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Abstract. Fuelled by evolving regulatory capital requirements for banks and other

financial institutions and heightened competitive pressures in the market for distressed

securities, many recent studies and practitioner efforts have sought to establish how

best to forecast recoveries on defaulted investments. We benchmark the inter-temporal

and cross-validation based forecasting performance of recently developed models of re-

covery on defaulted debt exposures and we specify a fast and flexible approach to

maximum likelihood estimation of recovery distributions using mixtures of Gaussian

distributions. Our model explicitly accounts for characteristic information and covari-

ates capturing changing market conditions and compare its forecasting performance

to that of parametric and non-parametric regression models. Our inter-temporal fore-

casting comparisons suggest that non-parametric regression trees are generally out-

performed by our semi-parametric mixture model, and in some instances, by simple

regression models, while regression trees dominate cross-validation tests. More gen-

erally, we show that the performance of flexible forecasting models with reference to

popular cross-validation tests may provide misleading indications of practical (inter-

temporal) forecasting performance when recovery distributions are time-varying.

1. Introduction

The economic value of corporate liabilities in the event of default is an important deter-

minant of lending risk premiums and the regulatory capital charged to limit exposure to

losses in the event of default. Fuelled by evolving regulatory requirements and compet-

itive pressures in the market for distressed securities, many recent studies have sought

to establish how best to forecast recoveries based on information available at the time

of default – an open question given the challenging features of recovery distributions.

Recoveries on defaulted debt appear to arise from multimodal distributions that are not
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generally amenable to modeling by way of standard parametric forms; their shape de-

pendent on borrower and instrument characteristics as well as conditions in the relevant

industries, credit markets and the macroeconomy. Consequently, both the composition

of the defaulted debt pool and conditions at the time of default are potential sources

of time variation in the distribution of recovery outcomes confronting lenders and in-

vestors.

In response to these challenges many recent studies1 have proposed and tested alternative

approaches to recovery rate forecasting and it is to this literature that we contribute in

three distinct ways. First, we evaluate the inter-temporal forecasting performance of

several recently proposed modeling approaches. Given the likelihood of time variation

in recovery distributions, surprisingly little attention has been paid to the inter-temporal

forecasting of the new approaches – with most comparative studies relying instead on

cross-validation techniques conducted without reference to the timing of the sample used

to estimate and test the models. Our findings contrast markedly with those of prior

studies advocating the use of non-parametric techniques to forecast recoveries.

Second, we specify a fast and flexible approach to maximum likelihood estimation of

recovery distributions using mixtures of Gaussian distributions. Our model explicitly

accounts for both characteristic information and covariates capturing changing mar-

ket conditions. Fast estimation of our model by way of the expectation maximisation

(EM) algorithm enables us to benchmark the mixture specification against competing

models using out-of-sample test procedures requiring frequent re-estimation of model

parameters. Using these techniques we show that while cross-validation based evidence

consistently favors non-parametric regression trees, our semi-parametric mixture model,

and simple parametric regressions in some cases, yield superior inter-temporal forecasts

of ultimate recoveries on defaulted debt.

Finally, we are also able to show that averaging conditional mixture model forecasts

across bootstrapped sample-based estimates tends to reduce inter-temporal forecasting

errors. These results complement the findings of Bastos (2013) who shows that the

technique of bootstrap averaging (‘bagging’), suggested by Breiman (1996), reduces the

error associated with regression trees in cross-validation style forecasts of ultimate recov-

eries. Overall, our results demonstrate the importance of accounting for the intermporal

variation in recovery distributions in both the forecasting model specification and in

the evaluation of the forecasting model. These findings are especially relevant to the

specification and application of flexible models, which by their nature, entail a greater

risk of over-adaptation to estimation samples.

1We provide examples in Table 1.
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2. Forecasts of Defaulted Bond Recoveries: Models and Evaluation

Methods

Following the pioneering studies on default recovery data and models by Altman and

Kishore (1996), Frye (2000a), Frye (2000b), Gupton and Stein (2005) and Altman, Brady,

Resti, and Sironi (2005), quantitative models of recoveries in the event of default evolved

to offer varying degrees of flexibility, transparency and robustness: ranging from linear

regressions and calibrated parametric distributions to non-parametric methods such as

regression trees and neural networks. While parametric methods offer economic insights

to the determinants of recovery outcomes, non-parametric methods better accommo-

date non-linearities in the data and the idiosyncratic features of recovery distributions.

More recent contributions have seen a succession of studies focused on evaluating al-

ternative approaches to forecasting losses on defaulted debt, evaluating models ranging

in complexity from OLS regressions to neural networks, over a variety of datasets and

forecast evaluation metrics. We provide in Table 1 an overview of nine studies pub-

lished in the last five years, with a particular focus on their modeling scope and overall

conclusions.

Table 1

In classifying approaches to performance measurement in Table 1 we distinguish between

within-sample, out-of-sample and out-of-time approaches. While both out-of-sample and

out-of-time approaches imply a distinction between the data used to fit models and the

data used for performance benchmarking, only out-of-time testing ensures that there

is no overlap between the cross-section of defaulted exposures used for estimation and

testing. Stated differently, given the nature of datasets on defaulted debt recoveries,

only out-of-time testing ensures that different exposures arising from the default of a

particular borrower are used only for purposes of estimation or evaluation – not both.

Further, only out-of-time testing ensures that sample points used for estimation were

observed prior to the sample points used for testing. The latter distinction is of particular

importance when, as is the case with recoveries on defaulted debt, there is reason to

believe that the distributions are time-varying.

The most commonly used form of out-of-sample testing employed by the recent studies

summarized in Table 1 is k−fold cross validation. This methodology involves the random

assignment of each defaulted exposure observation to one of k subsamples. Each of the

k subsamples is set aside in turn for out-of-sample testing, while the remaining k − 1

partitions are used for estimation of model parameters. The procedure is repeated until

the model has been re-estimated and tested against each of the k subsamples, and the

predictive performance results obtained under each iteration averaged out. While this
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is clearly an out-of-sample test procedure in the sense that the observations used for

estimation and testing differ, it is done without reference to the timing of observations

or the identity of the bond issuer. This procedure can only be expected to foreshadow the

out-of-sample performance of forecasting in real time if the underlying data generating

process is time invariant and if different debt issues by a defaulting issuer give rise to

independent recovery observations. With these considerations in mind, it’s important

to note that even the very limited evidence of inter-temporal forecasting performance

reported in prior studies hint at inconsistency with cross-validation based evidence.

Eight of the nine studies in Table 1 make comparisons between parametric regression

models and non-parametric alternatives, and with the exception of Bellotti and Crook

(2012) and Zhang and Thomas (2012), the studies conclude that forecasts based on

non-linear models outperform those based on parametric regressions. Amongst these

studies, non-parametric regression trees appear to work particularly well – offering a

balance of relative simplicity and superior out-of-sample performance. However, of the

studies that consider regression trees, only three [Bastos (2010), Bellotti and Crook

(2012), and Altman and Kalotay (2014)] evaluate performance on an out-of-time basis,

and each of these studies report findings wherein parametric or semi-parametric mod-

els outperform the non-parametric alternatives.2 While Qi and Zhao (2011), Loterman,

Brown, Martens, Mues, and Baesens (2012), Bastos (2013), and Hartmann-Wendels,

Miller, and Tows (2014) all conclude that regression trees and/or neural networks out-

perform regression based alternatives, none of the studies conduct out-of-time tests of

model predictions.

Similarly, with one exception, empirical evidence with respect to the predictive perfor-

mance of mixture models is also reported with reference to cross validation tests. Finite

mixture models are considered by four of the studies in Table 1. Zhang and Thomas

(2012), Loterman, Brown, Martens, Mues, and Baesens (2012) and Hartmann-Wendels,

Miller, and Tows (2014) implement two-stage approaches wherein data is assigned to

discrete clusters in the first step and regressions estimated within each cluster in the

second step. The results obtained using two-step mixture models is not altogether en-

couraging. While Hartmann-Wendels, Miller, and Tows (2014) show that models of

this form exhibit good with-sample fit, their findings suggest poor out-of-sample fore-

casting, as do the results of Zhang and Thomas (2012). Hartmann-Wendels, Miller,

and Tows (2014) attribute the poor performance of their models to poor out-of-sample

classification performance while Zhang and Thomas (2012) suggest that finding suitable

data segmentations is difficult. The findings of Loterman, Brown, Martens, Mues, and

2While the overall conclusions of Bastos (2010) favor regression trees, the out-of-time testing is limited
by the relatively short span of the Portuguese bank data used in the study.
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Baesens (2012) are less clear-cut, but their two-stage mixture models do not match the

performance of the non-parametric alternatives. In contrast, Altman and Kalotay (2014)

present a one-stage finite mixture modeling approach wherein the mixture assignments

are explicitly conditioned on recovery determinants. Their out-of-time forecasting results

suggest that the mixture model outperforms parametric regressions and non-parametric

regression trees.

To summarize, this study can be seen as a response to two important questions that

emerge from the extant forecasting literature. First, while the majority of recent mod-

eling comparisons advocate the use of non-parametric regression trees relative to para-

metric regressions and finite mixture models, these recommendations are generally made

without reference to inter-temporal forecasting performance. Given the evidence of time

variation in empirically observed recovery outcomes, this raises the question of whether

the forecasting results based on cross-validation studies translate to superior intert-

ermporal forecasting performance? Limited prior evidence based on out-of-time testing

suggest that this may not be the case. Second, extant empirical evidence suggests that

the forecasting performance of finite mixture models rests heavily on their ability to

assign observations to mixture components. While Altman and Kalotay (2014) suggest

a promising approach to this problem in a Bayesian framework, estimation of the model

requires Gibbs sampling. Hence we suggest in this study a fast, flexible one-step ap-

proach to the question of how best to assign defaulted debt observations to mixture

components using information available at the time of default.

3. Mixture Model Specification

We commence by transforming raw recoveries r from the unit interval to the real number

line using the inverse of the Gaussian CDF. To do the data transformation we adjust

recoveries at the extremes. Specifically, if r = 0 then we replace it with a value of ε, and

if r ≥ 1 then we replace it with a value of 1− ε, where ε denotes a random draw from a

uniform distribution over [0, 0.0001] interval.

We assume that the target distribution of transformed recoveries f(y) can be written as

the weighted sum of M component distributions fj(y, θj) as:

f(y) =

M∑
j=1

πjfj(y, θj) (1)

where πj is the probability weight associated with mixture component j, and θj denotes

the parameters of mixture component j.
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Further, suppose that independent draws yi from f(y), conditional on vectors of infor-

mation xi, can be expressed as draws from a mixture of the form:

f(yi) =

M−1∑
j=1

πijfj(yi, θj) + πiMfM (yi, θM ). (2)

The probability weight associating mixture component j < M with observation i is:

πij = g(x′iβj). (3)

That is, the function g(.) links the linear combination of xi to the probability weights

πij , and βj are the (component-specific) coefficients of the link function. Note that in

equations (2) and (3) category M is the default (residual) classification, hence πiM =

[1−
∑M−1

j=1 πij ].

Equations (2) and (3) describe a finite mixture of distributions wherein the probability

weights associating outcomes yi to mixture components depend on conditioning infor-

mation xi. Given a parametric form for the component distributions fj(.) and the link

function g(.), the challenge of estimation is one of maximizing a log-likelihood of the

form:

l(y|φ) =
N∑
i=1

ln

M−1∑
j=1

g(x′iβj)fj(yi, θj) + [1−
M−1∑
j=1

g(x′iβj)]fM (yi, θM )

 (4)

where φ ≡ [β1, . . . , βM−1, θ1, . . . , θM ] and the sample size is N . In general terms, maxi-

mizing log-likelihoods of the form arising in mixture models is infeasible using standard

methods, hence the need to implement the expectation-maximisation (EM) algorithm of

Dempster, Laird, and Rubin (1977) in the current context.

To model (transformed) recoveries we choose a Gaussian form for the component dis-

tributions fj(.), and a logit form for the link function g(.) – resulting in a mixture of

normals wherein the mixing probabilities dependence on conditioning information takes

the form of a multinomial logit.3

3In Appendix I we show how the EM algorithm can be used to maximize a log-likelihood in the form
of equation (4). Appendix II provides the algorithm to compute conditional mixtures of normals in
particular.
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4. Data and Benchmark Models

We use discounted ultimate recoveries from Moody’s Ultimate Recovery Database. Moody’s

database provides several measures of the value received by creditors at the resolution of

default – usually upon emergence from Chapter 11 proceedings. Moody’s estimate of the

discounted value of ultimate recovery is our choice of the measure of the economic value

accruing to a creditor at the time of default. Moody’s calculates discounted ultimate

recoveries by discounting nominal recoveries back to the last time interest was paid using

the instrument’s pre-petition coupon rate. The database includes US non-financial cor-

porations with over $50m debt at the time of default. The sample period covers obligor

defaults from April 1987 to late 2011, covering 2,828 bonds. An important benefit of

the Ultimate Recovery Database is that it spans three default cycles, thus providing

exposure to the time variation recovery outcomes suggested by theoretical models and

empirical observations.4

Table 2

We summarize in Table 2 key features of the ultimate recoveries on bonds with reference

to seniority and industry classifications over the pre and post-2001 periods:5 the minimal

estimation period and the longest out-of-time interval used for forecasting. There is

marked variation in the number of recoveries by industry, as well the mean and variability

of recoveries within industry groups, across the estimation and testing periods.

We benchmark the predictive performance of our conditional mixture specification against

two popular parametric models of recovery, as well as a non-parametric regression tree.

First, we consider an Inverse Gaussian (IG) regression, wherein yi, recoveries transformed

using the inverse of the Gaussian CDF, are regressed on a set of conditioning variables xi.

Second, we also use an IG regression with a Beta transformation – a feature of Moody’s

Loss Calc 2.0 developed by Gupton and Stein (2005). The second (IG-B) regression

approach involves fitting a Beta distribution to the recovery data and computing the

cumulative probabilities of the recoveries under the fitted Beta distribution prior to the

inverse Gaussian transformation. In effect, the IG-B regression approach models the

dependence of cumulative probabilities of recoveries on conditioning information under

the assumption that recoveries are Beta distributed.

We also estimate a non-parametric regression tree (Reg Tree) – a data driven technique

in which conditioning information is used to partition observed recovery outcomes into

4See for example Frye (2000a) and Altman, Brady, Resti, and Sironi (2005).
5Refer to Keisman, Marshella, and Lampert (2011) for a description of how recoveries in the database
behave at an aggregate level. Altman and Kalotay (2014) provide a complementary description of the
data as well as a detailed description of the conditioning variables used in this study.
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sub-groups exhibiting minimal within group variation. Estimation yields a hierarchical

classification table in which the predicted recovery assigned to an exposure is set equal

to the mean recovery of the sub-group to which it is assigned based on characteristics

of the borrower, the exposure, and economic conditions at the time of default. Bas-

tos (2010) introduces and exemplifies the technique in modeling losses on bank loan

exposures.

All models evaluated in this study incorporate the set of predictive variables considered

by Altman and Kalotay (2014). Our objective is to benchmark each model’s performance

using a common set of predictive information. While we do not claim that the chosen

variables are optimal, they do span the types of information shown to be of empirical

importance in forecasting recovery outcomes:6 debt seniority, debt cushion, collateral-

ization, industry and credit/market conditions at the time of default – as summarized

by a Merton (1974) measure of matched industry-level default likelihood.

5. Empirical Findings

Before discussing the specifics of our findings we describe our approach to model selec-

tion and evaluation as follows. To begin with, consistent with Bastos (2010), Qi and

Zhao (2011) and others, we conduct k-fold cross validation of out-of-sample predictive

performance. We divide the available data into k partitions and set aside one of the

partitions as a prediction target. The remaining k − 1 partitions are used for model

estimation, and the resultant models are used to forecast the prediction target. The

procedure is repeated k− 1 times, setting aside on each occasion a different partition of

the data as a prediction target, while using the remaining partitions for model estima-

tion. The out-of-sample predictive performance of each model can be summarized as its

average performance over k iterations.

Bastos (2010) argues that the technique of k−fold cross-validation reduces the risk of

over-fitting without undue data wastage, so we apply the approach over the 1988-2001

portion of our sample to guide our choice of M : the number of mixture components we

use for forecasting on an out-of-sample, out-of-time basis. While we use statistics based

on k- fold cross-validation for model selection, the numbers yielded by the procedure are

not interpretable (at least in principle) as performance that may have been attainable

in historical usage. For this reason, and given the likelihood of time variation in the

data-generating process, we evaluate out-of-time performance in two ways. First, we

use models estimated over the years 1988-2001 to forecast ultimate recoveries over the

interval 2002-2011 – consistent with the out-of-time testing in Altman and Kalotay

6Schuermann (2004) provides a review of the relevant empirical literature.
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(2014). Second, to emulate more closely the performance of each technique over time,

given the data available for estimation, we re-estimate each model over the years 2001-

2009 and evaluate their ability to forecast recoveries observed within the 2-year window

subsequent to each estimation period.

5.1. Parametric Model Estimates. Table 3 reports the IG and IG-B regression pa-

rameters estimated over the period 1988-2001. Debt cushion, instrument rank, the

presence of collateral, seniority, industry default conditions and the utility indicator ex-

plain 39% of the within-sample variation in ultimate recoveries on bonds. While the

direction and significance of the relation between characteristics, credit conditions and

recoveries accord with economic intuition, a few of the relationships are not statistically

significant within either regression. All else equal, expected ultimate recoveries on Rank

2 bonds do not differ significantly from Rank 1 bonds, nor do expected recoveries on se-

nior unsecured bonds differ significantly from senior secured bonds. Similarly, although

the presence of collateral increases the expected value of ultimate recovery, the difference

is not statistically significant.

Table 3

The last two panels of Table 3 provide the estimates of a multinomial logit model linking

mixing probabilities to the three Gaussian mixture components described in Table 4.7 To

facilitate interpretation of the results, the mixture components in Table 4 are reported

in order of increasing component mean, and the multinomial logit equations reported in

Table 3 are estimated to be consistent with this ordering. In this way, the coefficients

of the multinomial logit equations represent the sensitivity of the log of the odds of

realizing a recovery outcome from a component other than the third mixture component

(the reference category). For example, the coefficients of the first equation reflect the

sensitivity of the log of the odds of drawing an outcome from the first mixture component

relative to that of the third mixture component.

Table 4

The multinomial logit results in Table 3 are interpretable with reference to the properties

of the three mixture components provided in Table 4. When the inverse Gaussian trans-

formation is reversed, the first mixture component can be seen to be a highly skewed

distribution implying a 2% recovery at the mean, an (approximately) 50% chance of

zero recovery, and a 10% probability of a recovery of 90% or higher. The second mixture

component implies an expected recovery of 38%, as well as a less than 10% chance of zero

7As will be discussed in Section 5.2, three mixture components provide the best predictive performance
based on k−fold cross-validation over the 1988-2001 subsample.
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recovery and a 20% chance of an ultimate recovery of 90% or more. The third mixture

component implies no economically significant variation from full recovery.

Given the properties of the mixture components, the coefficients of the multinomial logit

equations are interpretable as of the log of the odds of realizing an uncertain recovery

from a particular (lower mean) component distribution relative to that of a full recovery.

For example, the first equation implies that the log of the odds of realizing a recovery

outcome from mixture component 1 relative to full recovery (mixture component 3)

declines by a factor almost 5 when a defaulted bond is issued by a utility. As in the case

of the IG and IG-B regressions, the direction and significance of the relation between

conditioning variables and expected recovery outcomes accord with economic intuition,

however, some contrasts are noteworthy.

With the exception of the collateral indicator variable, all of the conditioning variables

appear statistically significant in the first equation. That is, with the exception of

the collateral indicator, all of the conditioning variables provide statistically significant

information with respect to changes in the mixture weights assigned to the first and last

mixture components.8 However, indicators of senior unsecured debt and junior debt are

not statistically significant in the second equation, nor the measure of industry default

conditions at the time of default – suggesting that these variables tend to forecast shifts

in probability mass between extreme outcomes (the first and third mixture components)

rather than the middle and upper tail of the distribution.

5.2. Model Selection and Predictive Performance Evaluation. Both the semi-

parametric mixture model and the non-parametric regression tree involve some risk of

over-fitting – or over-adaptation to the idiosyncrasies of the estimation sample. To mit-

igate this risk, we specify both the mixture model and the regression tree with reference

to the root mean squared errors (RMSE) and the mean absolute errors (MAE) ob-

tained using 10-fold cross-validation over the 1988-2001 subsample. Cross-validation

techniques mitigate the risk of over-fitting to the extent that the models are selected

with reference to their average ability to forecast randomly assigned sub-partitions of

the sample available at the time the forecast is made. While the ability of the approach

to mitigate the risk of over-fitting is open to question, it has the practical benefits of

being feasible, given the limited span of the estimation sample, and equally applicable

to both semi-parametric and non-parametric models.

Table 5

8The statistical significance of the conditioning variables reported in Table 3 is estimated conditional on
the estimated parameters of the component distributions and latent data.
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Table 5 summarizes the mean of each error metric over 10 sample estimates obtained

using the optimal specification of each model. To choose the optimal number of mixture

components M , we estimated models with M ranging from 1–5. The results obtained

from mixtures using 3 or 4 component models generate the lowest average RMSE and

MAE in 10-fold cross-validation. We thus select a 3-component mixture as the most

parsimonious, error-minimizing specification. In optimizing the regression tree we con-

sidered minimum leaf sizes of 1, 5, 10, 25, 50, 75 and 100, and found that a minimum

leaf size of 25 minimizes predictive error over the 1988-2001 subsample. Using a min-

imum leaf size of 25 typically yields a tree with just under 70 nodes during 10-fold

cross-validation.

As can be seen in Table 5, the regression tree generates the lowest error in 10-fold cross-

validation over both the estimation sample and the full sample. The regression tree’s

superiority with reference to the parametric regressions in 10-fold cross-validation is

consistent with the findings of Bastos (2010) and Qi and Zhao (2011), however, its out-

performance of the mixture model contrasts with the out-of-sample performance findings

of Altman and Kalotay (2014) – employing a similar style of mixture model.

One important difference between the 10-fold cross-validation procedure and the anal-

ysis in Altman and Kalotay (2014) lies in the treatment of observation time. That is,

cross-validation is conducted with reference to exposures drawn from a sample period

that coincides with the estimation period, and so, the results of the analysis do not

provide information about out-of-sample model performance when default and recovery

conditions are time-varying. To benchmark inter-temporal predictive performance we

commence by applying the models estimated using the 1988-2001 sample to randomly

drawn portfolios of defaulted debt from the 2001-2011 sample as follows.

(1) Ultimate recoveries on bonds observed over the 2001-2011 sample are assigned

to the test pool.

(2) A random sample of recoveries on 100 bonds are drawn from the test pool and

used to compute the ultimate recovery on an equally-weighted portfolio of the

selected exposures – with a $1.00 face value assigned to each exposure.

(3) Model based forecasts of recoveries using the IG and IG-B regressions, Reg Tree

and the conditional mixture model are computed. Forecasts from the mixture

model are (conditional) probability-weighted draws from the component distri-

butions.

Steps (2) and (3) are repeated 10,000 times.
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In addition to the fitted values from the Reg Tree and the mixture model estimated

using the 1988-2001 sample, we also compute forecasts obtained using the process of

bootstrap aggregation or ‘bagging’ [Breiman (1996)]. Bagging involves the re-estimation

of predictive models based on pseudo data sets created through resampling the original

data series (with replacement). Each bootstrapped data series gives rise to a revised

model, and hence, a revised prediction. Predictions based on the revised models are

then averaged – giving rise to an ensemble prediction.

Predictive gains from bagging are potentially substantial when the predictive model is

sensitive to variations in the estimation data and the revised models yield substantially

different forecasts. Bastos (2013) demonstrates that ensembles of regression trees gener-

ate more accurate forecasts of recoveries in out-of-sample testing – k-fold cross-validation

in particular. On the other hand, little is to be gained by bagging predictions based on

linear regression models that are relatively robust to variations in the sample data. For

these reasons, we apply the procedure to regression trees and mixture models.

Table 6

Table 6 summarizes the results of the out-of-sample forecasting study wherein model

estimates based on data up to 2002 are used to predict recoveries on portfolios drawn

from the entirety of the remaining sample. Consistent with findings based on k-fold cross-

validation, Reg Tree outperforms the linear regression models in terms of the RMSE

and MAE of projected portfolio recovery forecasts. Importantly, the regression tree

is substantially more accurate in forecasting the lower quantiles of the distribution.

Interestingly, bagging seems to deteriorate the forecast based on the regression tree.

Reg Tree (B) under performs Reg Tree when predicting data that is both out-of-sample

and out-of-time.

In contrast, bagging serves to substantially improve the out-of-time forecasts from the

mixture model – reducing RMSE and MAE, and most substantially, improving fore-

casts of the lower quantiles of the recovery distribution. Overall, even without bagging,

the mixture model yields out-of-sample, out-of-time forecasts with predictive errors ap-

proximately 25% lower than those of the next best model – the regression tree. At least

two other aspects of the results in Table 6 are noteworthy. First, all of the model-based

forecasts of recoveries are downward biased. Second, none of the models match the per-

formance of even the worst model in Altman and Kalotay (2014) in a similar predictive

study over the same period as the current study excludes loans from the sample.9

Table 7

9There is much less uncertainty associated with recoveries on loans than bonds.
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Table 7 reports the results of the same analysis conducted using annually updated model

estimates and a moving prediction window. That is, we use annually re-estimated models

to forecast the distribution of portfolio recoveries drawn from the sample observed 24

months subsequent to estimation. Table 7 presents the aggregated results of the moving-

window predictions. Overall, as measured by RMSE and MAE, ensemble forecasts

based on the mixture model work best, but the gains from bagging are smaller. While

the mixture model outperforms the regression tree, bagging does improve the out-of-

sample performance of the regression tree overall. However, the regression tree does

start from a surprisingly low base in the sense that forecasts from the linear regression

models actually outperform the sample based regression trees.

The (time-pooled) predictive performance of the models in Table 7 is substantially worse

than the performance reported in Table 6. This is to be expected to the extent that

the results in Table 7 do not reflect the relative frequency of the recovery types over

the 2002-2011 period – as the observations from each prediction window are equally-

weighted. In addition to borrower and debt characteristics, model predictions reflect the

influence of time-varying default conditions that affect both the shape of the recovery

distribution conditional on default, as well as the number of defaults.10 Consequently,

while our modeling exercise reflects the cumulative performance of each method with

annual re-estimation, it does implicitly re-weight the frequency of recoveries observed in

‘good’ conditions relative to ‘bad’ – and there is reason to believe that former may be in-

herently less predictable than the latter.11 Poorer overall performance notwithstanding,

the results in Table 7 do suggest that bagging improves the out-of-time forecasting per-

formance of both the mixture and the regression tree – with the mixture model matching

the percentiles of the simulated recovery distribution more closely, over most of the range

of recoveries.

Table 8

Table 8 summarizes the overall predictive performance of the models on an annual basis.

While ensembles of mixture models generate the overall lowest forecast errors in four of

the nine sub-periods, each of the parametric regressions and each variant of the regression

tree generate minimal forecast errors in at least one of the periods. Ensembles of mixture

models outperform ensemble of regression trees in all but the first sub-period, and the

mixture model without bagging outperforms the plain regression tree in all but the first

10Bruche and Gonzalez-Aguado (2010) suggest that the latter effect has a more substantial impact on
VaR.
11There are at least two reasons for this: more of the historical data used for modeling arises during
periods of clustered defaults, and all else equal, there is more uncertainty associated with recoveries
stemming from defaults that are driven by idiosyncratic rather than systematic factors.
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and last sub-period. Regression trees are in fact outperformed by the IG-B regression in

seven of the nine forecast periods, whereas the same regression outperforms the (plain)

mixture model in only three of the nine sub-periods. In summary, while the mixture

model (with and without bagging) outperforms the competing specifications over the

moving 24-month forecast windows quite consistently in side by side comparisons, each

competing specification minimizes forecast errors at least once.

6. Summary and Conclusions

While many recent studies advocate the use of non-parametric methods in forecasting re-

covery rates, this recommendation rests almost entirely on inference from cross-validation

tests that do not account for the timing of forecasts. Yet, while only a few studies conduct

out-of-time evaluations of modeling approaches, their results suggest that the weight of

evidence shifts to favor parametric regressions and semi-parametric mixture models. In

benchmarking the out-of-time performance of a novel one-step mixture model against

regression techniques and non-parametric regression trees, we demonstrate with a series

of tests on a common set of data, the importance of accounting for time variation in

the data used to estimate and test models of defaulted debt recoveries. We show that

while non-parametric regression trees do indeed dominate cross-validation tests, they are

usually outperformed by our semi-parametric mixture model or parametric regressions

in out-of-time tests.

Our empirical findings notwithstanding, we argue that measures of inter-temporal per-

formance are most likely to be indicative of forecasting recoveries on defaulted debt in

practice – given the likelihood of time variation in the data generating process and the

increased risk of building empirical models that are over adapted to estimation samples.

The latter risk is naturally higher in the context of recently proposed flexible modeling

approaches. The importance of the latter risk is also evidenced, and can be somewhat

mitigated, by the improvements in inter-temporal forecasting performance associated

with bagging the forecasts of semi-parametric mixture models and non-parametric re-

gression trees.

In addition to providing insights to models’ relative forecasting performance, our out-

of-time forecasting comparisons suggest directions for future research. All the models

we consider underestimate ultimate recoveries observed over the 2002-2011 test period.

One possible reason for this bias is that the forecasts do not reflect the diminution of

the supply of distressed and defaulted debt assets relative to the large increase in hedge

fund interest in distressed debt investing. Variables that better capture both the supply
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and demand side of the market for distressed and defaulted debt may thus enhance the

forecasting performance of all the models we consider.
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Appendix I. The EM Algorithm

To maximize the likelihood of interest (4) with respect to the parameters φ using the

EM algorithm we introduce a set of discrete latent data zij – indicator variables linking

observations yi to mixture components j. So, to begin with, we write the joint likelihood

of the observed and latent data:

f(yi, zij) =
N∏
i=1

f1(yi)
zi1 . . . fM (yi)

ziM

N∏
i=1

πzi1i1 . . . πziMiM (I.1)

where the indicator zij = 1 if observation i is from mixture component j and zero

otherwise; p(zij = 1) = πij for j = 1 . . .M ; and
∑M

j=1 πij = 1.

The joint log-likelihood associated with equation (I.1) is:

l(yi, zij) =
N∑
i=1

[zi1 ln f1(yi) + . . .+ ziM ln fM (yi)] +
N∑
i=1

[zi1 lnπi1 + . . .+ ziM lnπiM ] .(I.2)

The EM algorithm maximizes the joint log-likelihood (I.2). In particular, the first step

of the algorithm involves taking an expectation of the joint log-likelihood:

E [φ|φ[k]] =

N∑
i=1

[
E[zi1|yi, φ[k]] ln f1(yi, θ1) + . . .+ E[ziM |yi, φ[k]] ln fM (yi, θM )

]

+
N∑
i=1

[
E[zi1|yi, φ[k]] lnπi1 + . . .+ E[ziM |yi, φ[k]] lnπiM

]
. (I.3)

Train (2009) notes that, in general terms, the function:

E [φ|φ[k]] =

∫
h(z|y, φ[k]) ln[f(y|z, φ)p(z|φ)]dz,

where h(z|y, φ[k]) is the density of the latent data conditional on the observed data y

and the current (trial) value of the parameters φ[k] and where k is used to index the

iterations of the algorithm. As such E [φ|φ[k]] is the weighted average of the joint log-

likelihood where h(z|y, φ[k]) serve as weights. That is, the objective function (I.3) is the

expectation of the joint log-likelihood of the observed and latent data over the density

of the latent data conditional on the observed data and a particular set of parameter

values φ[k].
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The second step of the algorithm involves maximisation of the expectation (I.3) to obtain

the revised parameters φ[k+1]:

φ[k+1] = argmaxφE [φ|φ[k]]. (I.4)

A key feature of the algorithm is that current values of the parameters φ[k] are used to

condition the weights underlying the expectation (I.3). Once the parameters φ[k+1] are

obtained from the maximisation (I.4), the weights are revised and the process is repeated

until successive iterations of the algorithm yield parameter estimates that are deemed

to have converged.12

Equation (I.3) implies that the maximisation (I.4) is of a particularly convenient form in

this model, involving two distinct components. The first term of equation (I.3) requires

the maximum likelihood estimation of component-specific parameters with respect to

the observations assigned to the components:

θ
[k+1]
j = argmaxθj

N∑
i=1

zij ln fj(yi, θj). (I.5)

The probability of observation i being assigned to mixture component j is:

E[zij |yi, φ[k]] = Pr[zij = 1|yi, φ[k]]

=
π
[k]
ij fj(yi, θ

[k]
j )∑M

j=1 π
[k]
ij fj(yi, θ

[k]
j )

. (I.6)

Then, given a set of N component assignments zij , the problem of finding β
[k+1]
j i to

maximize the second term in equation (I.3) is:

β
[k+1]
j = argmaxβj

N∑
i=1

M−1∑
j=1

zij lnπij . (I.7)

The maximisation in equation (I.7) can be solved by M − 1 applications of a logit (or

probit) estimation procedure, with component assignment M as the null category.

12Train (2009) provides a very helpful exposition of how the iterative maximisation process results in
the maximisation of the likelihood (4).
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The updated parameters β
[k+1]
j are then used to compute E[zij |yi, φ[k+1]], the updated

weighting probabilities for j = 1 . . .M , and the newly weighted expectation E [φ|φ[k+1]]

is maximized to obtain φk+2. The algorithm continues until convergence.
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Appendix II. Conditional Mixtures of Gaussian Components

To consolidate our general discussion of the model and algorithm, we summarise first the

steps of the EM algorithm with reference to a conditional mixture of Gaussian (normal)

components as well as stylised application to simulated data.

Mixtures of normal components are a natural starting point for models of financial data.

Not only is normality assumed in many important theoretical models, Train (2008)

observes that any continuous distribution can be approximated by a discrete mixture of

normal components.

II.1. Summary of Algorithm. Conditional on a choice of M normal mixture compo-

nents and logistic probability link functions, the algorithm proceeds as follows.

(1) Parameters are initialised. Probability weights commence equal, that is, πj = 1
M

∀j, and the component parameters µj and σ2j set equal to the median and vari-

ance of M data quantiles. Component assignment probabilities are computed for

each observation using equation (I.6) and the starting values of βj are computed

using a multinomial logit.

(2) E-Step: compute the probability weights π
[k]
ij using current logit parameters

β
[k]
j and thus the expected values of z

[k]
ij using equation (I.6) based on current

estimates of normal component parameters θk = [µ
[k]
j , σ

[k]
j ] for j = 1 . . .M .

(3) M-Step: maximisation of the expectation (I.3) obtains through standard esti-

mators for the parameters of each component j:

µ
[k+1]
j =

∑N
i=1 z

[k]
ij yi∑N

i=1 z
[k]
ij

σ
2[k+1]
j =

∑N
i=1 z

[k]
ij (yi − µ[k+1]

j )2∑N
i=1 z

[k]
ij

.

Then, β
[k+1]
j obtain by way of a multinomial logit based on z

[k]
ij and xi.

(4) At the completion of step 3 the value of the log-likelihood (4) is compared to

that obtained in the previous iteration. Steps 2 and 3 are repeated until the

algorithm is deemed to have converged. For the models estimated in this study

the algorithm is deemed to have converged when the mean absolute value of

differences between successive sets of parameter estimates is ≤ 0.005.
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Appendix III. Tables and Figures

Table 1. Recovery Prediction Models: Recent Comparisons

Bastos (2010)

Data: 1995-2000, Portuguese SME Bank Loans
Models: Parametric regressions, regression trees.
Performance Metric: Out-of-sample: k-fold cross-validation, out-of-time.
Conclusion: Regression trees outperform (short horizons), fractional response regressions

(long horizons).
Calabrese & Zegna (2010)

Data: 1998-1999, Italian personal bank loans (recovery ratios)
Models: Beta kernel, mixture of Beta kernels.
Performance Metric: Within-sample fit.
Conclusion: Mixture of 2 Beta kernels describes the sample.
Qi & Zhao (2011)

Data: 1987-2008, Moody’s ultimate recoveries
Models: Parametric regressions, regression trees, neural networks.
Performance Metric: Within-sample, out-of-sample: k-fold cross-validation.
Conclusion: Regression trees and neural networks outperform within and out-of-sample.
Bellotti & Crook (2012)

Data: 1995-2005, UK credit card data.
Models: Parametric regressions, decision trees.
Performance Metric: Out-of-sample, out-of-time.
Conclusion: OLS regressions perform best at individual and portfolio levels.
Loterman et al. (2012)

Data: Personal, mortgage and corporate bank loans (time horizons not disclosed).
Models: Linear regression models, 2-stage mixture models, non-parametric models.
Performance Metric: Out-of-sample: random allocation (approximately 2

3
training, 1

3
testing).

Conclusion: Non-linear specifications outperform linear models.
Zhang & Thomas (2012)

Data: 1987-1999, UK personal bank loans
Models: Linear regressions, survival models, mixture models.13

Performance Metric: Out-of-sample (random allocation: 70% training, 30% testing).
Conclusion: Linear regressions outperform alternatives.
Bastos (2013)

Data: 1987-2010, Moody’s ultimate recovery database.
Models: Linear regression, regression trees (with and without bootstrap aggregation).
Performance Metric: Out-of-sample: k-fold cross validation.
Conclusion: Bootstrap aggregation improves the performance of regression trees.
Hartmann-Wendels et al. (2014)

Data: 1994-2009, German leasing contracts.
Models: Hybrid finite mixture model, regression trees.
Performance Metric: Out-of-sample: modified k-fold cross-validation.
Conclusion: Regression trees outperform.
Altman & Kalotay (2014)

Data: 1987-2011, Moody’s ultimate recoveries.
Models: Parametric regressions, regression trees, Bayesian conditional mixture model.
Performance Metric: Out-of-time (1985-2001 estimation, 2002-2011 test).
Conclusion: Conditional mixture models outperform parametric and non-parametric

alternatives.
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Table 2. Discounted Ultimate Recoveries on Bonds
IQR is interquartile range and N is the observation count. Industry classifications are

based on mappings to the 17 Fama-French Industry portfolio allocations.

1988-2001 Sample 2002-2011 Sample

Mean Median IQR N Mean Median IQR N

Senior Secured 0.70 0.83 0.61 219 0.60 0.58 0.79 372
Senior Subordinated 0.32 0.22 0.46 241 0.27 0.08 0.51 266
Senior Unsecured 0.50 0.42 0.85 328 0.48 0.45 0.76 956
Junior or Subordinated 0.28 0.16 0.44 293 0.26 0.05 0.36 153

Food 0.39 0.46 0.52 26 0.46 0.43 0.89 29
Mining 0.41 0.32 0.19 12 0.40 0.32 0.30 14
Oil 0.44 0.39 0.56 83 0.37 0.24 0.46 62
Clothes, Textiles, Footware 0.51 0.45 0.52 46 0.37 0.24 0.66 31
Consumer Durables 0.48 0.33 0.76 42 0.36 0.22 0.63 47
Chemicals 0.43 0.38 0.12 7 0.52 0.46 0.84 42
Drugs, soap, perfume, tobacco 0.17 0.17 0.00 1 0.27 0.14 0.04 6
Construction and Materials 0.42 0.39 0.56 58 0.42 0.27 0.60 56
Steel 0.15 0.12 0.13 8 0.35 0.23 0.64 70
Fabricated Products 0.38 0.12 0.74 3 0.35 0.11 0.71 8
Machinery 0.46 0.49 0.47 57 0.44 0.22 0.77 73
Automotive 0.41 0.22 0.56 9 0.50 0.45 0.97 85
Transport 0.26 0.19 0.34 66 0.44 0.43 0.43 213
Utilities 0.83 1.00 0.25 96 0.88 1.00 0.10 144
Retail 0.35 0.25 0.56 192 0.29 0.15 0.24 95
Financial 0.52 0.43 0.92 96 0.37 0.34 0.57 3
Other 0.39 0.27 0.59 279 0.42 0.29 0.71 769
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Table 3. Regression Equations: 1988-2001
IG and IG-B are the Inverse Gamma and Inverse Gamma with Beta transformation

regression models respectively. The Multinomial Logit equations map the conditioning

variables to the mixing probabilities associated with a 3-component mixture model.

‘Debt Cushion’ is the proportion of total debt ranking below an instrument. ‘Rank’

indicators denote the instrument rank with a null case of 1. ‘Collateral’ is an indicator

of collateralization with a null case of NO. The security type indicator null case is a

term loan. Lagged Industry DLI is the industry level Merton (1974) default likelihood

observable a month prior to default. ‘Utilities’ is an indicator of whether the defaulting

firm is classified as a utility with a null case of NO.

IG IG-B Multinomial Logit
Coeff Prob Coeff Prob Eq 1 Prob Eq 2 Prob

Intercept 0.02 0.95 0.04 0.79 -2.26 0.04 1.76 0.01
Debt Cushion 2.6 0 1.11 0 -6.39 0 -3.03 0
Rank 2 -0.22 0.08 -0.09 0.12 1.01 0 -0.58 0.01
Rank 3 -0.62 0 -0.26 0 1.78 0 -0.62 0.06
Rank ≥ 4 -0.97 0 -0.4 0 2.16 0 -2.91 0
Collateral (Yes) 0.28 0.43 0.11 0.45 -0.84 0.29 0.29 0.63
Senior Subordinated -0.8 0.04 -0.34 0.04 3.87 0 1.65 0.01
Senior Unsecured -0.11 0.77 -0.05 0.76 2.43 0.02 0.44 0.48
Junior or Subordinated -0.66 0.09 -0.28 0.09 2.94 0.01 0.31 0.64
Lagged Industry DLI -0.79 0 -0.33 0 1.66 0 0.38 0.17
Utilities 2.89 0 1.24 0 -4.92 0 -3.33 0

N=1461
R̄2 = 0.39 R̄2 = 0.39
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Table 4. Mixture Component Properties
Mean and standard deviation (Std) of of mixture components 1,2 & 3. Probability

weight is the mean of the conditional assignment probabilities.

Component 1 2 3
Mean -2.01 -0.32 3.82
Std 1.39 0.81 0.21

Recovery @ Mean 0.02 0.38 1
Recovery @ Mean+Std 0.27 0.69 1
Recovery @ Mean - Std 0 0.13 1

Probability Weight 0.37 0.43 0.2

Table 5. k-fold Cross-Validation
Mean of Root Mean Squared Error (MRMSE) and mean of Mean Absolute Error

(MMAE) by sub-period. Note: k was set equal to 12. The results for the 4-mixture

specification are not repotted separately as they were almost identical to the 3-mixture

specification.

K-Folds 3Mix 1987-2001
IG Reg IG-B Reg Mixture Reg Tree

MRMSE 0.31 0.62 0.32 0.27
MMAE 0.22 0.53 0.22 0.21

K-Folds 3Mix 1987-2011

MRMSE 0.35 0.58 0.35 0.28
MMAE 0.27 0.49 0.27 0.22
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Table 6. Out-of-Time Forecasting (Full period)
IG and IG-B are the Inverse Gamma and Inverse Gamma with Beta transformation

regression models respectively. Mixture (B) is the 3-component mixture model with

bootstrap aggregation, and Reg Tree (B) refers to the corresponding ensemble estimate

of the regression tree. In all cases, 30 bootstrap samples were used. The numbers

in italics are the percentage errors relative to the simulated distribution of portfolio

recoveries (Outcomes) drawn from the 2002-2011 test period. 10,000 draws were used to

simulate the distribution of outcomes and the associated conditional forecasts. Model

estimates are based on the 1987-2001 estimation period.

IG Reg IG-B Reg Mixture Reg Tree Mixture (B) Reg Tree (B) Outcomes

Mean 38.7 39 42.2 41 42.2 39.6 47.8
Std 3 3.1 3.5 2.6 2.7 2.1 3.7
Percentiles:

1% 31.8 31.8 34.1 35 35.9 34.7 39.1
-18.73% -18.57% -12.84% -10.58% -8.29% -11.31%

5% 33.8 34 36.5 36.7 37.7 36.1 41.7
-18.88% -18.54% -12.37% -11.98% -9.69% -13.40%

10% 34.8 35 37.7 37.6 38.7 36.9 43
-19.07% -18.67% -12.31% -12.55% -10.14% -14.39%

25% 36.6 36.9 39.8 39.2 40.3 38.1 45.3
-19.05% -18.46% -11.99% -13.46% -10.97% -15.84%

50% 38.7 39 42.1 40.9 42.1 39.5 47.8
-19.16% -18.43% -11.87% -14.42% -11.87% -17.34%

75% 40.7 41.1 44.5 42.7 44 41 50.3
-19.14% -18.32% -11.50% -15.08% -12.53% -18.55%

90% 42.5 43 46.7 44.3 45.7 42.3 52.5
-19.05% -18.14% -11.17% -15.61% -12.97% -19.38%

RMSE 9.9 9.6 7.1 7.8 6.8 9
MAE 9.1 8.8 6 6.9 5.9 8.2
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Table 7. Out-of-Time Forecasting (Moving Window)
IG and IG-B are the Inverse Gamma and Inverse Gamma with Beta transformation

regression models respectively. Mixture (B) is the 3-component mixture model with

bootstrap aggregation, and Reg Tree (B) refers to the corresponding ensemble estimate

of the regression tree. In all cases, 30 bootstrap samples were used. The numbers

in italics are the percentage errors relative to the simulated distribution of portfolio

recoveries (Outcomes) drawn from moving 24-month windows over the 2002-2011 test

period. 9 lots of 2,000 draws were used to simulate the distribution of outcomes and

the associated conditional forecasts. Models are re-estimated annually from 2001-2009

using an expanding estimation window commencing in 1987.

IG Reg IG-B Reg Mixture Reg Tree Mixture (B) Reg Tree (B) Outcomes

Mean 38.7 39 40.8 37.4 41.2 39.5 52.4
Std 7.9 8.2 6.6 4.4 6.2 3.8 11.4
Percentiles:

1% 24.3 23.9 26.6 26 28 31.4 29.6
-17.91% -19.22% -10.05% -12.34% -5.34% 5.92%

5% 26.3 26 29.4 28.9 30.4 33.2 33.7
-21.91% -22.83% -12.91% -14.40% -9.81% -1.58%

10% 27.7 27.4 31 31.3 31.9 34.2 36.9
-25.02% -25.70% -16.03% -15.26% -13.41% -7.15%

25% 32.7 32.8 36.1 34.8 36.7 36.6 43.1
-24.18% -23.79% -16.32% -19.28% -14.83% -15.08%

50% 38.4 38.8 41.4 37.8 42.1 39.9 53.1
-27.67% -26.92% -22.11% -28.84% -20.70% -24.83%

75% 45.1 45.6 45.7 40.6 46 42.2 62
-27.24% -26.52% -26.28% -34.59% -25.93% -31.93%

90% 49.1 49.8 49 42.7 48.9 44.1 67.4
-27.16% -26.15% -27.37% -36.70% -27.47% -34.53%

RMSE 17.3 17.1 16.3 18.6 15.5 16.6
MAE 15.1 15 14.3 16.3 13.8 14.5
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Table 8. Sub-Period Forecast Errors
Summary of forecast performance by sub-period. These results are the period by

period performance associated with the aggregated results reported in Table 7.

IG Reg IG-B Reg Mixture Reg Tree Mixture (B) Reg Tree (B) Predicted

2001 RMSE 4.9 5.3 7.1 3.8 6.4 4 N=725
MAE 4 4.4 6 3 5.5 3.2

2002 RMSE 19 19 17 22.5 16.9 19 N=312
MAE 18.6 18.6 16.4 22.2 16.5 18.7

2003 RMSE 20 19.3 21.4 25.3 20.6 22.7 N=235
MAE 19.7 19.1 20.9 25.1 20.3 22.5

2004 RMSE 17.4 16.6 20.2 26.2 17.8 25.6 N=175
MAE 17.1 16.3 19.5 25.9 17.5 25.4

2005 RMSE 19.6 19.4 16 20.8 15.7 20.9 N=66
MAE 19.3 19 15.6 20.5 15.3 20.7

2006 RMSE 19.6 19.4 16 20.8 15.7 20.9 N=127
MAE 19.3 19 15.6 20.5 15.3 20.7

2007 RMSE 20.1 20.3 17 18.6 16.7 13.5 N=317
MAE 19.7 19.9 16.4 18.2 16.3 13

2008 RMSE 8.3 7.9 6.2 9.3 6 7.9 N=238
MAE 7.6 7.1 5.2 8.5 5.1 7.1

2009 RMSE 4 4.4 7 5.4 6.7 7.3 N=24
MAE 3.2 3.5 6.1 4.6 5.9 6.6
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