. One has to conclude that the MCI is poorly positioned on the respective
mean-variance efficient frontier. As discussed, this observation empirically defies
classical theory, as developed in Markowitz (1959), Sharpe (1964), and a related
stream of literature.

Table 4.3 provides us with observed relative frequencies for outperforming the
MCI over a given period length. Note that the largest relative frequencies are
observed for the HWI. In Table 4.4 the HWI shows about the smallest absolute
values for daily Value at Risk (VaR) and Expected Shortfall (ES), respectively,
on a 95% quantile level when compared to those of the MCI and the EWI.

In Table 4.5 we summarize the average drawdown relative to the running
maximum and the average time (in days) of recovery back to the level of the
running maximum for the different indexes. Again, the HWI performs best in
comparison to the MCI and the EWI. This is consistent with the theoretical
prediction in Kardaras & Platen (2010), where the GP is shown to require the
shortest expected ‘market time’ to reach a target level.

From an equity fund management perspective one needs to query the impact
of transaction costs. In Table 4.6 we are imposing 40 basis points proportional
transaction cost on every transaction, leading from the HWI, EWI and MCI to
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Index GR Average Return Risk Premium Volatility Sharpe Ratio

MCI-TC 9.20 10.22 6.00 14.19 0.4228
EWI-TC 11.30 12.05 7.83 12.20 0.6423
HWI-TC 14.15 14.92 10.70 12.28 0.8714

Table 4.6: Long-term growth rate (GR) and other common statistics for the HWI-
TC, EWI-TC, MCI-TC constructed with 40 basis points proportional transaction
costs.

the HWI-TC, EWI-TC and MCI-TC, respectively. The turnover for the HWI is
surprisingly low. Table 4.6 shows only minor changes in performance estimates
that should be compared to the respective values in Table 4.1. Most important
is that we observe only a minor decrease of the GR for the HWI from 14.50%
shown in Table 4.1 to the GR of the HWI-TC of 14.15% shown in Table 4.6.
This makes the HWI-TC a valuable long-term investment security that can be
efficiently implemented in practice.

5 Efficient Market Property

We are now ready to employ the constructed indexes to empirically demonstrate
that the Efficient Market Property cannot be easily rejected. As shown in Theo-
rem 2.1, a crucial property of the GP is that, when it is used as a benchmark, it
causes the expected returns of nonnegative benchmarked portfolios to be negative
or zero, but never strictly positive. Thus, one can reject any candidate proxy for
the GP by showing that the mean of returns of benchmarked securities is strictly
positive at a respective significance level. To attempt this for any single stock
would not work, since the available observation window, here 31 years, is clearly
too short to provide any reasonable level of significance. However, we can gain
sufficient evidence by combining all available daily returns of all benchmarked
stocks in a large sample of 31, 472, 596 daily returns, where we employ the HWI-
TC as the benchmark. For comparison, we also employ the MCI-TC, EWI-TC,
HWI.c.r-TC, HWI.c.g-TC and HWI.c.r.g-TC as benchmarks to see whether the
theoretical Efficient Market Property, in the sense of Theorem 2.1, cannot be
rejected for several of these indexes.

Benchmark Sample mean Standard Error 99% LCI 99% UCI Z-test p-value

MCI-TC 3.504079 0.142278 3.137594 3.870563 24.628 0
EWI-TC 0.936921 0.141376 0.572761 1.301081 6.627 0
HWI-TC -1.671584 0.141828 -2.036909 -1.306259 -11.786 1
HWI.c.r-TC -1.072318 0.141815 -1.437608 -0.707027 -7.561 1
HWI.c.g-TC -1.238168 0.141928 -1.603750 -0.872587 -8.724 1
HWI.c.r.g-TC -1.364769 0.141681 -1.729714 -0.999823 -9.633 1

Table 5.1: Test for the mean daily annualized percentage returns of all bench-
marked stocks.
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Benchmark Bootstrap mean 99% LCI 99% UCI Test statistic p-value

MCI-TC 3.502956 3.140459 3.910323 23.133 0
EWI-TC 0.936228 0.571123 1.398584 6.256 0
HWI-TC -1.664403 -2.018709 -1.277940 -11.529 1
HWI.c.r-TC -1.074673 -1.419532 -0.674604 -7.392 1
HWI.c.g-TC -1.243531 -1.617380 -0.893065 -8.177 1
HWI.c.r.g-TC -1.361862 -1.725689 -1.001110 -8.968 1

Table 5.2: Bootstrap test for the mean daily annualized percentage returns of
benchmarked stocks.

We consider all available daily, annualized percentage returns of all stocks
(that constitute the HWI) when benchmarked by the index shown in column one
of Table 5.1, and produce the respective sample mean displayed in column two
of Table 5.1. In a first step, one could argue that the returns are reasonably
independent when observed on different days, and that the returns of different
benchmarked stocks on the same day are also reasonably independent because
they are mainly driven by their idiosyncratic or specific uncertainties. Therefore,
initially assuming independent and identically distributed returns, appears to
be acceptable. The Central Limit Theorem determines then the length of the
respective confidence intervals. In column three of Table 5.1 we show the resulting
standard error and in columns four and five the lower level (LCI) and the upper
level (UCI), respectively, of the 99% confidence interval for the ‘true’ expected
daily return of benchmarked stocks. The reader may be surprised to see some
confidence intervals covering only negative values. However, this is what Theorem
2.1 predicts when considering returns over some positive time period, here about
one day. Theorem 2.1 explains this phenomenon via the supermartingale property
of benchmarked securities, see Platen & Heath (2010), Karatzas & Kardaras
(2007), Loewenstein & Willard (2000) and Heston, Loewenstein & Willard (2007)
for further details in this direction.

To be precise, we denote by µ (in line with Theorem 2.1 and (B.11)), the
‘true’ expected average of all daily returns of all benchmarked stocks and test the
hypothesis:

H0 : µ ≤ 0 versus H1 : µ > 0. (5.1)

We display the corresponding test statistic of the well-known Z-test (see e.g.
Mode (1966)) in column six, and the respective one-sided p-values in column
seven of Table 5.1. On a 1% level of significance we can clearly reject H0 for
the MCI-TC and EWI-TC when used as benchmarks. However, we cannot reject
H0 for the HWI-TC, HWI.c.r-TC, HWI.c.g-TC and HWI.c.r.g-TC. This means,
these hierarchically constructed indexes are closer to the GP than the MCI-TC
and EWI-TC.

One may argue that the assumption of independent and identically distributed
returns in the first step of our analysis is too strong and should be relaxed.
Therefore, in the second step of our study we remove this assumption and report
in Table 5.2 the block bootstrap percentile 99% confidence intervals, with the

16



respective test statistics and p-values for the hypothesis (5.1)5. We observe that
the results in Table 5.2 resemble those in Table 5.1.

We emphasize in Table 5.1 and Table 5.2 that for the not rejected indexes
the 99% confidence intervals for the mean µ do not include zero in all cases, and
cover slightly negative values. As already explained, this is a consequence of the
theoretically predicted supermartingale property of GP benchmarked stocks. We
note that when using the HWI-TC as a proxy for the GP, the 99% confidence
interval for the mean of the daily returns of benchmarked stocks is the ‘most
negative’, which supports our choice of the HWI-TC as the best proxy of the GP
among the considered indexes.

Benchmark Sample mean 99 % LCI 99 % UCI Z-test p-value

MCI-TC -5.239304 -8.707531 -1.771077 -3.89 1
EWI-TC -2.943474 -4.914147 -0.972799 -3.85 1
HWI.c.r-TC -0.587549 -1.219394 0.044296 -2.4 0.99
HWI.c.g-TC -0.440414 -2.217511 1.336683 -0.64 0.74
HWI.c.r.g-TC -0.477921 -1.354879 0.399037 -1.4 0.92

Table 5.3: Test for the mean daily annualized returns of selected HWI-TC bench-
marked portfolios.

We already mentioned that well-diversified candidate proxies for the GP are
driven by similar uncertainties and can be empirically compared with each other,
even over relatively short observation windows. In Table 5.3 we test the aver-
age daily returns of the HWI-TC benchmarked MCI-TC, EWI-TC, HWI.c.r-TC,
HWI.c.g-TC and HWI.c.r.g-TC according to the hypothesis (5.1). We note that
the hypothesis H0 in (5.1) cannot be rejected for the HWI-TC when used as a
benchmark for each of the in Table 5.3 considered indexes. Since all the p-values
are above 0.7, we also cannot reject the Efficient Market Property at the 1% level
of significance. We repeated this study using the block bootstrap methodology
and obtained very similar results.

Our deliberately simply designed empirical study indicates that it is difficult to
reject the theoretically predicted Efficient Market Property for stocks in developed
markets by employing the HWI-TC as a proxy for the respective GP. In Fama
(1970, 1991, 1998) and subsequent literature various efficient market hypotheses
have been proposed and empirically studied. What is important for these forms
of market efficiency is the degree of information exploited. We have now seen
that such information is not highly relevant. We only need to take into account
information about the natural industrial and geographical grouping of stocks to
construct the HWI-TC, our best proxy for the GP for which the Efficient Market
Property has not been rejected. This means that due to the well-diversified nature
of the GP for stocks in developed markets, the Efficient Market Property of this
market is quite robust.

5The block bootstrap replicates of the sample mean are obtained with the tsboot() function
in the boot package in R, see e.g. Davison & Hinkley (2007), using block resampling with block
lengths having a geometric distribution.
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It is beyond the range of this paper to go any further in empirically studying
the Efficient Market Property. Our aim here is to provide a new understanding of
the objectively present market efficiency and to open a new direction for empirical
research.

6 Conclusion

This paper reveals a deep connection between the Efficient Market Property and
the growth optimal portfolio (GP), since stocks denominated in units of the GP
display zero or negative expected returns. Due to the impossibility of estimat-
ing means and covariances of stock returns, theoretically optimal stock portfolios,
including the GP, cannot be implemented accurately enough for larger stock mar-
kets to be useful. The paper approximates the GP for stocks in developed markets
by a hierarchically weighted index (HWI), which does not rely on any estimation
and sets equal weights within industrial and geographical groupings. A Diversifi-
cation Theorem explains why naive diversification works well and why the HWI
performs even better. The HWI is that portfolio which has the highest observed
long-term growth rate among the other well-diversified portfolios considered. The
Efficient Market Property is difficult to reject empirically when using the HWI
as a proxy for the GP. This indicates that the GP is rather close to the HWI.
Since no information is needed beyond that encapsulated in the prices of stocks
and their industrial and geographical hierarchical groupings, the Efficient Market
Property appears to be robust. These findings provide a new understanding of
market efficiency. By constructing an excellent proxy for the GP for a particular
market one can empirically test for market efficiency. All that is required for such
a test is a sufficiently accurate proxy for the GP, which is an optimal portfolio
that gives access to the efficient construction of many other optimal portfolios.
The HWI, as a proxy for the GP of developed markets, is in itself useful in equity
fund management and can serve as a building block in portfolio optimization and
risk management. The GP plays a central role as the numéraire portfolio for
pricing and hedging under the real world probability measure in the benchmark
pricing theory, which goes beyond classical finance with its richer modeling world
and coverage of new phenomena. The HWI, as an excellent proxy for the GP,
allows one to practically demonstrate and exploit such new phenomena that can
potentially explain various puzzles in classical finance, as forthcoming work will
demonstrate.

Appendix A: Data

In this appendix we describe our data. Thomson Reuters Datastream (TRD)
provides a range of TRD calculated country, region and sector indexes together
with their current constituents and lists of dead stocks. For developed stock
markets the current paper builds global stock indexes from the data available in
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the TRD database. The 23 developed countries included in this study are given
in the first column of Table A.1. These developed countries are identified based
on the FTSE/ICB country classification. For each of these developed markets
Datastream uses a sample of stocks covering a minimum of 75 - 80% of total
market capitalization by choosing the largest stocks by market value. Column
two of Table A.1 lists the corresponding approximate number of stocks in the
Datastream index for the selected 23 countries and in column three the relevant
base date from which the index is available; see also Reuters (2008).

The respective list of constituents of Datastream country indexes was obtained
from the TRD database by quoting the mnemonic for each country list. Table A.2
lists the mnemonics used for the active and dead stocks in the included markets.
We also provide in this table the number of active and dead stocks present on both
mentioned lists for each country. Note that we only consider those stocks in the
lists whose “GEOLN”= “GEOGN”= “Country Name”. Additionally, companies
with datatype “MAJOR”= “Y” are included, which means that for companies
with more than one equity security the one with the largest market capitalization
is chosen.

Country Approx. no. of stocks Base Date

CANADA 250 Jan 1973
UNITED STATES 1000 Jan 1973
HONG KONG 130 Jan 1973
JAPAN 1000 Jan 1973
UNITED KINGDOM 550 Jan 1965
SPAIN 120 Jan 1986
NETHERLANDS 130 Jan 1973
AUSTRALIA 160 Jan 1973
SWITZERLAND 150 Jan 1973
BELGIUM 90 Jan 1973
FRANCE 250 Jan 1973
GERMANY 250 Jan 1973
ITALY 160 Jan 1973
SINGAPORE 100 Jan 1973
NORWAY 50 Jan 1980
IRELAND 50 Jan 1973
SWEDEN 70 Jan 1982
FINLAND 50 Mar 1988
AUSTRIA 50 Jan 1973
PORTUGAL 50 Jan 1990
DENMARK 50 Jan 1973
NEW ZEALAND 50 Jan 1988
ISRAEL 50 Jan 1992

Table A.1: Base dates and number of constituents for Datastream indexes

TRD classifies equities according to the previously mentioned Industry Clas-
sification Benchmark (ICB). We only consider those stocks that are classified into
one of the subsectors and exclude all stocks that are unclassified (UNCLAS) or
classified as one of the following: unqouted equities (UQEQS), exchange traded
funds (NEINV), suspended equities (SUSEQ), and other equities (OTHEQ). The
number of such removed securities is recorded in the last column of Table A.2.

We use the ICB classification of stocks into subsectors, sectors and super-
sectors, downloaded from Thomson Reuters Datastream (TRD) with mnemonics
FTAG3, FTAG4, FTAG5. The country where the given stock originates is also
recorded by TRD. Finally, the countries are grouped into three regions: Americas,
Europe (EMEA) and Asia-Pacific.
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Country Active No. Active Downl. Dead No. Dead Downl. Removed.

CANADA LTOTMKCN 250 245 DEADCN1-2 6814 5310 598
UNITED STATES LTOTMKUS 999 998 DEADUS1-6 22189 17009 467
HONG KONG LTOTMKHK 130 127 DEADHK 248 200 8
JAPAN LTOTMKJP 1000 1000 DEADJP 1681 1569 14
UNITED KINGDOM LTOTMKUK 549 539 DEADUK 5625 5263 1037
SPAIN LTOTMKES 120 116 DEADES 264 180 9
NETHERLANDS LTOTMKNL 117 107 DEADNL 429 343 39
AUSTRALIA LTOTMKAU 160 160 DEADAU 1784 1531 32
SWITZERLAND LTOTMKSW 150 146 DEADSW 360 246 12
BELGIUM LTOTMKBG 90 90 DEADBG 271 245 23
FRANCE LTOTMKFR 250 247 DEADFR 1534 1400 243
GERMANY LTOTMKBD 250 235 DEADBD 3000 2229 21
ITALY LTOTMKIT 160 150 DEADIT 422 339 24
SINGAPORE LTOTMKSG 100 100 DEADSG 409 391 4
NORWAY LTOTMKNW 50 50 DEADNW 415 400 34
IRELAND LTOTMKIR 37 37 DEADIR 129 108 22
SWEDEN LTOTMKSD 70 62 DEADSD 819 709 72
FINLAND LTOTMKFN 50 47 DEADFN 149 124 17
AUSTRIA LTOTMKOE 50 49 DEADOE 196 160 8
PORTUGAL LTOTMKPT 50 48 DEADPT 239 165 51
DENMARK LTOTMKDK 50 47 DEADDK 277 254 15
NEW ZEALAND LTOTMKNZ 50 50 DEADNZ 252 224 4
ISRAEL LTOTMKIS 50 49 DEADIS 505 413 1

Table A.2: Datastream stock lists and number of equity data obtained

The number of stocks for each active and dead list is recorded in Table A.2
in the fourth and seventh columns, respectively. For the downloaded stocks we
obtained the total return prices and the market capitalization. The market value
is understood here to be the reported number of ordinary shares in the market
multiplied by the stock price. Note that we have accounted for the fact that TRD
repeats the last valid stock price or market capitalization for delisted stocks after
a delisting. We found it necessary to remove this zero return from the end of the
time-series. With the downloaded data prepared in this manner we perform our
study, where we recover well the by TRD historically formed market capitalization
weighted indexes for the 23 developed markets. We then use this data set for
constructing the EWI, MCI and hierarchically weighted indexes.

Appendix B: Efficient Market Property

Market Setting

We prove in this appendix several theoretical results which underpin our deriva-
tion of the Efficient Market Property and construction of well-diversified portfo-
lios to approximate the GP. To avoid technicalities, we consider in our proofs and
derivations a continuous financial market. However, the Efficient Market Property
can be shown to hold for general semimartingale markets, see Karatzas & Kar-
daras (2007) and Du & Platen (2016). The traded uncertainty of stocks is modeled
by an n-dimensional standard Brownian motion W = {Wt = (W 1

t , . . . ,W
n
t )>, t ∈

[0,∞)}, n ∈ {2, 3, . . . } on a filtered probability space (Ω,F ,F , P ) satisfying
the usual conditions, see e.g. Karatzas & Shreve (1998), where the filtration
F = (Ft)t≥0 models the evolution of information, generated by the quantities
constituting the model. This information is characterized at time t ≥ 0 by the
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sigma algebra Ft. Concerning the Efficient Market Property, information is, thus,
‘quickly’ and ‘correctly’ expressed in prices and other quantities constituting the
market model. Again, x> denotes the transpose of x. For matrices x and y we
write x · y for the matrix product of x and y. Moreover, 1 = (1, . . . , 1)> is a
vector, and we write 0 for a zero matrix or vector, where the dimensions follow
from the context.

Consider m nonnegative, stocks with vector value process S = {St = (S1
t , . . . ,

Smt )>, t ∈ [0,∞)}, denominated in units of the domestic currency, which satisfies
the stochastic differential equation (SDE)

dSt
St

= atdt+ bt · dWt, (B.1)

t ∈ [0,∞), Si0 > 0 for i = 1, . . . ,m. Note that all dividends are reinvested. The
instantaneous expected return vector process a = {at = (a1

t , . . . , a
m
t )>, t ∈ [0,∞)}

and the volatility matrix process b = {bt = [bj,kt ]m,nj,k=1, t ∈ (0,∞]} are assumed to
be adapted and such that there exists a unique strong solution of the SDE (B.1);
see e.g. Section 7.7 in Platen & Heath (2010) for respective sufficient conditions.

A strictly positive, self-financing, portfolio process V π is characterized by the
weights or fractions of wealth πt = (π1

t , . . . , π
m
t )>, t ∈ [0,∞), invested in the

stocks, together with its positive initial value V π
0 > 0, where

π>t · 1 = 1. (B.2)

The portfolio value V π
t at time t then satisfies the SDE

dV π
t

V π
t

= π>t ·
dSt
St

= π>t · atdt+ π>t · bt · dWt (B.3)

for t ∈ [0,∞).

Growth Optimal Portfolio

We characterize the growth optimal portfolio (GP) by the following result, which
follows directly from Theorem 3.1 in Filipović & Platen (2009), where it has been
shown that the GP is equivalent to the expected logarithmic utility maximizing
portfolio, also called the Kelly portfolio, see Kelly (1956), and studied in a stream
of literature; see MacLean et al. (2011).

Theorem B.1 (Growth Optimal Portfolio Theorem) If a GP exists in a
given continuous market, then the process π∗ of GP weights may not be unique.
However, the GP value process V π∗ = {V π∗

t , t ∈ [0,∞)} is unique for some fixed
initial portfolio value, which we set as V π∗

0 = 1, and the SDE of the GP is of the
form

dV π∗
t

V π∗
t

= λtdt+ θ>t · (θtdt+ dWt) (B.4)
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for t ∈ [0,∞). Here we set
θt = b>t · π∗t , (B.5)

with π∗t and λt representing the components of the solution of the matrix equation(
btb
>
t 1

1> 0

)(
π∗t
λt

)
=

(
at
1

)
(B.6)

for all t ∈ [0,∞). A sufficient condition for the existence of a solution of (B.6) is
the invertibility of the covariance matrix bt ·b>t for all t ∈ [0,∞). In the case when
the risk-free asset is included in the investment universe λt equals the risk-free
rate and θt represents the vector of market prices of risk.

Assuming that the GP exists, it follows from the above Growth Optimal
Portfolio Theorem that the Lagrange multiplier λt and the GP volatility vector
θt are uniquely determined through at and bt. Moreover, by (B.5) and (B.6) the
vector of instantaneous expected returns has the form

at = λt1 + bt · θt. (B.7)

Consequently, for any self-financing portfolio V π
t , the SDE (B.3) takes the form

dV π
t

V π
t

= λtdt+ π>t · bt · (θtdt+ dWt). (B.8)

To correctly identify the optimal strategy for the GP one would need accurate
information about at and bt, which, as we argue in this paper, seems impossible to
extract sufficiently precisely to be useful in portfolio optimization for large equity
markets. However, some reliable information is available through the hierarchical
industrial and geographical grouping of stocks. As we show in this paper, this
information is sufficient to approximate the GP well enough so that the following
Efficient Market Property cannot be easily rejected.

Efficient Market Property

In the benchmark pricing theory of Platen & Heath (2010), the GP of a given
set of constituents is called the benchmark. Any security or portfolio V π

t is called
benchmarked when denominated in units of the benchmark. By applying the Itô
formula to the benchmarked portfolio value V̂ π

t =
V πt
V π∗t

we obtain the SDE for its

return process Q̂π = {Q̂π
t , t ∈ [0,∞)} from (B.8) and (B.4) as

dQ̂π
t =

dV̂ π
t

V̂ π
t

=
(
π>t · bt − θ>t

)
· dWt (B.9)

for t ∈ [0,∞). The key observation is here that this SDE is driftless. Conse-
quently, the following fundamental fact emerges:
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Theorem B.2 In a continuous market the instantaneous expected returns of GP-
benchmarked, self-financing portfolios equal zero.

To make the Efficient Market Property testable we need to acknowledge the
fact that we can only observe returns over a nonvanishing strictly positive time
period. To characterize the situation where we have a strictly positive time pe-
riod over which we observe returns, we note that driftless benchmarked portfolio
values form, so called, local martingales. By Fatou’s lemma any nonnegative local
martingale is a supermartingale, which means that any nonnegative benchmarked
portfolio V̂ π satisfies the inequality

V̂ π
t ≥ Et(V̂

π
t+h) (B.10)

for all 0 ≤ t ≤ t + h < ∞; see e.g. Platen & Heath (2010). Here Et denotes the
conditional expectation under the real-world probability measure P given the in-
formation Ft at time t. As indicated earlier, the supermartingale property (B.10)
holds generally in semimartingale markets, see Karatzas & Kardaras (2007) and
Du & Platen (2016).

By setting the benchmark equal to the GP one has only negative or zero (but
never strictly positive) expected returns for nonnegative benchmarked securities,
since by (B.10) we have

Et

(
V̂ π
t+h − V̂ π

t

V̂ π
t

)
≤ 0 (B.11)

for 0 ≤ t ≤ t + h < ∞. This result, together with Theorem B.2, proves the
statement of Theorem 2.1.

Appendix C: Hierarchical Diversification

Hierarchical Grouping of Stocks

To formulate the Diversification Theorem we make a few assumptions that avoid
technicalities in its formulation and proof. These assumptions can be significantly
relaxed in an obvious manner. We assume that the stocks can be classified into
hierarchical groupings with a fixed number H ∈ {1, 2, . . . } of hierarchical levels.
For example, in the construction of the HWI, shown in Figure 1.1, we choose
H = 4. In the asymptotics of the Diversification Theorem, we let a number
M ∈ {2, 3, . . . } tend to infinity, whereas H remains fixed. We assume that in
each group of the hierarchy we have at least KM and at most K̄M next lower
level subgroups, with fixed integers K and K̄, 0 < K ≤ K̄ <∞. This means, for
given M we have at least (KM)H and at most (K̄M)H stocks in our investment
universe.

We denote by W k1 = {W k1
t , t ∈ [0,∞)} the k1-th independent, standard

Brownian motion that primarily drives the k1-th group on the highest level of
the hierarchy, k1 ∈ {1, 2, . . . , K̄M}. Furthermore, for k1, k2 ∈ {1, 2, . . . , K̄M}
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we let W k1,k2 = {W k1,k2
t , t ∈ [0,∞)} denote the (k1, k2)-th independent standard

Brownian motion that primarily models the uncertainty driving the k2-th group
on the second highest level in the k1-th group of the highest level. In an analogous
manner we introduce independent standard Brownian motions for next lower level
groups until we reach at the lowest level the stocks. Here W k1,k2,...,kH denotes the
(k1, k2, . . . , kH)-th independent standard Brownian motion that primarily drives
the kH-th stock in the kH−1-th lowest level group, of the kH−2-th second lowest
level group, etc. For the jH-th benchmarked stock in the jH−1-th lowest level
group of the jH−2-th second lowest level group, etc., we write Ŝjt , where j =
(j1, j2, . . . , jH) ∈ ΓM = (1, 2, . . . , K̄M)H . By using (B.1) and (B.7) we capture
the hierarchical structure of the stock market dynamics for the j-th benchmarked
stock price Ŝjt by assuming the SDE

dŜjt

Ŝjt
=

K̄M∑
k1=1

(ψj,k1t dW k1
t +

K̄M∑
k2=1

(ψj,k1,k2t dW k1,k2
t (C.1)

+ · · ·+
K̄M∑
kH=1

ψj,k1,k2,...,kHt dW k1,k2,...,kH
t )).

Note that by setting the respective volatility coefficient to zero for some j ∈
ΓM we can conveniently model groups that have less than K̄M next lower level
subgroups.

According to (C.1) the hierarchical groupings allow us to capture in each
group the subgroups that have exposure to similar industrial and geographical
uncertainties. The typical sources of uncertainty for members of a group are only
assumed to be of significance to other members of the group, which seems to be
reasonable.

Diversification Theorem

For given M ∈ {2, 3, . . . } the SDE for the return process Q̂πM
t of a given bench-

marked portfolio V̂ πM
t , with fraction πjM,t invested in the jth stock, j ∈ ΓM , is by

(B.9) of the form

dQ̂πM
t =

dV̂ πM
t

V̂ πM
t

=
∑
j∈ΓM

πjM,t

dŜjt

Ŝjt
(C.2)

=
K̄M∑
k1=1

∑
j∈ΓM

πjM,tψ
j,k1
t dW k1

t (C.3)

+
K̄M∑
k1=1

K̄M∑
k2=1

∑
j∈ΓM

πjM,tψ
j,k1,k2
t dW k1,k2

t (C.4)

+ · · ·+
K̄M∑
k1=1

K̄M∑
k2=1

· · ·
K̄M∑
kH=1

∑
j∈ΓM

πjM,tψ
j,k1,k2,...,kH
t dW k1,k2,...,kH

t . (C.5)
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Note that the benchmarked GP is trivially one. Therefore, the time derivative of
the quadratic variation, see e.g. Platen & Heath (2010), of its return process is
zero. Since we aim to identify proxies for the GP, we identify these asymptotically
as follows (where the time derivative of the quadratic variation of the return
process of the benchmarked proxy vanishes as M tends to infinity):

Definition C.1 We call a sequence of benchmarked portfolio processes
(V̂ πM )M∈{2,3,... }, each with return process Q̂πM , a sequence of benchmarked ap-
proximate GP processes if for all ε > 0 and t ∈ [0,∞) the limit in probability

lim
M→∞

P

(
d[Q̂πM

· ]t
dt

> ε

)
= 0 (C.6)

holds.

For diversification to be possible, we need a condition which ensures that not
all benchmarked stocks are driven to a significant extent by the same uncertain-
ties. Therefore, we make the following (rather reasonable) assumption:

Assumption C.2 For given k1, k2, . . . , kh ∈ {1, 2, . . . , K̄M} we assume that for
all M ∈ {2, 3, . . . } and all h ∈ {1, 2, . . . , H}∑

j∈ΓM

|ψj,k1,k2,...,kht | ≤ (K̄M)H−hσt, (C.7)

where the adapted stochastic process σ = {σt, t ≥ 0} satisfies the square integra-
bility condition

E((σt)
2) ≤ σ̄2 <∞ (C.8)

for all t ∈ [0,∞).

Assumption C.2 covers an extremely wide range of hierarchical market models.
Note that the particular form of the volatilities ψj,·t is not relevant here. What is
limited by (C.7) is the sum of the absolute values of volatilities with respect to the
same source of uncertainty. The above property secures some convergence towards
the GP if the weights of the constituents vanish ‘fast enough’ for increasing M ,
as we specify in the Diversification Theorem below:

Theorem C.3 (Diversification Theorem) A sequence of benchmarked port-
folios (V̂ πM )M∈{2,3,... }, is a sequence of benchmarked approximate GPs, if for each
M ∈ {2, 3, . . . } the maximum of the weights satisfies the relation

max
j∈ΓM

|πjM,t| ≤ CM ξ−H (C.9)

for some parameter ξ ∈ [0, 1
2
), some constant C ∈ (0,∞), and for all t ∈ [0,∞).
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Obviously, relation (C.9) is satisfied for the EWI and the HWI, since in these
cases we have by (3.1), (3.4) and (3.5) that πjM,t ≤ K−HM−H with C = K−H

and ξ = 0 in (C.9). Therefore, both indexes form sequences of approximate GPs.
We will see below that the proof of the above Diversification Theorem crucially
exploits the Efficient Market Property.

The Diversification Theorem can also be intuitively interpreted as a conse-
quence of a generalized version of the Law of Large Numbers for returns of
benchmarked proxies for the GP. To see this in an illustrative situation, con-
sider benchmarked constituents of the GP that have independent, square inte-
grable returns. We know from the Efficient Market Property that these returns
have asymptotically zero mean over vanishing time periods. When we form an
equally-weighted index (EWI), the total return of the benchmarked EWI becomes
the average of the independent returns. Thus, by the Law of Large Numbers this
asymptotically yields zero returns for the benchmarked EWI for increasing num-
ber of constituents. Consequently, the benchmarked EWI equals in the limit the
constant one. By multiplying the limiting benchmarked EWI, that is the constant
value one, with the GP in domestic currency denomination we obtain the GP in
domestic currency denomination. Thus, the GP asymptotically equals the limit
of the EWI. This illustration explains intuitively that, for an increasing number
of stocks, naive diversification asymptotically approximates the GP. The above
Diversification Theorem identifies not only the EWI as a good proxy for the GP
but also the HWI and many other well-diversified portfolios as good proxies.

Proof of Theorem C.3

According to Definition C.1 we need to examine the time derivative of the quadratic
variation of the return process Q̂πM of the benchmarked portfolio V̂ πM . The time
derivative of the quadratic variation of the above return process Q̂πM equals

d[Q̂πM
· ]t
dt

=
K̄M∑
k1=1

(
∑
j∈ΓM

πjM,tψ
j,k1
t )2

+
K̄M∑
k1=1

K̄M∑
k2=1

(
∑
j∈ΓM

πjM,tψ
j,k1,k2
t )2

+ · · ·+
K̄M∑
k1=1

K̄M∑
k2=1

· · ·
K̄M∑
kH=1

(
∑
j∈ΓM

πjM,tψ
j,k1,k2,...,kH
t )2 (C.10)

for t ∈ [0,∞). By (C.7) we obtain from (C.10) that
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d[Q̂πM
· ]t
dt

≤ (max
j∈ΓM

|πjM,t|)
2

(
K̄M∑
k1=1

(
∑
j∈ΓM

|ψj,k1t |)2

+
K̄M∑
k1=1

K̄M∑
k2=1

(
∑
j∈ΓM

|ψj,k1,k2t |)2

+ · · ·+
K̄M∑
k1=1

K̄M∑
k2=1

· · ·
K̄M∑
kH=1

(
∑
j∈ΓM

|ψj,k1,k2,...,kHt |)2

)

≤ (max
j∈ΓM

|πjM,t|)
2σ2

t

H∑
h=1

(K̄M)h(K̄MH−h)2

≤ (max
j∈ΓM

|πjM,t|)
2σ2

t K̄
2H

H∑
h=1

(M)h(MH−h)2

= σ2
t (max
j∈ΓM

|πjM,t|)
2K̄2HM2H−1

H∑
h=1

(
1

M

)h−1

≤ σ2
t K̄

2H(max
j∈ΓM

|πjM,t|)
2M

2H−1

1− 1
M

.

The last estimate follows from the well-known formula for the limit of the sum of
a geometric series. Thus, by using (C.9) we arrive at

d[Q̂πM
· ]t
dt

≤ C2σ2
t K̄

2H−hM2(ξ−H)M2H−1(1−M−1)−1 (C.11)

≤ C2σ2
t K̄

2H−hM2ξ−1(1−M−1)−1

≤ 2C2σ2
t K̄

2H−hM2ξ−1.

Since ξ ∈ [0, 1
2
), it follows by the Markov inequality with (C.8) for each ε > 0

and t ∈ [0, T ] that

lim
M→∞

P (
d[Q̂πM

· ]t
dt

> ε) ≤ lim
M→∞

1

ε
E(
d[Q̂πM

· ]

dt
) ≤ 2C2

ε
σ̄2K̄2H lim

M→∞
M2ξ−1 = 0,

(C.12)
which proves the Diversification Theorem. 2

Appendix D: Stylized Hierarchical Market Model

To illustrate why the HWI performs so well, even though in reality market prices
of risk and other quantities are most likely changing rapidly and cannot be esti-
mated, we describe here a realistic but stylized hierarchical stock market model
that is covered by the Diversification Theorem. The key observation is that under
this model the HWI coincides exactly with the GP. The somewhat unexpected
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insight is that the GP strategy does not require any quantity as input that has to
be estimated. The stylized model exploits our assumed hierarchical stock market
structure. It then sets various stochastic quantities equal, which for economic
reasons are most likely similar, but have no chance of being estimated with any
useful accuracy. The particular values of the randomly changing quantities turn
out to be irrelevant for the optimal weights of the GP. We stress that under the
following stylized model various key quantities can form wide fluctuating stochas-
tic processes.

Quantities that characterize the mean-variance optimal wealth evolution of
a particular company are extremely difficult to estimate. Our stylized model
assumes that each company achieves a mean-variance optimal wealth evolution.
Thus, by setting its total issued stock value equal to its wealth, the uncertainties of
its economic activities become securitized in the stock. The level of risk aversion
applied by the management of the company is a key quantity and cannot be
easily dismissed when characterizing the company’s mean-variance optimal wealth
evolution. This risk aversion level most likely changes over time and most likely
changes similarly for most companies. Therefore, the stylized model assumes a
common risk aversion process for all companies, denoted by γ = {γt > 0, t ≥ 0}.

The other crucial input that plays a significant role in characterizing the mean-
variance optimal wealth evolution of a company is the vector of market price of
risk processes for the various sources of uncertainty faced by the companies. Also
these processes most likely change over time and are difficult to estimate. All
companies are exposed to similar prices for raw materials, energy, labor, etc.
Consequently, common market price of risk processes can be assumed in the
stylized model. Additionally, one could argue that capital is most likely flowing
to those business opportunities facing slightly higher market prices of risk and
is avoiding investments with lower market prices of risk, thus, reducing through
‘demand pressure’ higher market prices of risk. Therefore, market price of risk
processes can be assumed to be equal in our stylized model, but to fluctuate over
time. The common market price of risk process θ = {θt, t ≥ 0} is then assumed to
denote the market price of risk for each of the independent sources of uncertainty
in the stylized model.

We then assume that, in its mean-variance wealth optimization, the j-th com-
pany applies the risk aversion γt at time t to invest through its management ac-
tivities a fraction 1

γt
in its ‘own’ GP, denoted by Sj,GPt . This is the GP for the

’investment universe’ determined by the business opportunities and activities of
the j-th company. As is well-known, the company then holds the fraction 1− 1

γt

of its wealth in units of the risk-free asset; see e.g., Campbell & Viceira (2002) or
Theorem 11.1.3 in Platen & Heath (2010). The stochastic differential equation
(SDE) for the stock price Sjt is then obtained in the form

dSjt

Sjt
=

1

γt

dSj,GPt

Sj,GPt

+

(
1− 1

γt

)
rtdt, (D.1)

where rt denotes the risk free rate.
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To model the uncertainties faced by the j-th company, j = (j1, j2, j3, j4), its
wealth is driven by the specific uncertainty W j1,j2,j3,j4 ; the uncertainty W j1,j2,j3 ,
typical for the industrial grouping the company belongs to; the uncertainty W j1,j2 ,
specific for the country where the company is located; and the uncertainty W j1 ,
typical for the region of the company’s country. Here W j1,j2,j3,j4 , W j1,j2,j3 , W j1,j2

and W j1 are independent standard Brownian motions. The SDE for the ‘own’
GP of the j-th company follows then from Theorem B.1 in Appendix B in the
form

dSj,GPt

Sj,GPt

= rtdt+ θt(θtdt+ dW j1
t ) + θt(θtdt+ dW j1,j2

t ) (D.2)

+ θt(θtdt+ dW j1,j2,j3
t ) + θt(θtdt+ dW j1,j2,j3,j4

t ),

for t ≥ 0. We highlight that the risk-free asset is included here in the ‘investment
universe’ of the j-th company when forming its ‘own’ GP. When we form the GP
of a given set of stocks, we do not include the risk-free asset in this investment
universe, since we aim in this case to identify the GP for the stocks only.

Following (D.1) and (D.2) the j-th cum-dividend stock value, with j = (j1, j2,
j3, j4), satisfies the SDE

dSjt

Sjt
= rtdt+

1

γt

(
θt(θtdt+ dW j1

t ) + θt(θtdt+ dW j1,j2
t )) (D.3)

+ θt(θtdt+ dW j1,j2,j3
t ) + θt(θtdt+ dW j1,j2,j3,j4)

)
.

Based on the SDE (D.3) and the weights (3.5), the HWI under the stylized
model has the return process with stochastic differential

dSHWI
t

SHWI
t

= rtdt+
1

γt

1

Mt

Mt∑
j1=1

(
θt(θtdt+ dW j1

t ) (D.4)

+
1

M j1
t

M
j1
t∑

j2=1

(
θt(θtdt+ dW j1,j2

t )

+
1

M j1,j2
t

M
j1,j2
t∑
j3=1

(
θt(θtdt+ dW j1,j2,j3

t )

+
1

M j1,j2,j3
t

M
j1,j2,j3
t∑
j4=1

θt(θtdt+ dW j1,j2,j3,j4
t )

)))

for t ≥ 0 with SHWI
0 > 0.

By application of the Itô formula it is straightforward to show that the j-th
stock, when denominated in units of the HWI, has zero drift. That is, we have
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for the benchmarked j-th stock Ŝjt =
Sjt

SHWI
t

the SDE

dŜjt

Ŝjt
=

Mt∑
k1=1

(ψj,k1t dW k1
t +

M
k1
t∑

k2=1

(ψj,k1,k2t dW k1,k2
t (D.5)

+

M
k1,k2
t∑
k3=1

(ψj,k1,k2,k3t dW k1,k2,k3
t +

M
k1,k2,k3
t∑
k4=1

ψj,k1,k2,k3,k4t dW k1,k2,k3,k4
t )))

with

ψj,k1,...,knt =

{
1
γt
θt

(
1− 1

M
j1
t ... M

j1,...,jn−1
t

)
for ki = ji for all i ∈ {1, . . . , n}

− 1
γt
θt

1

M
j1
t ... M

j1,...,jn−1
t

otherwise
(D.6)

for n ∈ {1, 2, 3, 4} with M j0
t = Mt, where we again use the previous notation.

Since the SDE for the benchmarked j-th stock is driftless, it is a local martingale.
This means that according to Theorem 3.1 and Theorem 4.1 in Filipović & Platen
(2009), the HWI is the GP of the given stylized hierarchical market model when
setting SHWI

0 = SGP0 = 1. This remarkable fact provides us with some extra
intuition in understanding why hierarchical diversification works well in practice
despite the fact that the market price of risk processes and the risk aversion
processes may fluctuate significantly and are difficult to estimate.
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Filipović, D. & E. Platen (2009). Consistent market extensions under the
benchmark approach. Mathematical Finance 19(1), 41–52.

Gander, P., D. Leveau, & T. Pfiffner (2013). Diversification - a multi-facetted
concept. 1741 Asset Management Research Note Series 1/2013 .

Harvey, C., Y. Liu, & H. Zhu (2016). ... and the cross-section of expected
returns. Review of Financial Studies 29(1), 5–68.

Heston, S. L., M. Loewenstein, & G. A. Willard (2007). Options and bubbles.
Review of Financial Studies 20(2), 359–390.

Kan, R., X. Wang, & G. Zhou (2016). On the value of portfolio optimization in
the presence of estimation risk: The case with and without risk-free asset.
Working paper. University of Toronto.

Kan, R. & G. Zhou (2007). Optimal portfolio choice with parameter uncer-
tainty. Journal of Financial and Quantitative Analysis 42, 621–656.

Karatzas, I. & C. Kardaras (2007). The numeraire portfolio in semimartingale
financial models. Finance and Stochastics 11(4), 447–493.

Karatzas, I. & S. E. Shreve (1998). Methods of Mathematical Finance. Springer.

31



Kardaras, C. & E. Platen (2010). Minimizing the expected market time to
reach a certain wealth level. SIAM Journal of Financial Mathematics 1(1),
16–29.

Kelly, J. R. (1956). A new interpretation of information rate. Bell Systems
Technology Journal 35, 917–926.

Leote, R., X. Lu, & P. Moulin (2012). Demystifying equity risk-based strategies:
A simple alpha plus beta description. Journal of Portfolio Management 38,
56–70.

Loewenstein, M. & G. A. Willard (2000). Local martingales, arbitrage, and
viability: Free snacks and cheap thrills. Econometric Theory 16(1), 135–
161.

Ludvigson, S. & S. Ng (2007). The empirical risk-return relation: A factor
analysis approach. Journal of Financial Economics 83(1), 171–222.

MacLean, L., E. Thorp, & W. Ziemba (2011). The Kelly Capital Growth In-
vestment Criterion. World Scientific.

Maillard, S., T. Roncalli, & J. Teiletche (2010). The properties of equally
weighted risk contribution portfolios. Journal of Portfolio Manage-
ment 36(4), 60–70.

Markowitz, H. (1959). Portfolio Selection: Efficient Diversification of Invest-
ment. Wiley, New York.

Mode, E. (1966). Elements of Probability and Statistics. Prentice-Hall, Engle-
wood Cliffs, N.J.

Oderda, G. (2015). Stochastic portfolio theory optimization and the origin of
rule-based investing. Quantitative Finance 15(8), 1259–1266.

Okhrin, Y. & W. Schmid (2006). Distributional properties of portfolio weights.
Journal of Economics 134, 235–256.

Platen, E. (2011). A benchmark approach to investing and pricing. in:.
MacLean, L.C. and Thorp, E. O. and Ziemba, W. (2011), The Kelly Cap-
ital Growth Investment Criterion. World Scientific, 409–425.

Platen, E. & D. Heath (2010). A Benchmark Approach to Quantitative Finance.
Springer Finance. Springer.

Platen, E. & R. Rendek (2012). Approximating the numéraire portfolio by
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