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Forecasting Earnings Using k-Nearest Neighbor Classification 
 

ABSTRACT 

We use the k-nearest neighbors (i.e., k-NN) algorithm to forecast a firm’s annual earnings by 

matching its recent trend in annual earnings to historical earnings sequences of “neighbor” firms. 

Our forecasts are more accurate than forecasts obtained from the random walk, the regression 

model developed by Hou, van Dijk and Zhang (2012), other regression models and the matching 

approach described in Blouin, Core and Guay (2010). The k-NN model is superior to these 

alternative models both when analysts’ forecasts are available and when they are not. Further, for 

firm-years with I/B/E/S earnings data available, the accuracy of k-NN forecasts of I/B/E/S earnings 

is similar to the accuracy of analysts’ forecasts. The k-NN model is also superior to a random 

forest classifier that we use to choose the best model ex-ante. Finally, we find that our forecasts of 

earnings changes have a positive association with future stock returns. 

 

Keywords: earnings, forecasting, machine learning. 

JEL Classifications: C21, C53, G17, M41. 

Data Availability: data are available from the public sources described in the text. 
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1 INTRODUCTION 

We examine the accuracy of earnings forecasts formed by k-nearest neighbor classification (i.e., 

k-NN). The practice of finding similar episodes, or “k-nearest neighbors,” on which to base 

predictions is a simple yet effective forecasting approach that appears in texts dating back as early 

as the 11th century (Chen and Shah, 2018). Modern applications include forecasting a baseball 

player’s future performance by comparison to similar players (Silver, 2003) and forecasting a 

state’s election results by incorporating polling trends from similar states (Silver, 2008). We 

develop a method for forecasting a subject firm’s future earnings by matching its recent trend in 

annual earnings to similar historical earnings sequences of other firms. 

We focus on expected future earnings because they are a key determinant of investment 

decisions. And, expected year-ahead (or lead) earnings play a central role. For example, the 

abnormal earnings growth valuation model of Ohlson and Juettner-Nauroth (2005) uses capitalized 

expected lead earnings as its anchor. In a similar vein, practitioners often evaluate a firm’s current 

equity price by comparing it to the firm’s expected lead earnings (i.e., the price-to-forward-

earnings ratio). Thus, understanding the link between past and future earnings and using this 

understanding to develop accurate earnings forecasts are important endeavors for researchers and 

practitioners alike. 

Nevertheless, the forecasting methods commonly used by practitioners are quite different from 

those used by researchers in accounting and finance. Most financial statement analysis courses and 

valuation textbooks teach practitioners to forecast a subject firm’s earnings by extrapolating from 

trends observed among comparable firms. Textbooks generally suggest using trends in key 

financial ratios of comparable firms as inputs in the process of forecasting the earnings of the 

subject firm. A benefit of this tailored forecasting approach is that it weighs the historical 
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performance of both the subject firm and potential peer firms in a non-parametric manner. 

However, it is challenging to apply this approach in a large-scale empirical study because it relies 

on subjective decisions such as selecting the appropriate peer firms and choosing the relevant 

financial ratios for each subject firm. 

Rather than attempt to develop their own large samples of peer-based forecasts, researchers 

have generally relied on earnings forecasts obtained from sell-side financial analysts, regression 

models, or some combination of the two. Although a vast literature in accounting and finance uses 

earnings forecasts of sell-side analysts, recent studies increasingly rely on cross-sectional 

regressions to forecast annual earnings (Hou, van Dijk and Zhang, 2012; Gerakos and Gramacy, 

2013; Li and Mohanram, 2014; So, 2013). One explanation for the growing popularity of 

regression-based forecasts is that they are available for many more firms than analysts’ forecasts. 

However, regression-based approaches are limited in their ability to differentially weigh the 

historical performance of more versus less relevant peers. This makes them susceptible to the 

influence of extreme observations (i.e., outliers). Accordingly, regression-based forecasts are not 

much better than forecasts based on the random walk (e.g., Gerakos and Gramacy, 2013; Li and 

Mohanram, 2014; Monahan, 2018; Easton, Kapons, Kelly and Neuhierl, 2020). 

We examine whether modern k-NN methods can be used to develop large-sample non-

parametric earnings forecasts that overcome some of the limitations of the common forecasting 

approaches used by researchers. Motivated by the intuition observed in common practice, we 

introduce a simple k-NN forecasting approach that forecasts a subject firm’s earnings by 

extrapolating from trends observed among matched nearest neighbors. We show that our approach 

provides considerably more accurate forecasts than those from the popular Hou, van Dijk and 

Zhang (2012) (hereafter, HVZ) regression model and can be applied to a broader set of firm-years. 
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For example, analyzing a large sample of annual earnings data from 1978 to 2018 we find that the 

mean absolute forecast error (i.e., MAFE) from our one-year-ahead k-NN forecasts is 

approximately 27.1 percent smaller than that from the HVZ model, and that k-NN forecasts can 

be computed for approximately 18.8 percent (roughly 40,000) more firm-years. 

Specifically, we examine three research questions. First, what is the best way to use k-NN 

prediction methods to forecast earnings? Second, how accurate are k-NN forecasts compared to 

those from competing approaches? Third, when are k-NN forecasts more likely to outperform 

other approaches? 

With regards to the first question, we introduce the idea that comparable firm-years need not be 

contemporaneous; so, for any given year 𝑡𝑡, we search for matches from the previous ten years of 

historical data. When searching for nearest neighbors, we examine how the accuracy of the 

resulting forecasts varies with three parameters: (1) the number, 𝐹𝐹, and type of financial variables 

(i.e., features) that we use to find matches; (2) the length of time, 𝑀𝑀, years, that we use to match 

the trend in each variable (we vary 𝑀𝑀 from one to five); and, (3) the number of nearest neighbors, 

𝑘𝑘, we select as matches. The 𝑘𝑘 nearest neighbors are then the firm-years in the prior ten-years with 

the most similar histories of feature values vis-à-vis the recent history of the subject firm.1 

For example, suppose in 2011 we want to forecast the 2012 earnings of subject firm 𝑖𝑖. Further 

suppose that the only variable in our feature set is earnings (i.e., 𝐹𝐹 = 1) and that we are matching 

on sequences with a length of two years (i.e., 𝑀𝑀 = 2). We begin by identifying the sample of all 

available firm-years in our dataset with both current and lagged earnings data reported during 2001 

 
1 We also find that our k-NN forecasts have smaller forecast errors than forecasts obtained from the random walk, 

other regression-based models and the matching model developed by Blouin, Core and Guay (2010). In addition, our 
forecast errors are similar to the forecast errors documented in Cao and You (2020). However, our machine learning 
model is much simpler than the machine learning models that they evaluate. We use simple k-NN models and consider 
only a small set of features. Cao and You (2020), on the other hand, evaluate several complex models and consider 
56 different features. 
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to 2010.2 Next, we identify the 𝑘𝑘 nearest neighbors – i.e., the 𝑘𝑘 firm-years in this sample that are 

the closest match to firm 𝑖𝑖 in terms of current and lagged earnings. Finally, we set our forecast of 

firm 𝑖𝑖’𝑠𝑠 earnings in 2012 equal to the the median of the 𝑘𝑘 nearest neighbors’ lead earnings.3 

The definition of a comparable firm-year naturally depends on the length of the sequence (i.e., 

𝑀𝑀) and the set of features. We explore various features that may be considered standard, including 

matches based on industry, size and past accruals. We also vary the number of years (i.e., 𝑀𝑀) and 

the number of nearest neighbors (i.e., 𝑘𝑘). Our, perhaps surprising, conclusion is that the optimal 

number of years (based on minimum mean absolute forecast error, MAFE) is two and the optimal 

number of nearest neighbors is approximately eighty. We also find that a simple k-NN model that 

uses only one feature – i.e., earnings scaled by equity market value or “scaled” earnings – works 

well.4 Adding more features does not improve accuracy. These results imply that: (1) a firm’s 

earnings history is highly informative when put into the context of similar histories and (2) a high 

number of nearest neighbors is necessary to obtain a sufficiently precise forecast of the future 

trajectory of earnings.5 

Based on these findings, in our analyses of the second question, “How accurate are k-NN 

forecasts compared to those from competing approaches?”, we consider k-NN forecasts using  

𝐾𝐾 = 80 nearest neighbors matched on 𝑀𝑀 = 2 years of scaled earnings. We compare our k-NN 

forecasts to those obtained from the random walk and the regression model proposed by Hou, van 

Dijk and Zhang (2012). We evaluate forecasts of one-, two-, and three-year-ahead earnings. We 

 
2 The two-year sequence of firm 𝑖𝑖′𝑠𝑠 2010 and 2011 earnings can be matched to any two-year “neighbor” sequence 

as early as 2000 – 2001 and as recently as 2009 – 2010. The two-year “neighbor” sequence can be taken from the 
reported earnings of any available firm, including firm 𝑖𝑖 itself.  

3 We elaborate on this example in Figure 1 and Section 2.2.1. 
4 As discussed in Section 4.1.3, we obtain similar results when we use alternative deflators such as equity book 

value, total assets or revenues. 
5 This does not mean that other financial ratios are uninformative about future earnings, only that their information 

content is outweighed by the additional error introduced by having to find similar firms across many dimensions. 
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find that, based on many summary metrics for forecast accuracy, our k-NN forecasts are 

significantly more accurate than the HVZ forecasts and the random walk forecasts. 

Our k-NN forecasting procedure is flexible. It can be applied to a broad cross-section of firms 

and to alternative earnings metrics. Although our primary analyses are based on earnings before 

special items, which is a commonly-used metric, we also evaluate I/B/E/S forecasts of “street” 

earnings. Specifically, for the sub-sample of observations for which I/B/E/S forecasts of street 

earnings are available, we apply our k-NN forecasting approach to I/B/E/S street earnings, and 

then we compare our forecasts to analysts’ consensus forecasts. We find that analysts’ consensus 

forecasts are significantly more accurate than random walk forecasts of street earnings. However, 

the accuracy of our k-NN forecasts of street earnings is similar to the accuracy of analysts’ 

consensus forecasts in the sense that, for a number of accuracy metrics, it is not statistically 

different. Moreover, the difference between the accuracy of analysts’ forecasts and the accuracy 

of our k-NN forecasts is less for forecasts of two-year-ahead earnings than for forecasts of one-

year-ahead earnings. 

We address our last research question, “When are k-NN forecasts more likely to outperform 

other approaches?”, in two ways. First, we show that k-NN forecasts are more accurate than HVZ 

or random walk forecasts for smaller firms, firms without analyst coverage, firms with positive 

growth, and firms with either high or low current earnings. k-NN forecasts are slightly less accurate 

than random walk forecasts for firms with negative earnings growth. We also compare forecast 

errors by industry and find that our k-NN forecasts are consistently more accurate than HVZ or 

random walk forecasts. 

Second, we construct hedge portfolios to test whether our k-NN forecasts are associated with 

future stock returns. On June 30 of each year, we separate firms into two portfolios: Firms for 
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which the sign of the change in earnings implied by the forecasting model (i.e., k-NN or HVZ) is 

positive and firms for which the sign is negative. We compute hedge-portfolio returns by 

subtracting the average monthly returns generated by firms in the negative earnings-change 

portfolio from the returns generated by the firms in the positive earnings-change portfolio, and 

then we compute average monthly hedge-portfolio returns for each of the subsequent twelve 

months. We find that the k-NN hedge portfolio generates positive returns whereas the returns 

generated by the HVZ hedge portfolio are negative. We also find that the k-NN hedge-portfolio 

generates higher returns for firms that are not covered by analysts. These results lead us to conclude 

that, in addition to being more accurate than other forecasts, our k-NN forecasts are also useful in 

the sense that they are informative about future stock price changes. 

We make three contributions to the literature on earnings properties and earnings forecasting. 

First, we introduce a new forecasting model that: (1) is simple, flexible and easy to implement; (2) 

can be applied to a much larger sample of firms than regression-based models; (3) outperforms 

competing approaches over both short and long forecasting horizons; and, (4) generates earnings 

forecasts that are associated with future stock returns. Second, because our method is easily 

modified, we open up several avenues for future research. For example, future research might 

evaluate whether the distribution of the forecasts of the 𝑘𝑘 nearest neighbors that are matched to a 

subject firm serves as a useful measure of the degree of uncertainty about that firm’s earnings; or, 

whether the k-NN approach we develop to forecast a firm’s earnings can be used to forecast other 

financial metrics such as sales, cash flow or accruals. Finally, our results offer new insights into 

the link between future earnings and historical earnings. The simple k-NN model that only matches 

on the most recent two years of earnings works best. Adding more features to identify “better” 
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matches does not lead to better forecasts. This result implies that, when put into the correct context, 

a firm’s recent earnings history is highly informative about what its future earnings will be. 

2 APPROACHES TO EARNINGS FORECASTING 

2.1 k-Nearest Neighbors 

2.1.1 IBM Example 

Before formally describing our k-NN model, we provide an example, which is diagramed in 

Figure 1. In this example, we make a forecast in 2011 of IBM’s earnings before special items, 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸, for 2012. We refer to 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 as unscaled earnings. We match on only one feature (i.e.,  

𝐹𝐹 = 1): the ratio of 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 to end-of-year 𝑡𝑡 equity market value, which we refer to as scaled 

earnings,  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 . We set 𝑀𝑀 = 5 and 𝑘𝑘 = 10. Hence, we compare IBM’s 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  for the years 

2007 to 2011 to all the observable five-year sequences of 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  that end on any year  

𝑠𝑠 ∈ [2001,2010], and then we identify the ten “neighbor” sequences that are closest to IBM’s 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  for the years 2007 to 2011. As shown in Figure 1, in this example, IBMs’ ten nearest 

neighbors are drawn from as early as 𝑠𝑠 = 2001 (Irwin Financial Corp.) to as late as 𝑠𝑠 = 2010 

(Envision Healthcare Corp.).6 

Next, using each of the ten nearest neighbors, we forecast IBM’s unscaled earnings (i.e., 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸) 

for year 𝑡𝑡 + 1. We do this in two steps. In the first step, we form a set of intermediate forecasts by 

multiplying each of the ten nearest neighbor’s scaled earnings for year 𝑠𝑠 + 1 by IBM’s equity 

market value at the end of 2011. Hence, in this example, we multiple Irwin Financial Corp.’s 

observed 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  for 2002 (i.e., 𝑠𝑠 + 1) and the year 𝑠𝑠 + 1 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  of the other nearest neighbors by 

180,221 million USD, which equals IBM’s equity market value at the end of 2011. As shown in 

 
6 In Panel A of Figure 1 we plot, in event time, the scaled earnings of IBM along with those of its matched 

neighbors. In Panel B we show the different calendar time periods that relate to each of the ten nearest neighbors. 
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Figure 1, 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  in year 𝑠𝑠 + 1 for the ten nearest neighbors ranges from 0.062 to 0.110, and thus 

the intermediate forecasts range from 11,174 million USD to 19,824 million USD. Finally, in the 

second step, we set our k-NN forecast of IBM’s earnings for 2012 equal to the median of the ten 

intermediate forecasts, which, in this example, is 14,478 million USD. 

2.1.2 Formal Description of the k-NN Model 

For each firm-year 𝑖𝑖, 𝑡𝑡, we use k-NN to compute an ℎ-year-ahead forecast of earnings before 

special items. We refer to firm 𝑖𝑖’𝑠𝑠 realized unscaled (scaled) earnings before special items for year 

𝑡𝑡 as 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡 (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 ,𝑡𝑡) and we refer to our k-NN-based forecast of 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡+ℎ as 𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡+ℎ𝑘𝑘𝑘𝑘𝑘𝑘 . First, 

we determine the most recent history of features for firm-year 𝑖𝑖, 𝑡𝑡. We refer to this history as 

sequence 𝑖𝑖, 𝑡𝑡: 𝑖𝑖, 𝑡𝑡 − 𝑀𝑀 + 1 (𝑀𝑀 denotes the length of the sequence in years). Second, we identify 

the set of firm-years that have complete sequences of features of length 𝑀𝑀 ending in any year  

𝑠𝑠 ∈ [𝑡𝑡 − ℎ, 𝑡𝑡 − 9 − ℎ]. These are the neighbors of firm-year 𝑖𝑖, 𝑡𝑡. 7 

Third, for each firm-year 𝑗𝑗, 𝑠𝑠 in the set of neighbors, we calculate the variable 𝐷𝐷𝐸𝐸𝐸𝐸𝐷𝐷𝑖𝑖 ,𝑡𝑡,𝑗𝑗,𝑠𝑠
𝐹𝐹,𝑀𝑀 , which 

is the Euclidean distance between sequence 𝑖𝑖, 𝑡𝑡: 𝑖𝑖, 𝑡𝑡 − 𝑀𝑀 + 1 and sequence 𝑗𝑗, 𝑠𝑠: 𝑗𝑗, 𝑠𝑠 − 𝑀𝑀 + 1. 

𝐷𝐷𝐸𝐸𝐸𝐸𝐷𝐷𝑖𝑖 ,𝑡𝑡,𝑗𝑗,𝑠𝑠
𝐹𝐹,𝑀𝑀 = �∑ ∑ �𝐹𝐹𝐸𝐸𝐹𝐹𝐷𝐷𝑖𝑖,𝑡𝑡−𝑚𝑚+1

𝑓𝑓 − 𝐹𝐹𝐸𝐸𝐹𝐹𝐷𝐷𝑗𝑗,𝑠𝑠−𝑚𝑚+1
𝑓𝑓 �

2
𝑀𝑀
𝑚𝑚=1

𝐹𝐹
𝑓𝑓=1 .     [1] 

In equation [1], 𝐹𝐹𝐸𝐸𝐹𝐹𝐷𝐷𝑖𝑖,𝑡𝑡−𝑚𝑚+1
𝑓𝑓  (𝐹𝐹𝐸𝐸𝐹𝐹𝐷𝐷𝑗𝑗,𝑠𝑠−𝑚𝑚+1

𝑓𝑓 ) is the normalized value in year 𝑡𝑡 − 𝑚𝑚 + 1  

(𝑠𝑠 − 𝑚𝑚 + 1) of feature 𝑓𝑓 for subject firm 𝑖𝑖 (neighbor firm 𝑗𝑗).8 To illustrate, suppose we match on 

 
7 We match on scaled features. We scale all the dollar amounts in the subject firm’s sequence of features by the 

year 𝑡𝑡 value of the deflator for the subject firm. Similarly, we scale all the dollar amounts of a neighbor’s sequence of 
features by the year 𝑠𝑠 value of the deflator for that neighbor. As discussed in Section 4.1.3, our results do not depend 
on the choice of deflator. 

8 We normalize each feature by subtracting the contemporaneous cross-sectional average from the raw value of 
the feature, and then dividing this difference by the contemporaneous cross-sectional standard deviation. (This is 
common way of implementing k-nearest neighbors.) The resulting normalized feature has a mean of zero and a 
standard deviation of one. Consequently, all the features have the same scale, and thus 𝐷𝐷𝐸𝐸𝐸𝐸𝐷𝐷𝑖𝑖,𝑡𝑡,𝑗𝑗,𝑠𝑠

𝐹𝐹,𝑀𝑀  is not dominated by 
a feature with an outsized scale. 
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two features – e.g., 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  and scaled accruals – then 𝐹𝐹𝐸𝐸𝐹𝐹𝐷𝐷𝑖𝑖 ,𝑡𝑡−𝑚𝑚+11  and 𝐹𝐹𝐸𝐸𝐹𝐹𝐷𝐷𝑖𝑖 ,𝑡𝑡−𝑚𝑚+1
2  

(𝐹𝐹𝐸𝐸𝐹𝐹𝐷𝐷𝑗𝑗 ,𝑠𝑠−𝑚𝑚+1
1  and 𝐹𝐹𝐸𝐸𝐹𝐹𝐷𝐷𝑗𝑗 ,𝑠𝑠−𝑚𝑚+1

2 ) are the normalized values of firm 𝑖𝑖’𝑠𝑠 (𝑗𝑗’𝑠𝑠) 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  and scaled 

accruals in year 𝑡𝑡 − 𝑚𝑚 + 1 (𝑠𝑠 − 𝑚𝑚 + 1), respectively. 

Fourth, we identify the 𝑘𝑘 neighbors with the smallest values of 𝐷𝐷𝐸𝐸𝐸𝐸𝐷𝐷𝑖𝑖 ,𝑡𝑡,𝑗𝑗,𝑠𝑠
𝐹𝐹,𝑀𝑀 . These are the  

𝑘𝑘-nearest neighbors of firm-year 𝑖𝑖, 𝑡𝑡. Finally, we form 𝑘𝑘 intermediate forecasts of firm 𝑖𝑖′𝑠𝑠 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 

for year 𝑡𝑡 + ℎ by multiplying each neighbor’s 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  for year 𝑠𝑠 + ℎ by the value of the deflator 

for subject firm 𝑖𝑖 in year 𝑡𝑡. We then set 𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 ,𝑡𝑡+ℎ𝑘𝑘𝑘𝑘𝑘𝑘  equal to the median value of the k intermediate 

forecasts. In most of our analyses, we choose 80 nearest neighbors (i.e., 𝑘𝑘 = 80) by matching on 

two years (i.e., 𝑀𝑀 = 2) of scaled earnings (i.e., 𝐹𝐹 = 1) and we define 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  as earnings before 

special items scaled by equity market value. We provide reasons for these choices later in the 

paper. 

2.2 Description of Regression-Based Forecasts 

We compare our k-NN forecasts to random walk forecasts, regression-based forecasts, forecasts 

obtained from the matching approach described in Blouin, Core and Guay (2010) (BCG hereafter) 

and analyst forecasts. 

For the sake of brevity, in the main tables, we focus on only one regression model: The model 

proposed by HVZ. This model is widely adopted and is often referred to as the benchmark model 

for regression-based earnings forecasts (e.g., Evans, Njoroge and Yong, 2017; Li and Mohanram, 

2014; So, 2013). In Appendix B, we compare our k-NN forecasts to forecasts obtained from several 

other regression models. The inferences we obtain for the HVZ model hold for the other models. 

Forecasts from the HVZ model are obtained using the estimated coefficients from the regression 

shown below: 

 



10 
 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 ,𝑡𝑡+ℎ = 𝛼𝛼0 + 𝛼𝛼1 × 𝐷𝐷𝐹𝐹𝑖𝑖,𝑡𝑡 + 𝛼𝛼2 × 𝐷𝐷𝐷𝐷𝑖𝑖,𝑡𝑡 + 𝛼𝛼3 × 𝐷𝐷𝐸𝐸𝐷𝐷𝑖𝑖,𝑡𝑡 + 𝛼𝛼4 × 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 ,𝑡𝑡 + 𝛼𝛼5 × 𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸𝑖𝑖 ,𝑡𝑡 

+𝛼𝛼6 × 𝐹𝐹𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡 + 𝜖𝜖𝑖𝑖 ,𝑡𝑡.        [2] 

In equation [2], 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡+ℎ denotes firm 𝑖𝑖’𝑠𝑠 scaled earnings before special items for year 𝑡𝑡 + ℎ; 

𝐷𝐷𝐹𝐹𝑖𝑖,𝑡𝑡 denotes firm 𝑖𝑖’𝑠𝑠 scaled total assets at the end of year 𝑡𝑡; 𝐷𝐷𝐷𝐷𝑖𝑖 ,𝑡𝑡 is an indicator variable that 

equals one (zero) if firm 𝑖𝑖 paid (did not pay) a dividend in year 𝑡𝑡; 𝐷𝐷𝐸𝐸𝐷𝐷𝑖𝑖,𝑡𝑡 denotes firm 𝑖𝑖’𝑠𝑠 scaled 

dividends for year 𝑡𝑡; 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 ,𝑡𝑡 denotes firm 𝑖𝑖’𝑠𝑠 scaled earnings before special items for year 𝑡𝑡; 

𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡 is an indicator variable that equals one (zero) if 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 ,𝑡𝑡 is (is not) negative; and, 𝐹𝐹𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡 

denotes firm 𝑖𝑖’𝑠𝑠 scaled accruals for year 𝑡𝑡. (When calculating the numerator of 𝐹𝐹𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡, we use the 

same definition of accruals as HVZ.) With the exception of the indicator variables 𝐷𝐷𝐷𝐷𝑖𝑖 ,𝑡𝑡 and 

𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡, the variables in equation [2] are scaled by firm 𝑖𝑖’𝑠𝑠 equity market value at the end of year 

𝑡𝑡. We elaborate on how we compute all of our variables in Section 3.2 and Table A.1. 

We estimate median regressions not ordinary least squares (i.e., OLS) regressions. We do this 

because median regressions are less sensitive to extreme observations. And, as shown in Evans, 

Njoroge and Yong (2017); Easton, Kapons, Kelly and Neuhierl (2020); and, Tian, Yim and 

Newton (2020), forecasts based on median regressions are significantly more accurate than 

forecasts based on OLS regressions.9 

2.3 Rolling Window Forecasting Procedure 

When developing our k-NN forecasts and our regression-based forecasts, we apply the rolling 

window forecasting procedure that is illustrated in Figure 2. For each year 𝑡𝑡 in our sample, we 

identify nearest neighbors for our k-NN model and estimate coefficients for the regression model 

based on the last 𝑡𝑡 − ℎ to 𝑡𝑡 − 9− ℎ years of panel data. In the parlance of machine learning, this 

 
9 As shown in Appendix B, inferences remain unchanged if we estimate the HVZ model using OLS. 
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is our training data. To eliminate look-ahead bias, we: (1) define the cross-section of data for year 

𝑡𝑡 as the firm-years that ended their fiscal year between April first of year 𝑡𝑡 − 1 and March 31 of 

year 𝑡𝑡 and (2) we identify nearest neighbors and estimate regressions coefficients using the panel 

of data that begins on year 𝑡𝑡 − 9 − ℎ and ends on year 𝑡𝑡 − ℎ. For example, to develop our 1998 

regression forecast of firm 𝑖𝑖’𝑠𝑠 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 for 1999, we use a panel of data in which the dependent 

(independent) variables are drawn from the years 1990 through 1998 (1989 through 1997). We 

multiply the estimated coefficients from this panel regression by the values of the predictors for 

firm 𝑖𝑖 in 1998, and then, to obtain our unscaled (or dollar) forecast of firm 𝑖𝑖’𝑠𝑠 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 in 1999, we 

multiply this predicted value by firm 𝑖𝑖’𝑠𝑠 equity market value at the end of 1998. We refer to the 

HVZ forecast of 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡+ℎ as 𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡+ℎ𝐻𝐻𝑉𝑉𝑉𝑉 . 

3 SAMPLE CONSTRUCTION AND VARIABLE DEFINITIONS 

3.1 Sample Construction 

We obtain company data from the Compustat Fundamentals Annual file. We delete firms that 

are not incorporated in the U.S. Our initial sample spans the years 1968 through 2019 inclusive. 

We evaluate the accuracy of our forecasts of 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 for year 𝑡𝑡 + ℎ by comparing it to realized 

earnings for year 𝑡𝑡 + ℎ. Therefore, our largest forecasting sample spans the years 1979 to 2018. 

To minimize the effect of database errors and small deflators, we require all firm-years to report 

positive values of: (1) total assets; (2) equity book value; (3) equity market value; and, (4) sales. 

For observations included in the forecast comparison sample, we also require equity market value 

to be greater than ten million U.S. dollars. 

We describe our sample construction in Panel A of Table 1. Missing data for earnings before 

special items, 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸, and non-positive deflators reduces the available Compustat sample from 

339,171 to 213,071, which is the number of observations for which we can form a random walk 
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forecast – i.e. the random walk sample. Only 5,315 of the firm-years in the random walk sample 

have missing lagged values of 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸, which is the minimum requirement for the 𝑀𝑀 = 2 k-NN 

forecast model. Hence, the k-NN sample overlaps with 97.5 percent of the random walk sample. 

After removing observations with missing accruals, missing realizations of future 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸, which is 

required for assessing forecast accuracy, and with equity market value less than $10 million, we 

have 132,039 firm-year observations for which we can compare one-year-ahead realizations to 

one-year-ahead forecasts generated by the random walk, our k-NN model and the HVZ model. 

The data described above and the amount of overlap between the random walk sample, the  

k-NN sample, the HVZ sample and the sample of analysts’ forecasts are summarized in Figure 3 

as a Venn diagram. The k-NN sample covers 97.5 percent of the random walk sample. However, 

the HVZ sample overlaps with only 78.9 percent of the random walk sample, and analyst forecasts 

are available for only 53.8 percent of the random walk sample. 

In later analyses we evaluate relative forecast accuracy for each decade within our sample. 

Hence, in Panel B of Table 1, we describe the data summarized in Figure 3 by decade. 

In later analyses, we compare forecasts of I/B/E/S street earnings obtained from our k-NN 

model and the random walk model with analysts’ consensus forecasts. To create our k-NN and 

random walk forecasts of street earnings, observations in the street earnings sample must have 

non-missing lagged street earnings; and, they must also have a contemporaneous consensus analyst 

forecast available for comparison. We obtain actual raw street earnings from the unadjusted eps 

actual file and consensus eps forecasts from the unadjusted summary file. We align the I/B/E/S 

data in calendar time to mimic that of the Compustat forecasts.10 We merge the I/B/E/S data to our 

 
10 For example, for the fiscal year ended December 31, 2001, we obtain the 𝑡𝑡 + 1 (I/B/E/S 𝑓𝑓𝑓𝑓𝑖𝑖 = 1) consensus 

forecast of 2002 annual eps as of March 2002. The I/B/E/S historical consensus is recorded once a month on the third 
Thursday of each month. Hence, if no 𝑡𝑡 + 1 consensus is available as of the third month after the fiscal year end, we 
use the consensus for the following month. 
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Compustat sample using the Compustat security file; and, we require all observations to have 

adjustment factors available in the I/B/E/S adjustment file. We scale I/B/E/S eps forecasts by the 

end-of-fiscal-year closing stock price from Compustat, adjusted for stock splits and dividends. We 

require that observations included in the street earnings sample have a year 𝑡𝑡 adjusted closing stock 

price greater than $1. These data requirements result in sample sizes of 96,345 and 74,679 

observations in the 𝑡𝑡 + 1 and 𝑡𝑡 + 2 street earnings samples, respectively.  

3.2 Variable Definitions 

We define earnings before special items, 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡, as the difference between Compustat data 

item 𝑖𝑖𝑖𝑖𝑖𝑖,𝑡𝑡 and Compustat data item 𝑠𝑠𝑓𝑓𝑖𝑖𝑖𝑖 ,𝑡𝑡. We set missing values of 𝑠𝑠𝑓𝑓𝑖𝑖𝑖𝑖 ,𝑡𝑡 to zero. To keep the 

deflator constant throughout the analysis, we scale all firm 𝑖𝑖 (𝑗𝑗) variables used in the forecast 

models by the value of the deflator at period 𝑡𝑡 (𝑠𝑠). In most of our analyses, we scale by equity 

market value. Firm 𝑖𝑖’𝑠𝑠 equity market value at the end of fiscal year 𝑡𝑡, 𝑀𝑀𝐷𝐷𝐸𝐸𝑖𝑖,𝑡𝑡, equals the product 

of Compustat data items 𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝_𝑓𝑓𝑖𝑖,𝑡𝑡 and 𝑝𝑝𝑠𝑠ℎ𝑜𝑜𝑖𝑖,𝑡𝑡 – i.e., 𝑀𝑀𝐷𝐷𝐸𝐸𝑖𝑖,𝑡𝑡 = 𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝_𝑓𝑓𝑖𝑖,𝑡𝑡 × 𝑝𝑝𝑠𝑠ℎ𝑜𝑜𝑖𝑖,𝑡𝑡. For the 

comparison with the HVZ model, we require the following variables. The indicator variable 

𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡 is set equal to one (zero) if 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡 < 0 (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 ,𝑡𝑡 ≥ 0). We use the balance sheet method 

to calculate accruals. Consequently, 𝐹𝐹𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡 =

�∆�𝑎𝑎𝑝𝑝𝑡𝑡𝑖𝑖,𝑡𝑡 − 𝑝𝑝ℎ𝑒𝑒𝑖𝑖 ,𝑡𝑡� − ∆�𝑙𝑙𝑝𝑝𝑡𝑡𝑖𝑖,𝑡𝑡 − 𝑑𝑑𝑙𝑙𝑝𝑝𝑖𝑖 ,𝑡𝑡 − 𝑡𝑡𝑡𝑡𝑓𝑓𝑖𝑖,𝑡𝑡� − 𝑑𝑑𝑓𝑓𝑖𝑖 ,𝑡𝑡� 𝑀𝑀𝐷𝐷𝐸𝐸𝑖𝑖,𝑡𝑡�  (the acronyms shown in brackets 

refer to Compustat data items).11 Total assets, 𝐷𝐷𝐹𝐹𝑖𝑖,𝑡𝑡, is Compustat data item 𝑎𝑎𝑡𝑡𝑖𝑖,𝑡𝑡 divided by 

𝑀𝑀𝐷𝐷𝐸𝐸𝑖𝑖,𝑡𝑡. We set the dividend indicator, 𝐷𝐷𝐷𝐷𝑖𝑖 ,𝑡𝑡, to one (zero) if Compustat data item 𝑑𝑑𝑑𝑑𝑝𝑝𝑖𝑖 ,𝑡𝑡 > 0 

(𝑑𝑑𝑑𝑑𝑝𝑝𝑖𝑖 ,𝑡𝑡 = 0) and 𝐷𝐷𝐸𝐸𝐷𝐷𝑖𝑖,𝑡𝑡 = 𝑑𝑑𝑑𝑑𝑝𝑝𝑖𝑖 ,𝑡𝑡 𝑀𝑀𝐷𝐷𝐸𝐸𝑖𝑖,𝑡𝑡⁄ . We set missing values of 𝑑𝑑𝑑𝑑𝑝𝑝𝑖𝑖 ,𝑡𝑡 to zero. In Table A.1 we 

provide a complete list of all variables we use and we describe how we compute each variable. 

 
11 We set missing values of Compustat items 𝑝𝑝ℎ𝑒𝑒, 𝑙𝑙𝑝𝑝𝑡𝑡, 𝑑𝑑𝑙𝑙𝑝𝑝, 𝑡𝑡𝑡𝑡𝑓𝑓 and 𝑑𝑑𝑓𝑓 to zero. 
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3.3 Descriptive Statistics 

In Panel A of Table 2, we provide descriptive statistics for the predictors we use in our 

regression models, which are also the candidate features that we use to identify nearest neighbors. 

(As discussed later, we ultimately use only one feature, scaled earnings, 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 .) The medians of 

these variables are similar to the amounts shown in other studies, but the means, standard 

deviations and tails of the distribution are different. The reason for this is that for the analyses in 

these tables, we neither winsorize nor delete extreme values. 

In Panel B of Table 2, we summarize the estimates of the regression coefficients for the HVZ 

model. The coefficients (pseudo r-squared) are the time-series averages of the estimated 

coefficients (pseudo r-squared) generated by the rolling-window median regressions. t-statistics 

are derived from Fama-MacBeth standard errors. The estimate of the coefficient on lagged 

earnings is highly significant (coefficient estimate of 0.709 with a t-statistic of 9.654). The other 

coefficient estimates that are statistically significantly different from zero are those on total 

accruals (-0.024 with a t-statistic of -4.78), the dividend variable (1.052 with a t-statistic of 4.491) 

and the indicator for non-zero dividend payments (-0.01 with a t-statistic of  

-2.234).12 The estimates of the coefficients on total assets and the loss indicator are not 

significantly different from zero. 

In Panel C of Table 2, we provide some initial descriptive statistics comparing the subject firms 

with the firms that comprise the nearest neighbors (k-NN using 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  as the only feature and 

setting 𝑀𝑀 = 2 and 𝑘𝑘 = 80). 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  of the nearest neighbors are very similar, which is not 

surprising given 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  is the variable we use to find matches. For instance, the interquartile range 

 
12 When comparing our coefficient estimates to those in HVZ, it is important to note that we use median regressions 

to reduce the undue influence of a small proportion of the observations while HVZ use OLS regressions. We also 
scale each of our variables by market capitalization (and we check the sensitivity of our results to different deflators). 
HVZ, on the other hand, report results for regressions based on unscaled variables. 
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of the difference between 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  of subject firms and 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  of the k-nearest neighbors is 0.001 

and the median difference is 0.000. On the other hand, the difference in size measured as either 

equity market value or total assets is large. The median percentage of nearest neighbors in the same 

Fama-French 12-industry group as the subject firm is 12.5 percent and the median percentage of 

nearest neighbors with the same 2-digit SIC as the subject firm is 3.8 percent. These statistics 

highlight that the nearest neighbors are indeed very similar in terms of the matched features, but 

otherwise quite heterogeneous. 

4 RESULTS AND MODEL EVALUATION 

4.1 Implementing the k-NN Model 

4.1.1 The Role of Matching and Extrapolating 

We begin by answering our first research question: “What is the best way to use k-NN 

prediction methods to forecast earnings?” We first ask some foundational questions. Does nearest 

neighbor matching yield lower forecast errors than random matching? The answer is yes. And: 

How much of the reduction in the forecast error is attributable to finding nearest neighbors with 

matched earnings sequences and how much is attributable to applying the growth rate implied by 

the nearest neighbors’ earnings from year 𝑠𝑠 to year 𝑠𝑠 + ℎ to the year 𝑡𝑡 earnings of the subject firm? 

We benchmark these analyses against the 𝑡𝑡 + 1  forecast errors from the random walk. The results 

are shown in Figure 4. 

The MAFE for the random walk model is shown as the green horizontal line in Figure 4, which 

plots the MAFE (shown on the vertical axis) against the number of nearest neighbors (shown on 

the horizontal axis). Of course, the line for the random walk runs parallel to the horizontal axis 

(and the MAFE is 7.82 percent) because the forecast is based on the subject firm’s year 𝑡𝑡 earnings, 

and thus does not depend on 𝑘𝑘. The yellow line with squares is the MAFE we obtain when we 
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randomly choose 𝑘𝑘 neighbors – i.e., 𝑘𝑘 random neighbors instead of 𝑘𝑘 nearest neighbors – and  

𝑘𝑘 ∈ [10, 20,⋯ , 200]. The MAFE, which is 10.36 percent with ten random neighbors, declines 

rapidly as 𝑘𝑘 increases but the incremental accuracy begins to taper off at 𝑘𝑘 = 100 and the MAFE 

converges to 9.83 percent. Clearly, the forecast errors based on 𝑘𝑘 random neighbors are greater 

than the errors when forecasts are based on the random walk. The blue and purple lines plot the 

MAFEs for values of 𝑘𝑘 ∈ [10, 20,⋯ , 200] nearest neighbors. The blue line with triangles plots 

the MAFEs we obtain when we assume that the earnings of the nearest neighbors follow a random 

walk – i.e., we assume zero growth and use the median of the nearest neighbors’ earnings in year 

𝑠𝑠 as the forecast. The black line with circles plots the MAFEs that we obtain when we set the 

forecast equal to the median of the nearest neighbors’ realized earnings in year 𝑠𝑠 +  1. Each of 

these lines is far below the plot of the MAFEs obtained using 𝑘𝑘 random neighbors, demonstrating 

the benefit of nearest neighbor matching over random selection. They are also well below the 

MAFE of the random walk. Moreover, the purple line is clearly the closest to zero and noticeably 

lower than the blue line. This demonstrates the importance of using the growth rate implied by the 

earnings trends of the nearest neighbors. For example, the MAFE based on the median of year 𝑡𝑡 

earnings of 100 nearest neighbors is 7.58 percent while the MAFE based on the median of year 

𝑡𝑡 +  1 earnings is 7.05 percent. Thus, it is the combination of both the nearest neighbor matching 

and growth extrapolation that matters. 

4.1.2 Choosing the Optimal Matching Model  

Three considerations, which potentially make a sizeable difference in the effectiveness of the 

k-NN model, are: (1) the length of the sequence of the subject-firm’s data that is matched to 

sequences of other firms (i.e., 𝑀𝑀); (2) the number of firms that are included in the set of nearest 

neighbors (i.e., 𝑘𝑘); and, (3) the number and type of features on which we match (i.e., 𝐹𝐹). We 
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investigate the effects of changing these parameters in this section. Based on these analyses, we 

choose values of 𝑀𝑀, 𝑘𝑘 and 𝐹𝐹 that we use in our subsequent analyses. The choice is based on 

comparisons of mean absolute forecast errors (MAFE). That said, this choice is not sensitive to 

the error metric used – i.e., using different error metrics lead to the same general inferences. 

We summarize the effects of varying 𝑀𝑀 and 𝑘𝑘 in Table 3 and Figure 5. In Table 3, we tabulate 

the mean absolute one-year-ahead forecast error (MAFE) from the k-NN model for various 

combinations of 𝑀𝑀 and 𝑘𝑘. The analysis is performed on a constant sample of observations with 

data available for all values of 𝑀𝑀 = 1 to 𝑀𝑀 = 5. Each column examines the effect of increasing 𝑘𝑘 

by increments of ten for a given value of 𝑀𝑀. Beside each tabulated value of MAFE, we tabulate 

the difference in that MAFE relative to the MAFE using ten fewer peers. For each value of 𝑀𝑀, we 

stop tabulating differences in MAFE at the value of 𝑘𝑘, which we refer to as 𝑘𝑘∗, for which adding 

ten additional matches does not lead to a statistically significant reduction in the MAFE at the five 

percent level. 

Figure 5 plots the values tabulated in Figure 3. Two results are apparent. First, the MAFE is 

lowest for every value of 𝑘𝑘 when 𝑀𝑀 = 2. Second, when 𝑀𝑀 = 2, the last 10-neighbor increment in 

𝑘𝑘 that leads to a statistically significant decrease in the MAFE is the increment to a value of  

𝑘𝑘∗ = 80. Based on these two results, in our subsequent analyses, we choose 80 nearest neighbors 

by matching on sequences of length two – i.e., 𝑘𝑘 = 80 and 𝑀𝑀 = 2. 

As an interesting aside, the plots for 𝑀𝑀 = 3, 4 and 5 show that increasing 𝑘𝑘 does not necessarily 

increase accuracy. For example, when 𝑀𝑀 = 4, accuracy peaks at 𝑘𝑘∗ = 30 , and then decreases as 

𝑘𝑘 increases. This is attributable to the phenomenon known in statistics as the bias-variance trade-

off. Within the context of our study, the intuition for this trade-off is as follows. When 𝑘𝑘 is small, 

k-NN exhibits low bias because the nearest neighbors are very similar. However, the median 
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forecast obtained from a small set of neighbors is very noisy because it is sensitive to the 

idiosyncrasies of each neighbor. As we increase 𝑘𝑘, we include more dissimilar neighbors, which 

tend to be less representative of the subject firm, and thus the bias increases. However, our estimate 

of the median is less affected by idiosyncratic noise, and thus the variance of the forecast error 

decreases. The fact that the highest accuracy is generally achieved with large 𝑘𝑘 suggests that, when 

forecasting earnings, reducing variance – i.e., achieving a more precise estimate of the typical 

earnings trajectory – is more important than reducing bias by choosing a small but very similar set 

of neighbors. 

4.1.3 Alternative Specifications of the k-NN Model 

In the previous analyses, we evaluated forecasts obtained from nearest neighbors that were 

identified by matching on only one feature: earnings before special items scaled by equity market 

value (i.e., 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸). In this section, we evaluate the sensitivity of our results to the use of: (1) 

earnings before special items that are scaled by other variables (equity book value, total assets and 

sales) and (2) additional features. We also examine forecasts obtained by using matches within the 

same size decile or within the same industry. 

We show the results of these analyses in Table 4. We consider four measures of forecast 

accuracy, which weigh large errors differently: (1) the mean of the absolute value of the scaled 

forecast errors, MAFE; (2) the median of the absolute value of the scaled forecast errors, MDAFE; 

(3) the mean of the squared scaled forecast errors, MSE; and, (4) the mean of the squared scaled 

trimmed forecast errors, TMSE. When computing TMSE, we first delete the top and bottom 0.1 

percent of the forecast errors, and then we compute the mean squared error.13 We evaluate one-

year-ahead, two-year-ahead, and three-year-ahead forecasts. And, in all cases, forecast errors are 

 
13 Inferences are identical when we winsorize, rather than trim, the top and bottom 0.1 percent of the signed forecast 

error distribution. 
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computed as �𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡+ℎ − 𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 ,𝑡𝑡+ℎ�/𝑀𝑀𝐷𝐷𝐸𝐸𝑖𝑖,𝑡𝑡 – i.e., we always scale the forecast errors by 

equity market value. 

In Panel A, we summarize the forecast errors we obtain when we scale the features that we use 

to identify nearest neighbors by three alternative deflators: equity book value, total assets and sales. 

The MAFE, MDAFE and TMSE are significantly larger when we replace equity market value with 

any of these deflators. Moreover, MSE is also significantly larger when we replace equity market 

value with sales. For example, the MAFE for one-year-ahead earnings when the deflator is equity 

market value is 6.965 percent, which is 0.330, 0.452 and 0.507 percent larger than the MAFE we 

obtain when we scale the matching features by equity book value, total assets and sales, 

respectively. We also note that trimming the extreme forecast errors has a considerable effect on 

the mean squared error. For example, the MSE for the one-year-ahead earnings forecast that is 

based on nearest neighbors that are matched to the subject firm on the basis of 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 scaled by 

equity market value is 7.631 whereas the TMSE is 1.973. 

Of course, when identifying nearest neighbors, there are several features that we could use in 

addition to scaled earnings. Considering the central role of earnings in valuation and given that we 

are forecasting earnings, the obvious choice for a single feature is earnings. Nonetheless, we 

examine several sets that add additional features to scaled earnings.14 We refer to these as 

expanded sets. Although we only tabulate the results for two of these expanded sets, we obtain 

similar results for all the expanded sets that we evaluate. The first expanded set consists of scaled 

earnings and scaled accruals. We start by adding accruals because, after lagged earnings, the 

estimate of the coefficient on accruals in the HVZ model is the most significant. We refer to this 

 
14 Given the results discussed in the previous paragraph, we scale all feature sets by equity market value. We 

exhaustively examine all possible combinations of both deflators and feature sets and the un-tabulated results of these 
tests lead to the same inferences. 



20 
 

k-NN model as NN2. In the second expanded set, we add all the statistically significant variables 

included in the HVZ regression to the set underlying NN2.15 We refer to this k-NN model as NN3. 

The results, which are shown in Panel B, demonstrate that the forecast errors increase as we expand 

the set of features. For example, when scaled earnings is the only feature, the MAFE for one-year-

ahead earnings is 6.893 percent. When we add accruals, the MAFE is higher (the difference is 0.76 

percent); and, when we add the additional HVZ features, the MAFE is higher yet (the difference 

is 2.32 percent). These results are based on 𝑘𝑘 = 80 nearest neighbors; however, in un-tabulated 

results, we find that the ranking of the models is not sensitive to the choice of 𝑘𝑘. 

In Panel C, we examine the effect of estimating the k-NN model within strata based on either 

the Fama and French (1997) (FF12) twelve industry classification or deciles of equity market 

value. When analyzing industry-based (sized-based) matching, for each year, we first group firms 

into FF12 industry groups (size deciles), and then, within each group, we use scaled earnings to 

identify the nearest 80 neighbors.16 Our k-NN forecasts based on matching on only scaled earnings 

significantly outperform the k-NN forecasts in which we first group on industry (size) and then 

match on scaled earnings. For example, the MAFE obtained by matching on only scaled earnings 

is 6.965 percent, which is 0.074 (0.103) percent lower than the MAFE we obtain when we first 

match on industry (size) and then match on scaled earnings. 

These results raise two questions: First, why is it that we obtain such accurate forecasts by 

matching on only scaled earnings? That is, what are the underlying economics? Second, why is 

 
15 Inferences are unchanged if we also include 𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡, which has an insignificant coefficient in the median HVZ 

regressions. 
16 We set 𝑘𝑘 = 80 neighbors so that these results are comparable to the earlier results in the paper; but, we note 

that, for some industries, 80 nearest neighbors includes a large portion of the members of that industry. Hence, we 
conduct sensitivity tests in which we evaluate values of 𝑘𝑘 ∈ [20,30,⋯ ,120]. We do this for both the industry- and 
size-based matching. The un-tabulated results of these tests show that that our conclusions do not depend on 𝑘𝑘. 
Inferences also remain unchanged when we use the two-digit SIC industry classification to classify firms. 
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two years sufficient? The answer to these questions lies in the observation that earnings and 

earnings growth are the most fundamental indicators of value as evidenced by the work of Ohlson 

and Juettner-Nauroth (2005) as well as the use of PE and PEG ratios as fundamental ratios used 

by analysts to compare similar firms.17 The fact that other financial indicators do not seem to help 

is due to the so-called “curse of dimensionality,” which in layman’s terms means that the distance 

measure becomes noisier as the number of features 𝐹𝐹 and years 𝑀𝑀 increases, which, in turn, raises 

the forecast error. This result is well known in the machine learning literature. k-NN approaches 

are known to asymptotically converge to the conditional expectation (e.g., Biau, Cérou, and 

Guyader, 2010; Chaudhuri and Dasgupta 2014), but the speed of convergence is drastically 

reduced when the number of dimensions (𝐹𝐹 × 𝑀𝑀) along which distances are measured increases 

(Hastie et al., 2009). What remains to be seen is how well the k-NN model performs given its 

appeal (approximating the conditional expectation) and limits (being susceptible to the curse of 

dimensionality because of the few assumptions it makes). As the proverb prescribes, the proof is 

in the pudding. 

4.2 Accuracy of k-NN Forecasts 

4.2.1 Comparison of Model Forecast Accuracy 

Having settled on a preferred k-NN model, we proceed with our second research question: 

“How accurate are k-NN forecasts compared to those from competing approaches?” In Table 5, 

we compare the forecasts generated by the k-NN model, the HVZ regression model and the random 

walk. 

 
17 We note that even in the HVZ regression model, variables other than earnings have little incremental explanatory 

power. 
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The results in Table 5 lead to one overarching conclusion: The k-NN model is clearly superior 

to either the HVZ model or the random walk. Specifically, for every error metric and for all three 

forecast horizons, the forecast errors generated by the k-NN model are the smallest. For example, 

the MAFE for two-year-ahead forecasts based on the nearest neighbor match model is 8.867 

percent, which is significantly lower than the MAFE for random walk forecasts and the MAFE 

from the HVZ model (by 1.210 and 1.277 percent, respectively). The only comparison for which 

the errors generated by the k-NN model are not significantly smaller is when we compare the MSE 

of the k-NN model’s forecasts of one-year-ahead 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 to the MSE of the forecasts generated by 

the random walk. This reflects the influence of outlying observations; and, we note that this result 

no longer holds when we eliminate the top and bottom 0.1 percent of the forecast errors – i.e., the 

TMSE of the nearest neighbor match model is smaller and the difference is statistically significant. 

4.2.2 Comparison with the BCG Matching Procedure 

Extending Barber and Lyon (1996), BCG develop a matching procedure in a context that is 

different from ours; but, their reason for matching is similar inasmuch as they use matched firms 

to help them understand (i.e., make an estimate for) the subject firm. Since BCG provide an 

alternative method of matching, we compare our k-NN forecasts to those generated by their 

procedure. The essence of the BCG matching procedure is similar to ours in the sense that they 

match the earnings of the subject firm for year 𝑡𝑡 to the earnings of matched firms for year 𝑡𝑡– 2, 

and then they use the matched-firms’ earnings for year 𝑡𝑡 − 1 as their forecast of subject firm’s 

earnings for year 𝑡𝑡 + 1. 

To obtain firms with attributes similar to those of the subject firm at year 𝑡𝑡, BCG first separate 

all firms with available data at time 𝑡𝑡 − 2 into 30 performance-size bins. Specifically, using return 

on assets for year 𝑡𝑡 − 2, 𝑅𝑅𝐿𝐿𝐹𝐹, BCG rank firms into two negative 𝑅𝑅𝐿𝐿𝐹𝐹 groups and four positive 
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𝑅𝑅𝐿𝐿𝐹𝐹 groups. Within each of these six groups, they further separate firms into five size quintiles 

based on the ranking of average assets for year 𝑡𝑡 − 2. This yields 30 performance-size bins: ten 

negative  𝑅𝑅𝐿𝐿𝐹𝐹-size bins and twenty positive 𝑅𝑅𝐿𝐿𝐹𝐹-size bins. For each firm in a bin, they collect 

data on its change in 𝑅𝑅𝐿𝐿𝐹𝐹 and growth in total assets in year 𝑡𝑡 − 1. Thus, given earnings in year 

𝑡𝑡 − 2, they have an empirical distribution of income for year 𝑡𝑡 − 1. 

To find matches for a particular subject firm-year 𝑖𝑖, 𝑡𝑡, BCG match the subject firm’s 𝑅𝑅𝐿𝐿𝐹𝐹 and 

average assets for year 𝑡𝑡 to a year 𝑡𝑡 − 2 performance-size bin. Then, they randomly select 50 

observations from this bin and they use the mean value of the earnings growth from 𝑡𝑡 − 2 to  

𝑡𝑡 − 1 of these 50 observations to determine their forecast of the subject firm’s earnings for year 

𝑡𝑡 + 1.18 A more detailed description of the procedure can be found in BCG. 

In Table 6, we compare our k-NN forecasts to forecasts obtained from BCG’s approach. We 

consider two versions of BCG’s approach; (1) the original approach and (2) a modified approach 

in which we match on 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 scaled by equity market value instead of 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 scaled by total assets. 

Regardless of which error metric we use or which forecast horizon we consider, we find that our 

k-NN forecasts are more accurate than the BCG forecasts. For example, the MAFE for the one-

year-ahead forecasts generated by our k-NN model is 6.95 percent, which is 0.923 (0.702) percent 

lower than the MAFE generated by the original (modified) BCG approach. 

4.2.3 Comparison of k-NN Forecasts with Analysts’ Forecasts 

Because I/B/E/S forecasts are used by both academics and practitioners, they are a compelling 

benchmark. However, analysts’ forecasts are not available for all firms. Further, analysts generally 

forecast “street” earnings, rather than 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸. Thus, to examine how k-NN forecasts compare with 

 
18 BCG use the mean of the earnings growth of the 50 randomly selected firms. We use the median because we 

find that it generates a more accurate forecast than the mean. 
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analysts’ forecasts using a like-for-like comparison, we re-estimate the k-NN model using I/B/E/S 

actual earnings (rather than 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸) for both the subject and matched firms. We also make random 

walk forecasts using I/B/E/S actual earnings. 

The results in Table 7 show that, when MDAFE is the error metric, forecasts generated by the 

k-NN model are less accurate than analysts’ forecasts of both one-year-ahead and two-years-ahead 

earnings. Specifically, the MDAFE of the k-NN model is 0.322 and 0.130 percent higher than 

analysts’ forecasts of one-year-ahead and two-years-ahead earnings, respectively. However, there 

is no significant difference in forecast accuracy using any other error metric. Further, it is important 

to note that the k-NN model is superior to the random walk model for this sample. For example, 

when evaluating one-year-ahead (two-years-ahead) forecasts, the MDAFE and TMSE of the 

random walk is 0.113 and 0.532 (0.210 and 0.626) percent higher than the MDAFE and TMSE of 

the k-NN model, respectively. 

4.3 When are Nearest Neighbor Matched Forecasts More or Less Accurate? 

4.3.1 k-NN Forecasts for Samples with and without Analyst Coverage 

Our next research question is: “When do k-NN forecasts outperform other approaches?” Given 

our previous results regarding k-NN’s accuracy vis-a-vis analysts’ forecasts and the necessity of 

having an accurate forecast model for firms not covered by analysts, we examine forecast accuracy 

across both the sub-sample of firms that are covered by analysts and those that are not. We show 

the results of these tests in Panel A of Table 8. Each of the models is more accurate when it is used 

to forecast the earnings of firms that are covered by analysts. For example, the MAFE of the k-NN 

forecasts is 5.482 percent for the sub-sample of firms that are followed by analysts and 9.505 

percent for the sub-sample of firms that are not. In both sub-samples, the k-NN model outperforms 

both the random walk model and the HVZ model. For example, for the sample of firms that are 
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not followed by analysts, the MAFE of the HVZ (random walk) forecasts is 0.892 (3.493) percent 

higher than the MAFE of the k-NN forecasts. Based on these results we draw a key conclusion:  

k-NN forecasts are the preferred alternative when analysts’ forecasts are not available. 

4.3.2 Changes in the Accuracy of k-NN Forecasts Over Time 

In this section, we examine changes in the performance of the k-NN model over time. We split 

the sample into four decades. The results are reported in Panel B of Table 8. Regardless of which 

forecast model we consider, we find that the MAFE and MSE are on average higher for the two 

most recent decades compared to the two earlier decades. The MDAFE, on the other hand, is 

relatively constant across decades. The k-NN model generates lower forecast errors in every 

decade. When we consider the MAFE and MSE, we find that, when compared to the random walk 

model, the relative superiority of the k-NN model is substantially greater during the last two 

decades vis-à-vis the first two decades. 

4.3.3 Cross-sectional Comparison 

To gain a sense of the robustness of our results across different economic circumstances, we 

partition the observations in several different ways. For ease of exposition, we graph the results of 

these analyses in Figure 6 and Figure 7. In Figure 6, we show the difference between the MAFE 

of either the random walk model and the k-NN model or the HVZ model and the k-NN model. 

That is, for a particular partition, we: (1) calculate the MAFE of the random walk (HVZ) model 

and the k-NN model; (2) subtract the MAFE of the k-NN model from the MAFE of the random 

walk (HVZ) model; and, (3) plot the difference. We evaluate four different ways of partitioning 

the data: (A) on the basis of (look-ahead) realized growth in 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 in year 𝑡𝑡 + 1 (i.e., 

�𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡+1 − 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡� 𝑀𝑀𝐷𝐷𝐸𝐸𝑖𝑖,𝑡𝑡� ); (B) on the basis of the ratio of 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 in year 𝑡𝑡 to contemporaneous 

equity market value (i.e., the E/P ratio); (C) on the basis of the ratio of 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 in year 𝑡𝑡 to 
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contemporaneous total assets (i.e., profitability); and, (D) on the basis of equity market value at 

the end of year 𝑡𝑡 (i.e., firm size). In every graph, the darker (lighter) plot reflects the difference 

between the MAFE of the HVZ (random walk) model and the MAFE of the k-NN model. 

Two facts are readily apparent. First, for every quintile of every partitioning variable, the MAFE 

of the k-NN model is lower than the MAFE of the HVZ model. Second, with the exception of 

firms with negative growth in 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 in year 𝑡𝑡 + 1, the MAFE of the of the k-NN model is always 

lower than the MAFE of the random walk model. Moreover, we note that k-NN forecasts are 

especially more accurate than either the HVZ model or the random walk model for small firms, 

firms with high growth in 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 in year 𝑡𝑡 + 1 and firms with extreme (high or low) ratios of year 

𝑡𝑡 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 to contemporaneous equity market value. 

In Figure 7, we examine the relative performance of k-NN forecasts by industry. We find that 

for every one of the FF12 industry groups, the k-NN model has the lowest MAFE; the random 

walk model has the second lowest MAFE; and, the HVZ forecasts have the highest MAFE. These 

analyses provide descriptive evidence that the k-NN model is generally better than HVZ and the 

random walk model regardless of the type of firm that is being analyzed. 

4.4 The Relation between Relative Forecast Accuracy and Future Stock Returns 

Given the accuracy of the k-NN forecasts, we next examine whether they are associated with 

future stock returns. To do this, we use a simple procedure that is motivated by Ball and Brown 

(1968), who show that the sign of the realized change in earnings has a positive association with 

contemporaneous stock returns. We extend this idea by evaluating the relation between forecasts 

of earnings changes and future stock returns. Specifically, on June 30th of each year, we form two 

sets of portfolios. To form the first set, we separate firms into two portfolios: P and N. Portfolio P 

(N) contains all firms for which the k-NN model predicts a positive (negative) change in 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸. To 
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form the second set of portfolios, we sort firms on the predicted change in 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 implied by the  

k-NN model scaled by contemporaneous equity market value (i.e., 

�𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡+1𝑘𝑘𝑘𝑘𝑘𝑘 − 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡� 𝑀𝑀𝐷𝐷𝐸𝐸𝑖𝑖,𝑡𝑡� ), and then we form a portfolio for each quintile. We refer to these 

portfolios as Q5, Q4, …, Q1. Q5 corresponds to the top quintile (i.e., the top 20 percent of the 

distribution), Q4 corresponds to the next highest quintile, and so on. 

Next, for each firm, we compute mean monthly returns for the 12-month period starting on July 

1 (i.e., the portfolio formation date) and ending on June 30th of the subsequent year. We include 

CRSP delisting returns and we adjust for missing delisting returns following Shumway (1997) and 

Shumway and Warther (2002). Specifically, we assume a delisting return of -0.30 (-30 percent) 

for NYSE and AMEX firms with missing performance-related delisting returns; and, for 

NASDAQ firms, we assume a delisting return of -0.55 (-55 percent) for missing performance-

related delisting returns. We include delisting returns following the procedure in Beaver et al. 

(2007), and we assume that, starting on the delisting date, the proceeds from firms that delist are 

re-invested in the value-weighted market portfolio. 

After forming the portfolios for each calendar-year, we compute the difference between the 

average mean return of the P and the N (Q5 and the Q1) portfolios. We refer to these as the P-N 

(Q5-Q1) hedge-portfolio returns. We then average these hedge-portfolio returns across calendar 

years. Finally, we compare the average hedge-portfolio returns based on our k-NN forecasts (i.e. 

the k-NN hedge-portfolio returns) to the hedge portfolio returns that are based on HVZ forecasts 

(i.e., the HVZ hedge-portfolio returns).19 We do not evaluate the random walk because, by 

construction, its forecasts imply that earnings will not change. 

 
19 When forming the positive and negative portfolios (quintiles) for the HVZ model, we separate (sort) firms on 

the sign of the predicted change in 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 implied by the HVZ model (the predicted change in 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 implied by the 
HVZ model scaled by contemporaneous equity market value (i.e., �𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡+1

𝐻𝐻𝐷𝐷𝐻𝐻 − 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡� 𝑀𝑀𝐷𝐷𝐸𝐸𝑖𝑖,𝑡𝑡� )). 
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In Panel A of Table 9, we show the average monthly returns generated by the hedge portfolios 

described above. The k-NN hedge-portfolio returns are positive, statistically significant and 

relatively large. Specifically, the average monthly returns of 19 and 34 basis points generated by 

the P-N and Q5-Q1 hedge portfolios, respectively, represent annualized average returns of 2.30 

and 4.20 percent. Moreover, the average monthly returns of the quintiles are a monotonically 

increasing function of the quintile number – i.e., quintiles that contain firms with higher forecasted 

growth generate higher future returns. On the other hand, the HVZ hedge-portfolio returns are 

negative and statistically significant; and, the monthly average returns are a monotonically 

decreasing function of the quintile number. Consequently, the difference between the k-NN hedge-

portfolio returns and the HVZ hedge-portfolio returns are positive and statistically significant. 

They are also economically significant: The average monthly difference in returns for the P-N 

(Q5-Q1) portfolios is 0.41 percent (0.73 percent), which represents an annualized average return 

of 5.03 (9.10) percent. 

In light of the above, we conclude that forecasts of changes in earnings implied by the k-NN 

model are associated with future stock returns. This is an intriguing result. Although delving 

deeply into this result is beyond the scope of the current study, we do provide some initial evidence. 

Specifically, we evaluate the difference between the k-NN hedge-portfolio returns for firms that 

are followed by analysts and for firms that are not. We show the results of these tests in Panel B 

of Table 9. We find that the k-NN hedge-portfolio returns are larger for firms without analyst 

following. These results buttress the conclusion we draw from the results shown in Panel A of 

Table 7 – i.e., the k-NN forecasts are the preferred alternative when analysts’ forecasts are not 

available. 
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Taken together, the results discussed in this sub-section augment the results of our tests of 

forecast accuracy. Specifically, not only are the earnings predictions generated by the k-NN model 

more accurate than those generated by other models, they are also more useful in the sense that 

they are associated with future returns. Moreover, the fact that this association is strongest for 

firms that are not followed by analysts suggests that this association may reflect situations in which 

the k-NN model identifies growth opportunities that are not reflected in current security prices. 

Whether this is the case is an interesting avenue for future research. 

4.5 Selecting the Best Forecast Model Ex-Ante 

The cross-sectional patterns shown in Figures 6 and 7 suggest that it might be possible to predict 

ex-ante the forecasting model that is best for a particular subject firm. To examine this possibility, 

we use a random forest classifier, which is a popular machine learning algorithm, to predict, for 

each subject firm-year, the model with the lowest absolute forecast error. We describe this 

algorithm and how we implement it in Appendix C. Overall, the random forest classifies 51 percent 

of the observations correctly out-of-sample. This is considerable, given the no-information rate is 

39 percent. However, we find that using the model chosen by the classifier leads to a higher MAFE 

and MDAFE, and a similar MSE to that which we obtain by using the k-NN model for every firm. 

The results detailed in Appendix C suggest that more sophisticated approaches such as the random 

forest, which is among the most popular machine learning approaches, are not better than our 

simple k-NN model.20 

 
20 Cao and You (2020) also evaluate a random forest model. Our random forest model differs from theirs. We 

use the random forest to choose the best model ex-ante whereas Cao and You (2020) use the random forest to directly 
forecast earnings. 
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5 SUMMARY AND CONCLUSIONS 

Expected earnings are important. Managers consider earnings consequences when making 

investment decisions, and forecasting future earnings is at the heart of equity valuation. Moreover, 

earnings forecasts are a key variable of interest in many academic studies. Nonetheless, extant 

earnings forecasting models are a bit dissatisfying. For example, as discussed in Monahan (2018), 

most models either do not beat the random walk or do not beat it by much. 

In this study, we examine the efficacy of non-parametric peer-based earnings forecasts. We 

eschew complicated models and use a simple nearest neighbor matching (i.e., k-NN) model 

instead. We do this for two reasons. First, k-NN models allow us to objectively operationalize the 

advice that financial statement analysis textbooks give to practitioners: Select a set of comparable 

firms, and then forecast the subject firm’s earnings by extrapolating the comparable firms’ 

earnings trends. Second, we view simplicity as a virtue. Simple models are easy to use, understand, 

replicate and modify; and, they are less subject to overfitting. 

Despite its simplicity, our k-NN model performs well. Its forecasts are significantly more 

accurate than forecasts generated by the random walk, extant regression models, the matching 

approach developed by BCG and a random forest classifier that uses a sophisticated machine 

learning algorithm. These results are robust. The k-NN model’s superiority holds for sub-samples 

with and without analyst following, for different sub-periods, etc. Moreover, the earnings growth 

forecasts implied by our k-NN model are associated with future stock returns, which suggests that 

the improvements in accuracy we document are economically meaningful. 

Our model can be easily modified, and thus it offers various avenues for future research. One 

interesting avenue is to evaluate whether the distribution of the 𝑘𝑘-nearest neighbors’ realized 

earnings can be used to measure the degree of uncertainty about the subject firm’s earnings. In 
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addition, our results offer new insights into the link between future earnings and historical earnings 

properties. The simple k-NN model that only matches on the most recent two years of earnings 

works best. Adding more features does not lead to better forecasts. This implies that a firm’s recent 

earnings history contains a significant amount of information about what that firm’s future 

earnings will be. The trick to uncovering this information is to put it into the correct context and 

this can be done by identifying firms with similar earnings histories. 

REFERENCES 

Ball, R., and Brown, P., 1968. An empirical evaluation of accounting income numbers. Journal of 

Accounting Research. 6(2): 159-178. 

Barber, B., and Lyon, J., 1996. Detecting abnormal operating performance: the empirical power 

and specification of test statistics. Journal of Financial Economics. 41 (3), 359 – 399.  

Beaver, W., McNichols, M. and Price, R., 2007. Delisting returns and their effect on accounting-

based market anomalies. Journal of Accounting and Economics. 43 (2-3): 341-368. 

Biau, G., Cérou, F., and Guyader, A., 2010. Rates of Convergence of the Functional K-nearest 

Neighbor Estimate. IEEE Transactions on Information Theory 56 (4): 2034-2040. 

Blouin, J., Core, J. and Guay, W., 2010. Have the Tax Benefits of Debt Been Overestimated? 

Journal of Financial Economics. 98 (2): 195-213. 

Bramer, M., 2007. Principles of Data Mining. New York: Springer. 

Brier, G.W., 1950. Verification of Forecasts Expressed in Terms of Probability. Monthly Weather 

Review. 78: 1-3. 

Cao, K. and You, H., 2020. Fundamental Analysis Via Machine Learning. Working Paper. 

Available at SSRN: https://ssrn.com/abstract=3706532  



32 
 

Chaudhuri, K., and Dasgupta, S., 2014. Rates of convergence for nearest neighbor classification. 

Advances in Neural Information Processing Systems. 

Chen, G.H. and Shah, D., 2018. Explaining the success of nearest neighbor methods in prediction. 

Now Publishers. 

Easton, P., Kapons, M., Kelly, P and Neuhierl, A., 2020. Attrition Bias and Inferences Regarding 

Earnings Properties: Evidence from Compustat Data. Working Paper: CARE. 

Evans, M.E., Njoroge, K. and Yong, K.O., 2017. An Examination of the Statistical Significance 

and Economic Relevance of Profitability and Earnings Forecasts from Models and Analysts. 

Contemporary Accounting Research. 34(3): 1453-1488. 

Fama, E. and French, K., 1997. Industry Costs of Equity. Journal of Financial Economics. 43: 

153-193. 

Gareth, J., Witten, D., Hastie, T. and Tibshirani, R., 2015. An Introduction to Statistical Learning. 

New York: Springer. 

Gerakos, J. and Gramacy, R.B., 2013. Regression-Based Earnings Forecasts. Working Paper: 

University of Chicago. 

Hastie, T., Tibshirani, R. and Friedman, J., 2009. The Elements of Statistical Learnings – Data 

Mining, Inference, and Prediction. New York: Springer. 

Hou, K., van Dijk, M.A. and Zhang, Y., 2012. The Implied Cost of Capital: A New Approach. 

Journal of Accounting & Economics. 53: 504-526. 

Li, K. and Mohanram, P., 2014. Evaluating Cross-Sectional Forecasting Models for Implied Cost 

of Capital. Review of Accounting Studies. 19: 1152-1185. 

Makridakis, M. and Hibon, M., 1979. Accuracy of Forecasting: An Empirical Investigation. 

Journal of the Royal Statistical Society. 142 (2): 97-145. 



33 
 

Monahan, S.J., 2018. Financial Statement Analysis and Earnings Forecasting, Foundations and 

Trends® in Accounting. 12 (2): 105-215. 

Ohlson, J.A. and Juettner-Nauroth, B.E., 2005. Expected EPS and EPS Growth as Determinants 

of Value. Review of Accounting Studies. 10 (2-3): 349-365. 

Shumway, T., 1997. The delisting bias in CRSP data. The Journal of Finance. 52 (1): 327-340. 

Shumway, T. and Warther, V.A., 2002. The Delisting Bias in CRSP’s Nasdaq Data and Its 

Implications for the Size Effect. The Journal of Finance. 54 (6): 2361-2379. 

Silver, N., 2003. Introducing PECOTA. Baseball Prospectus. 2003: 507 – 514.  

Silver, N., 2008. Frequently Asked Questions. FiveThirtyEight.com. Accessed 11/27/2020 at 

https://fivethirtyeight.com/features/frequently-asked-questions-last-revised/. 

So, E.C., 2013. A new approach to predicting analyst forecast errors: Do investors overweight 

analyst forecasts? 108 (3): Journal of Financial Economics, 615-640. 

Tian, H., Yim, A., and Newton, D. 2020. Tail heaviness, asymmetry, and profitability forecasting 

by quantile regression. Management Science. 55 (12). 

van der Ploeg, T., Austin, P. C., & Steyerberg, E. W., 2014. Modern modelling techniques are data 

hungry: a simulation study for predicting dichotomous endpoints. BMC Medical Research 

Methodology, 14 (1): 137. 

  



34 
 

FIGURES AND TABLES 

Figure 1: IBM Example Study 
Figure 1 illustrates the nearest neighbor matching approach. It shows the example of forecast IBM’s earnings in 2011 in 𝑡𝑡0 = 2010. 
For exposition purposes we plot the 10 nearest firm sequences with their respective ending years. Sub-figure A plots the earnings 
sequences aligned in sequence time. Earnings sequences that are more similar to IBM’s 2007 to 2010 (not including 2011) period 
are colored darker. Sub-figure B shows the position of the 10 nearest earnings sequences inside the rolling 10-year window used to 
train the k-NN model. The dashed line represents the 𝑠𝑠 + 1 periods used to compute the median forecast for IBM’s 𝑡𝑡 + 1 earnings. 
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Figure 2: Rolling Out-of-sample Forecasting Procedure 
Figure 2 illustrates the setup of the earnings forecasts for a forecast horizon h = 1. At the end of June of each year t, we compute 
earnings forecasts 𝐸𝐸�𝑡𝑡+1 for all firms with fiscal year ends (FYE) from April of year t − 1 to March of year t. For regression models, 
we do so by combining the firms’ accounting variables Xt with the fitted coefficients �̂�𝛽𝑡𝑡 . The coefficients �̂�𝛽𝑡𝑡  are fitted by estimating 
the earnings model on a pooled cross-section that includes all firm-years with FYE between April of year t − 10 and March of year 
t. The same logic applies for estimating K nearest neighbors. We then compare our forecasts, 𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡+1, with the actual earnings, 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡+1, of the next fiscal year. 

 
 

  



36 
 

Figure 3: Forecast Coverage by Model 
Figure 3 illustrates the forecast coverage for each type of forecast examined in the study. The overall sample described in the figure 
is the random walk (RW) forecast sample, as defined in Table 1, Panel A. For each firm-year in the RW forecast sample, the figure 
denotes whether a nearest neighbor match (k-NN), HVZ model (HVZ) or I/B/E/S analyst consensus (ANALYST) forecast is also 
available for that firm-year. Percentages in parenthesis denote the percentage of the total random walk forecast sample covered by 
each combination of additional forecast types. See Table 1, Panel B for the total coverage of each forecast type, as well as forecast 
coverage over ten-year subperiods. 
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Figure 4: Decomposition of MAFE by Components of the Matching Model 

Figure 4 compares the mean absolute 𝑖𝑖, 𝑡𝑡 + 1 forecast error (MAFE) of a random walk forecast (RW) with various simple forecast 
models that use the median 𝑠𝑠 + 1 or 𝑠𝑠 year’s earnings of K selected firms j. The number of selected firms K is varied to show the 
influence of the number of nearest neighbors. We select firms either randomly or using the k-NN method to show the impact of 
selecting nearest neighbors. Nearest neighbors are selected using earnings as the matching variable and only considering most 
recent earnings (𝑀𝑀 = 1). We examine choices of a forecast median (𝑠𝑠 + 1 or 𝑠𝑠 year’s earnings) to show the impact of extrapolating 
the selected firms’ trends. 
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Figure 5: Mean Absolute Forecast Error by K and M 
Figure 5 shows the MAFE for each combination of K and M from a common sample with data for all combinations. Each line plots 
the MAFE by K for a specific value of M. The labels for each line point to the number of peers (k∗) at which decreases in MAFE 
become insignificant for increasing K by another 10 peers, given a value of M 
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Figure 6: Difference in Mean Absolute Forecast Errors Across Partitions 
Figure 6 shows differences in mean absolute forecast errors between the k-NN model and the HVZ model and random walk, 
respectively. The differences are computed for different quintile sorts. For each sorting variable, quintiles are formed in June of 
each calendar year. Then, average absolute forecast errors are computed for each calendar-year-quintile portfolio. Those are 
averaged over all calendar years. Forecast errors are deflated by market value of equity. Models compared are the random-walk 
model (RW), the regression-based model (HVZ) relative to the nearest neighbor matched model (k-NN) 
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Figure 7: Forecast Errors (t+1) by FF12 Industry 
Figure 7 shows median absolute forecast errors for each Model, sorted by Fama-French-12 industry classification. Forecast errors 
are deflated by market value of equity. Models compared are the random-walk model (RW), the regression-based model (HVZ), 
and the nearest neighbor matched model (k-NN). 
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Table 1: Sample Composition 

Panel A: Earnings forecast estimation samples 
Data Filter Firm-Years 
Total Compustat Observations 1979 – 2018 339,171 

Less missing EBSI -53,214 
Less missing and non-positive deflators -72,886 
Random walk forecast sample 213,071 

Less missing lagged EBSI -5,315 
Nearest neighbor matching forecast sample 207,756 

Less missing accruals -39,979 
Less missing future EBSI -11,092 
Less MVE < $10M -24,646 
Forecast Comparison Sample 132,039 
  

Panel B: Data requirement comparison by model 
Variable availability 1979 - 1988 1989 - 1998 1999 - 2008 2009 - 2018 Total 
RW Forecasts Only:  1,466  1,085  920  587  4,058 
RW, k-NN Forecasts:  2,830  4,938  6,147  4,319  18,234 
RW, HVZ Forecasts:   55  103   59   16   233 
RW, Analyst Forecasts:  226  433  168  117   944 
RW, k-NN, HVZ Forecasts: 24,591 22,090 19,501  9,703  75,885 
RW, k-NN, Analyst Forecasts:  2,596  5,642  6,938  6,569  21,745 
RW, HVZ, Analyst Forecasts:   12   40   24   4   80 
RW, k-NN, HVZ, Analyst Forecasts: 16,861 25,893 26,711 22,427  91,892 

Total sample size      

 Total k-NN Forecasts: 46,878 58,563 59,297 43,018 207,756 
 Total HVZ Forecasts: 41,519 48,126 46,295 32,150 168,090 
 Total Analyst Forecasts: 19,695 32,008 33,841 29,117 114,661 
 Total RW Forecasts: 48,637 60,224 60,468 43,742 213,071 
Table 1, Panel A shows the effect of our data requirements on the final sample composition. Panel B provides the forecast coverage 
for each type of forecast examined in the study. For each firm-year in the RW forecast sample, the table denotes whether a nearest 
neighbor matching (k-NN), HVZ model (HVZ) or I/B/E/S analyst consensus (ANALYST) forecast is also available for that firm-
year. The table also provides the total coverage for each type of forecast. 
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Table 2: Descriptive Statistics 

Panel A: Summary statistics for the regression estimation sample 
Variable N Mean StD P05 P25 Med P75 P95 
ACC 198,767 -2.452 441.998 -0.551 -0.111 -0.029 0.011 0.193 
DD 198,767 0.395 0.489 0.000 0.000 0.000 1.000 1.000 
DIV 198,767 0.357 44.034 0.000 0.000 0.000 0.020 0.068 
SEBSI 198,767 -0.611 448.801 -0.433 -0.012 0.049 0.090 0.204 
LOSS 198,767 0.272 0.445 0.000 0.000 0.000 1.000 1.000 
TA 198,767 53.929 4456.494 0.210 0.624 1.245 2.418 6.464 

 
Panel B: Coefficients of the in-sample estimation of the regression model 

Stat Intercept TA DD DIV EARN LOSS ACC Pseudo R2 
Estimate 0.036 -0.035 -0.010 1.052 0.709 -0.003 -0.024 0.424 
t-value [9.874] [-0.718] [-2.234] [4.491] [9.654] [-0.18] [-4.78]  

 
Panel C: Descriptive statistics for peers of the peer-based models 

Variable N Mean StD P05 P25 Med P75 P95 
(a) Matching and regression variables 
SEBSIt,s - SEBSIt,p 207,756 -28.232 12915.6 -0.010 -0.001 0.000 0.000 0.004 
(MVEt,s -MVEt,p)/MVEt,s 207,756 -2.415 163.555 -10.499 -1.254 0.309 0.795 0.972 
(TAt,s -TAt,p)/TAt,s 207,756 -3.274 86.907 -12.198 -1.281 0.330 0.825 0.981 

(b) Industry membership of matched observations 
percent same FF12 207,756 0.148 0.102 0.025 0.075 0.125 0.200 0.350 
percent same Sic2 207,756 0.059 0.070 0.000 0.013 0.038 0.075 0.212 
Table 2, Panel A provides summary statistics for the variables included in the regression and extended peer models. The tabulated 
statistics are the time-series averages calculated from each rolling 10-year regression sample. Panel B shows the average 
coefficients of the 10-year rolling window regressions for the HVZ model (Estimate). T-statistics (t−value) are derived from Fama-
MacBeth standard errors. Panel C presents descriptive statistics about the peer firms chosen by our peer matching procedure. The 
suffix s denotes the firm to be forecast, suffix p denotes the median chosen peer firm. FF12 is the Fama-French-12 Industry 
classification, and Sic2 is the 2-digit SIC industry code. t is the first year of the two-year earnings sequence. See Table A.1 for 
remaining variable definitions. 
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Table 3: Nearest Neighbor Parameter Tuning 

 M = 1 M = 2 M = 3 M = 4 M = 5 

K MAFE Diff MAFE Diff MAFE Diff MAFE Diff MAFE Diff 
20 7.223 -0.220*** 7.124 -0.195*** 7.113 -0.203*** 7.202 -0.149*** 7.377 -0.124*** 
30 7.137 -0.086*** 7.063 -0.061*** 7.066 -0.047*** 7.170 -0.032*** 7.362  
40 7.109 -0.028*** 7.029 -0.034*** 7.047 -0.019*** 7.168  7.375  
50 7.087 -0.023*** 7.011 -0.018*** 7.034 -0.013*** 7.170  7.383  
60 7.071 -0.016*** 7.007 -0.004 7.028  -0.006** 7.174  7.390  
70 7.062 -0.009*** 6.998 -0.009** 7.026  7.180  7.403  
80 7.057 -0.004*** 6.993 -0.006*** 7.024  7.188  7.415  
90 7.054 -0.003** 6.989  7.025  7.198  7.429  

100 7.051 -0.003 6.987  7.026  7.209  7.441  
110 7.046 -0.005*** 6.985  7.028  7.218  7.452  
120 7.044 -0.003** 6.985  7.030  7.228  7.463  
130 7.040 -0.004*** 6.984  7.031  7.238  7.472  
140 7.039 -0.001 6.984  7.033  7.249  7.483  
150 7.038 -0.001 6.983  7.037  7.258  7.493  
160 7.035 -0.003*** 6.982  7.039  7.267  7.503  
170 7.034  6.984  7.044  7.277  7.513  
180 7.033  6.984  7.048  7.287  7.521  
190 7.032  6.983  7.051  7.294  7.530  
200 7.031  6.983  7.054  7.304  7.539  

Table 3 tabulates the mean absolute t+1 forecast error (MAFE) from the k-NN model for various combinations of the model tuning 
parameters K and M. K is the number of nearest neighbors (peers) used to generate the forecast. M is the number of years of financial 
data used in the matching process. The analysis is performed on a constant sample of observations with data available for all values of 
M. Each column examines the effect of increasing K, in increments of 10, for a given value of M. Beside each tabulated value of 
MAFE, we tabulate the difference in MAFE relative to the MAFE using 10 fewer peers. For each value of N, we stop tabulating 
differences in MAFE at k∗, the value of K where additional 10 peer increases in K no longer generate significant improvements in 
MAFE at the 5 percent level. Statistical significance is determined based on t-statistics clustered by firm and calendar year. ***, **, 
and * denote statistical significance at the 1 percent, 5 percent, and 10 percent levels, respectively. See Table A.1 for formal variable 
and error metric definitions. 
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Table 4: Alternative Specifications 

Model N MAFE MDAFE MSE TMSE 

(a) t+1 forecast error for different deflators 
k-NN1MVE 166,824 6.965 2.412 7.631 1.973 
k-NN1BVE 166,824 0.330*** 0.063*** 5.190 0.135*** 
k-NN1TA 166,824 0.452*** 0.051*** 6.675 0.234*** 
k-NN1Sale 166,824 0.507*** 0.065*** 6.034* 0.284*** 

(b) t+1 forecast error for different matching variables 
k-NN1 125,484 6.893 2.529 6.716 1.797 
k-NN2 125,484 0.076*** 0.055*** 0.141*** 0.067*** 
k-NN3 125,484 0.232*** 0.190*** 0.210** 0.151*** 

(c) t+1 forecast error for different stratification clusters 
k-NN1MVE 166,824 6.965 2.412 7.631 1.973 
k-NNFF12 166,824 0.074*** 0.018 0.405** 0.132*** 
k-NNSize 166,824 0.103*** 0.033** 0.549*** 0.159*** 
Table 4 tabulates forecast error metrics from the nearest neighbor (k-NN) model for a variety of alternative model specifications. 
See Table A.1 for definitions of the forecast evaluation metrics tabulated in each column. Below each forecast error metric, the 
table provides the difference between the error metric of the k-NN model and that of the alternate specifications. Panel (a) compares 
the accuracy of the k-NN model using alternate deflators (equity book value, total assets, or sales revenue). Panel (b) compares the 
accuracy of the k-NN model with that of an expanded model that adds ACC (k-NN2) or the full set of HVZ variables (k-NN3) as 
matching variables. Panel (c) examines the effect of estimating the k-NN model within strata based on FF12 industry classification 
or MVE deciles. Statistical significance of the differences in mean error metrics is determined based on t-statistics clustered by firm 
and calendar year. The statistical significance of differences in MDAFE is determined using quantile regression tests for differences 
in the median of the absolute forecast error distribution between models. ***, **, and * denote statistical significance at the 1 
percent, 5 percent, and 10 percent levels, respectively. 
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Table 5: Forecast Comparison 

Model N MAFE MDAFE MSE TMSE 
(a) t+1 forecast error 
k-NN 132,039 6.876 2.557 6.413 1.769 
RW - k-NN 132,039 0.727*** 0.111*** 4.303 0.423*** 
HVZ - k-NN 132,039 2.553*** 1.451*** 3.617*** 1.161*** 

(b) t+2 forecast error 
k-NN 121,097 8.867 3.936 5.448 2.546 
RW - k-NN 121,097 1.210*** 0.117*** 7.628** 1.005*** 
HVZ - k-NN 121,097 1.277*** 0.591*** 4.697** 0.815*** 

(c) t+3 forecast error 
k-NN 110,908 10.531 4.872 7.483 3.461 
RW - k-NN 110,908 1.284*** 0.144*** 5.015*** 1.340*** 
HVZ - k-NN 110,908 1.422*** 0.804*** 2.476* 1.020*** 
Table 5 tabulates forecast error metrics from the nearest neighbor matching (k-NN) model for various forecast horizons. See Table 
A.1 for definitions of the forecast evaluation metrics tabulated in each column. Below each forecast error metric, the table provides 
the difference between the error metric of the k-NN model compared with that from the random walk (RW) and regression-based 
(HVZ) models. Statistical significance of the differences in mean error metrics is determined based on t-statistics clustered by firm 
and calendar year. The statistical significance of differences in MDAFE is determined using quantile regression tests for differences 
in the median of the absolute forecast error distribution between models. ***, **, and * denote statistical significance at the 1 
percent, 5 percent, and 10 percent levels, respectively. 
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Table 6: Forecast Comparison of k-NN and BCG 

Model N MAFE MDAFE MSE TMSE 
(a) t+1 forecast error 
k-NN 166,269 6.950 2.409 7.614 1.958 
BCG - k-NN 166,269 0.923*** 0.210*** 5.728** 0.611*** 
BCGMVE - k-NN 166,269 0.702*** 0.212*** 3.368** 0.361*** 

(b) t+2 forecast error 
k-NN 151,531 8.832 3.758 6.842 2.624 
BCG - k-NN 151,531 1.286*** 0.331*** 8.729* 0.970*** 
BCGMVE - k-NN 151,531 1.434*** 0.390*** 12.978** 0.991*** 

(c) t+3 forecast error 
k-NN 137,817 10.548 4.722 26.134 3.451 
BCG - k-NN 137,817 1.400*** 0.461*** 11.924 1.142*** 
BCGMVE - k-NN 137,817 1.785*** 0.537*** 15.907* 1.589*** 
Table 6 tabulates forecast error metrics from the nearest neighbor matching (k-NN) model for various forecast horizons. See Table 
A.1 for definitions of the forecast evaluation metrics tabulated in each column. Below each forecast error metric, the table provides 
the difference between the error metric of the k-NN model compared with that from the model suggested by Blouin, Core and Guay 
(2010). BCG matches observations using asset deflated earnings and assets as proxy for size; BCGMVE matches observations using 
equity market value deflated earnings and equity market value as proxy for size. Statistical significance of the differences in mean 
error metrics is determined based on t-statistics clustered by firm and calendar year. The statistical significance of differences in 
MDAFE is determined using quantile regression tests for differences in the median of the absolute forecast error distribution 
between models. ***, **, and * denote statistical significance at the 1 percent, 5 percent, and 10 percent levels, respectively. 
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Table 7: Comparison of k-NN Street Earnings Forecasts with Analysts’ Forecasts 

Model N MAFE MDAFE MSE TMSE 

(a) t+1 forecast error 
k-NN 96,345 7.672 1.584 2350.366 1.389 
ANALYST 96,345 -0.955 -0.322*** -56.176 0.031 
RW 96,345 0.356 0.113*** -40.871 0.532*** 

(b) t+2 forecast error 
k-NN 74,679 6.419 2.336 87.634 1.047 
ANALYST 74,679 -0.661 -0.130*** -81.512 0.109*** 
RW 74,679 0.435 0.210*** -60.223 0.626*** 
Table 7 tabulates forecast error metrics from nearest neighbor (k-NN) forecasts of I/B/E/S street earnings per share. We use I/B/E/S 
actual EPSt and EPSt−1, both scaled by fiscal year-end price per share from Compustat (data item prcc_f). See Table A.1 for 
definitions of the forecast evaluation metrics tabulated in each column. Below each forecast error metric, the table provides the 
difference between the error metric of the k-NN street earnings model compared with that from the mean I/B/E/S consensus forecast 
(ANALYST) and a street earnings random walk (RW). Statistical significance of the differences in mean error metrics is determined 
based on t-statistics clustered by firm and calendar year. The statistical significance of differences in MDAFE is determined using 
quantile regression tests for differences in the median of the absolute forecast error distribution between models. ***, **, and * 
denote statistical significance at the 1 percent, 5 percent, and 10 percent levels, respectively. 
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Table 8: Analysis of k-NN Forecast Performance Across Sample Partitions 

Panel A: Split by analyst coverage 
Model N MAFE MDAFE MSE TMSE 

(a) t+1 forecast error with analyst coverage 
k-NN 86,272 5.482 2.033 5.091 1.145 
RW 86,272 0.640*** 0.142*** 5.027 0.252*** 
HVZ 86,272 2.055*** 1.334*** 1.744*** 0.688*** 

(b) t+1 forecast error without analyst coverage 
k-NN 45,767 9.505 3.931 8.906 3.114 
RW 45,767 0.892*** 0.077* 2.937*** 0.764*** 
HVZ 45,767 3.493*** 1.739*** 7.149*** 2.207*** 
 

Panel B: Forecast errors split by ten-year sub-samples 
Model N MAFE MDAFE MSE TMSE 

(a) t+1 forecast error, 1979 – 1988 
k-NN 28,749 6.375 2.758 2.305 1.455 
RW 28,749 0.220 0.156*** 0.548 0.020 
HVZ 28,749 3.257*** 1.505*** 4.159** 1.579*** 

(b) t+1 forecast error, 1989 – 1998 
k-NN 37,485 5.799 2.463 1.753 1.139 
RW 37,485 0.339*** 0.102*** 0.266*** 0.148*** 
HVZ 37,485 1.567*** 1.003*** 0.992*** 0.475*** 

(c) t+1 forecast error, 1999 – 2008 
k-NN 37,582 7.675 2.635 11.228 2.199 
RW 37,582 1.016*** 0.071** 2.995** 0.818*** 
HVZ 37,582 3.096*** 1.683*** 6.215*** 1.796*** 

(d) t+1 forecast error, 2009 – 2017 
k-NN 28,223 7.755 2.365 10.377 2.763 
RW 28,223 1.374*** 0.107*** 15.230 1.014*** 
HVZ 28,223 2.423*** 1.732*** 3.094*** 1.331*** 
Table 8 tabulates forecast error metrics from the nearest neighbor (k-NN) model within sub-samples. See Table A1 for definitions 
of the forecast evaluation metrics tabulated in each column. Below each forecast error metric, the table provides the difference 
between the error metric of the k-NN model compared with that from the random walk (RW) and regression-based (HVZ) models. 
Panel A examines forecast errors for firm-years with vs. without analyst coverage. Panel B examines forecast errors within ten-
year sub-samples, where forecasts are estimated in June of each calendar year t. Statistical significance of the differences in mean 
error metrics is determined based on t-statistics clustered by firm and calendar year. The statistical significance of differences in 
MDAFE is determined using quantile regression tests for differences in the median of the absolute forecast error distribution 
between models. ***, **, and * denote statistical significance at the 1 percent, 5 percent, and 10 percent levels, respectively. 
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Table 9: Analysis of k-NN Forecast Performance Across Sample Partitions 

Panel A: Average monthly hedge returns for growth portfolio sorts 
 

k-NN HVZ Mean 
Differences 

    

N 0.0098*** 0.0126***      
P 0.0117*** 0.0105***      
P-N 0.0019*** -0.0022*** 0.0041***     
        
Q1 (Bottom) 0.0100*** 0.0139***      
Q2 0.0105*** 0.0121***      
Q3 0.0115*** 0.0106***      
Q4 0.0115*** 0.0102***      
Q5 (Top) 0.0134*** 0.0100***      
Q5–Q1 0.0034*** -0.0039*** 0.0073***     
        

Panel B: Average monthly hedge returns for growth portfolio sorts by analyst coverage 
 

k-NN HVZ Mean 
Differences 

 k-NN HVZ Mean 
Differences 

 With analyst following  Without analyst following 
N 0.0106*** 0.0125***   0.0089*** 0.0125***  
P 0.0121*** 0.0111***   0.0110*** 0.0092***  
P - N 0.0015 -0.0014** 0.0029**  0.0021** -0.0033*** 0.0053*** 
        
Q1 (Bottom) 0.0111*** 0.0140***   0.0085*** 0.0137***  
Q2 0.0108*** 0.0124***   0.0094*** 0.0107***  
Q3 0.0117*** 0.0109***   0.0111*** 0.0098***  
Q4 0.0117*** 0.0111***   0.0106*** 0.0094***  
Q5 (Top) 0.0139*** 0.0108***   0.0127*** 0.0086***  
Q5–Q1 0.0028*** -0.0032*** 0.0059***  0.0042*** -0.0052*** 0.0094*** 
Table 9, Panel A shows average monthly returns and hedge returns for a set of two simple strategies. For all strategies, each year, 
we form portfolios at the end of June and consider monthly returns over the next 12-months for each firm. For the first strategy, P 
- N, we sort firms into the (P)ositive portfolio if the model (k-NN or HVZ) forecasts positive earnings growth for next year 
(𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡+1 − 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 ≥ 0) and into the (N)egative portfolio otherwise.  We compute monthly portfolio returns and compute 
monthly hedge returns as the monthly P portfolio return minus the N portfolio return. The second, Q5 – Q1, strategy sorts firms 
into quintile portfolios by forecast earnings growth, measured as  (𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡+1 − 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡)/𝑀𝑀𝐷𝐷𝐸𝐸𝑡𝑡. Monthly hedge returns are 
computed as the monthly Q5 portfolio return minus the monthly Q1 portfolio return. Panel A depicts the average of the monthly 
hedge returns for both strategies and by forecast model. Panel B expands on the analysis of Panel A by computing average monthly 
portfolio returns and hedge returns separately for the sub-sample of firm-years with analyst coverage and for the remainder of firm-
years without analyst coverage. 
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APPENDIX A: VARIABLE DEFINITIONS 

Table A.1: Variable Definitions 

Variable Definition Construction 

Panel A: Financial variables and fundamental features 
EBSIi,t Earnings before special items for firm i at time t ibi,t – spii,t 
MVEi,t Equity market value for firm i at the end of fiscal year t prcc_fi,t * cshoi,t 
SEBSIi,t EBSIi,t scaled by MVEi,t (ibi,t - spii,t) / MVEi,t 
FSEBSIi,t+h Forecast of EBSIi,t+h scaled by MVEi,t  
FEBSIi,t+h Forecast of EBSIi,t+h FSEBSIi,t+h * MVEi,t 
ACCi,t Accruals for firm i at time t scaled by MVEi,t (Δ(acti,t - chei,t) - Δ(lcti,t - dlci,t - txpi,t) 

- dpi,t) / MVEi,t 
TAi,t Total assets for firm i at time t scaled by MVEi,t ati,t / MVEi,t 
DIVi,t Dividends for firm i at time t scaled by MVEi,t dvci,t / MVEi,t 
DDi,t Indicator variable equal to 1 for dividend payers and 0 

otherwise at time t 
ⅼ(DIVi,t > 0) 

LOSSi,t Indicator variable equal to 1 for firms with negative 
SEBSIi,t and 0 otherwise 

ⅼ(SEBSIi,t < 0) 

Panel B: Forecast evaluation metrics 
MAFE Mean absolute forecast error (% of MVEi,t)  Mean(|EBSIi,t+h - FEBSIi,t+h| / MVEi,t) 

* 100 
MDAFE Median absolute forecast error (% of MVEi,t ) Median(|EBSIi,t+h - FEBSIi,t+h| / 

MVEi,t) * 100 
MSE Mean of squared forecast error Mean(((EBSIi,t+h - FEBSIi,t+h) / 

MVEi,t)2) * 100 
TMSE Mean of squared forecast error after truncating the top 

and bottom 0.1% signed forecast errors 
 

Lowercase variables in the construction column refer to Compustat identifiers. 
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APPENDIX B: FORECAST ACCURACY OF ALTERNATIVE 
REGRESSION MODELS 

In this appendix we compare the accuracy of k-NN forecasts and forecasts based on the HVZ 

regression model with other regression models used in the literature. The HVZ model is shown 

below: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 ,𝑡𝑡+ℎ = 𝛼𝛼0 + 𝛼𝛼1 × 𝐷𝐷𝐹𝐹𝑖𝑖,𝑡𝑡 + 𝛼𝛼2 × 𝐷𝐷𝐷𝐷𝑖𝑖,𝑡𝑡 + 𝛼𝛼3 × 𝐷𝐷𝐸𝐸𝐷𝐷𝑖𝑖,𝑡𝑡 + 𝛼𝛼4 × 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 ,𝑡𝑡 + 𝛼𝛼5 × 𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸𝑖𝑖 ,𝑡𝑡  

+ 𝛼𝛼6 × 𝐹𝐹𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡 + 𝜖𝜖𝑖𝑖 ,𝑡𝑡.        [HVZ]  

In the above equation, 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡+ℎ denotes firm 𝑖𝑖’𝑠𝑠 scaled earnings before special items for year 

𝑡𝑡 + ℎ; 𝐷𝐷𝐹𝐹𝑖𝑖,𝑡𝑡 denotes firm 𝑖𝑖’𝑠𝑠 scaled total assets at the end of year 𝑡𝑡; 𝐷𝐷𝐷𝐷𝑖𝑖,𝑡𝑡 is an indicator variable 

that equals one (zero) if firm 𝑖𝑖 paid (did not pay) a dividend in year 𝑡𝑡; 𝐷𝐷𝐸𝐸𝐷𝐷𝑖𝑖 ,𝑡𝑡 denotes firm 𝑖𝑖’𝑠𝑠 scaled 

dividends for year 𝑡𝑡; 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 ,𝑡𝑡 denotes firm 𝑖𝑖’𝑠𝑠 scaled earnings before special items for year 𝑡𝑡; 

𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡 is an indicator variable that equals one (zero) if 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 ,𝑡𝑡 is (is not) negative; and, 𝐹𝐹𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡 

denotes firm 𝑖𝑖’𝑠𝑠 scaled accruals for year 𝑡𝑡. (When calculating the denominator of 𝐹𝐹𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡, we use 

the same definition of accruals as HVZ.) With the exception of the indicator variables 𝐷𝐷𝐷𝐷𝑖𝑖 ,𝑡𝑡 and 

𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡, the variables in equation [B.1] are scaled by firm 𝑖𝑖’𝑠𝑠 equity market value at the end of 

year 𝑡𝑡. We elaborate on how we compute all of our variables in Section 3.2 and Table A.1. 

Li & Mohanram (2014) compare the HVZ model with two models that they refer to as the 

earnings persistence (i.e., EP) model and the residual income (i.e., RI) model: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 ,𝑡𝑡+ℎ = 𝛼𝛼0 + 𝛼𝛼1 × 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡 + 𝛼𝛼2 × 𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸𝑖𝑖 ,𝑡𝑡 + 𝛼𝛼3 × 𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸𝑖𝑖 ,𝑡𝑡 × 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 ,𝑡𝑡 + 𝜖𝜖𝑖𝑖 ,𝑡𝑡. [EP] 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 ,𝑡𝑡+ℎ = 𝛼𝛼0 + 𝛼𝛼1 × 𝐹𝐹𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡 + 𝛼𝛼2 × 𝐸𝐸𝐷𝐷𝑖𝑖 ,𝑡𝑡 + 𝛼𝛼3 × 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 ,𝑡𝑡 + 𝛼𝛼4 × 𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸𝑖𝑖 ,𝑡𝑡  

+ 𝛼𝛼5 × 𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸𝑖𝑖 ,𝑡𝑡 × 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 ,𝑡𝑡 + 𝜖𝜖𝑖𝑖 ,𝑡𝑡.      [RI] 

In the above equation, 𝐸𝐸𝐷𝐷𝑖𝑖,𝑡𝑡 denotes the ratio of firm 𝑖𝑖’𝑠𝑠 equity book value at the end of year 𝑡𝑡 to 

its equity market value at the end of year 𝑡𝑡. 
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In light of the central role that the loss interaction term (i.e., 𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸𝑖𝑖 ,𝑡𝑡 × 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡) plays in the Li 

and Mohanram (2014) models, we consider the following modifications to each of the regressions 

shown above: (1) excluding both the loss indicator and the loss interaction term (denoted model 

XXLNIN, e.g., HVZLNIN); (2) including the loss indicator but not the interaction term (denoted 

model XXLYIN); and, (3) including both the loss indicator and the interaction term (denoted model 

XXLYIY).  

The forecast accuracy of each of the models compared with HVZLYIN, which is the model we 

evaluate in the main text and main tables of the paper, is summarized in Table B.1. We estimate 

the regression-based models with OLS and median regressions.1 We also add k-NN and RW to 

the model comparison. We report the results for the one-year-ahead forecasts; the inferences are 

the same when we evaluate forecast of two- and three-year-ahead 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸. 

The models estimated by median regressions do not significantly outperform the HVZLYIN 

model. Only the HVZLYIY model has a negative and significant error difference (MAFE of -0.002 

significant at the 10 percent level). The models estimated by ordinary least squares also do not 

conclusively outperform the HVZLYIN model. Only the squared error metrics (MSE and TMSE) 

have significant and negative error differences (for example, EPLYIY_OLS has a TMSE of -0.048 

and EPLYIY_OLS has a TMSE of -0.050). We also note that the MAFE and MDAFE are much 

higher for forecasts based on OLS regressions. 

We note that all negative error differences are smaller than those of the k-NN model, which is 

included for reference. Nonetheless, we formally test whether any of the regression-based models 

outperforms the k-NN model. In Table B.2, we report the differences between the regression-based 

 
1 In this Appendix, we winsorize all variables in the estimation models at the extreme percentiles each year. This 

mimics the methodology of HVZ and of Li and Mohanram (2014). The inferences are unchanged when we do not 
winsorize the variables in the estimation sample, but, the forecasts obtained from OLS regression-based models 
include extreme values. 
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forecast errors and the k-NN-based forecast errors. These results show that the k-NN model 

outperforms all regression-based models. 
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Table B.1: Forecast Comparison of Different Regression Models relative to HVZ 

Model N MAFE MDAFE MSE TMSE 
Year t+1 forecast error 
HVZLYIN 132,039  7.098  2.664  7.829  1.831 
HVZLNIN 132,039  0.110***  0.086***  0.331**  0.044*** 
HVZLYIY 132,039 -0.002* -0.003 -0.004  0.000 
EPLNIN 132,039  0.162***  0.110***  0.491*  0.041** 
EPLYIN 132,039  0.032**  0.026  0.011 -0.013 
EPLYIY 132,039  0.022  0.021  0.003 -0.014 
RILNIN 132,039  0.135***  0.062***  0.459*  0.060*** 
RILYIN 132,039 -0.002 -0.019 -0.025  0.002 
RILYIY 132,039 -0.005 -0.021 -0.027  0.001 
HVZLNIN_OLS 132,039  0.610***  1.018*** -0.273** -0.013 
HVZLYIN_OLS 132,039  0.323***  0.550*** -0.549** -0.061** 
HVZLYIY_OLS 132,039  0.322***  0.550*** -0.553** -0.061** 
EPLNIN_OLS 132,039  0.757***  1.345*** -0.408  0.010 
EPLYIN_OLS 132,039  0.279***  0.554*** -0.752 -0.048** 
EPLYIY_OLS 132,039  0.272***  0.547*** -0.756 -0.050** 
RILNIN_OLS 132,039  0.675***  1.105*** -0.437  0.005 
RILYIN_OLS 132,039  0.253***  0.474*** -0.782 -0.060** 
RILYIY_OLS 132,039  0.252***  0.474*** -0.784 -0.060** 
k-NN 132,039 -0.204*** -0.105*** -1.353 -0.070*** 
RW 132,039  0.505***  0.004  2.887**  0.361*** 
Table B.1 shows forecast error metrics for various forecast horizons for different specifications of the regression-based model, the 
k-NN model, and the RW model. See Table A.1 for definitions of the forecast evaluation metrics tabulated in each column. 
Statistical significance of the differences in mean error metrics is determined based on t-statistics clustered by firm and calendar 
year. The statistical significance of differences in MDAFE is determined using quantile regression tests for differences in the median 
of the absolute forecast error distribution between models. ***, **, and * denote statistical significance at the 1 percent, 5 percent, 
and 10 percent levels, respectively. 
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Table B.2: Forecast Comparison of Different Regression Models relative to k-NN 

Model N MAFE MDAFE MSE TMSE 
t+1 forecast error 
k-NN 132,039 6.894 2.558 6.476 1.761 
HVZLNIN 132,039 0.315*** 0.192*** 1.684 0.114*** 
HVZLYIN 132,039 0.204*** 0.105*** 1.353 0.070*** 
HVZLYIY 132,039 0.202*** 0.103*** 1.349 0.070*** 
EPLNIN 132,039 0.367*** 0.215*** 1.843 0.111*** 
EPLYIN 132,039 0.236*** 0.132*** 1.364 0.057** 
EPLYIY 132,039 0.227*** 0.126*** 1.356 0.056*** 
RILNIN 132,039 0.340*** 0.168*** 1.812 0.130*** 
RILYIN 132,039 0.202*** 0.086*** 1.328 0.072*** 
RILYIY 132,039 0.200*** 0.085*** 1.326 0.071*** 
HVZLNIN_OLS 132,039 0.815*** 1.123*** 1.080 0.057** 
HVZLYIN_OLS 132,039 0.528*** 0.655*** 0.804 0.009 
HVZLYIY_OLS 132,039 0.527*** 0.656*** 0.800 0.009 
EPLNIN_OLS 132,039 0.962*** 1.450*** 0.945 0.080*** 
EPLYIN_OLS 132,039 0.483*** 0.660*** 0.601 0.022 
EPLYIY_OLS 132,039 0.477*** 0.653*** 0.596 0.020 
RILNIN_OLS 132,039 0.879*** 1.211*** 0.916 0.075*** 
RILYIN_OLS 132,039 0.457*** 0.579*** 0.571 0.010 
RILYIY_OLS 132,039 0.456*** 0.579*** 0.569 0.010 
RW 132,039 0.710*** 0.109*** 4.24 0.431*** 
Table B.2 tabulates forecast error metrics for various forecast horizons for different specifications of the regression-based model, 
the k-NN model, and the RW model. See Table A.1 for definitions of the forecast evaluation metrics tabulated in each column. 
Statistical significance of the differences in mean error metrics is determined based on t-statistics clustered by firm and calendar 
year. The statistical significance of differences in MDAFE is determined using quantile regression tests for differences in the median 
of the absolute forecast error distribution between models. ***, **, and * denote statistical significance at the 1 percent, 5 percent, 
and 10 percent levels, respectively. 
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APPENDIX C: PREDICTING THE BEST MODEL EX-ANTE 

The relative accuracy of different forecasting models may vary in predictable ways across firms 

and time. If so, different models will perform better for different firm-years and it may be possible 

(at least on average) to select the best model for each firm-year ex ante. In this appendix, we use a 

random forest classifier to examine this possibility. 

We use a random forest algorithm to classify firm-years out of sample. For each firm-year and 

forecasting model (i.e., the k-NN, the random walk and the HVZ model), the random forest 

estimates the probability that the model will be the most accurate; and then, we select the forecast 

generated by the model with the highest estimated probability. The probabilities are a function of 

21 observable firm-year features that fall into two groups: (1) fundamental features, which consist 

of 14 variables that reflect current performance (e.g., 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡) and firm-specific characteristics 

such as size, etc. and (2) forecast features, which consist of seven variables that reflect the relative 

properties of the forecasts (i.e., their dispersion and relative magnitudes).2 

We find that the random forest classifier correctly classifies 51 percent of the observations out-

of-sample. This is impressive given that the no-information rate is 39 percent. However, when 

compared to the k-NN forecasts, we find that the forecasts chosen by the classifier have a higher 

MAFE, MDAFE and MSE. Our conclusion is that even using sophisticated approaches such as the 

random forest, which is among the most popular machine learning approaches, does not improve 

upon our simple k-NN model.3 

 
2 Random forests are a type of supervised machine learning. Given a set of training data that contains observed 

classes and observed features, they learn the probabilities (given the features) that a firm-year will fall into each of the 
different classes. In our setting, a class is a set of firm-years for which a particular forecasting model is the most 
accurate. 

3 We did not expect this result. We began this research project with the idea that we would compare the three 
models, and then use the random forest to select the best model for each firm-year. Ex post, we realize that the 
simplicity of the k-NN model makes it appropriate for forecasting earnings. Earnings forecasting is a setting with a 
large number of highly correlated financial variables, which reduces the effective sample size available for more data-
intensive methods that try to exploit those variables (Hastie et al., 2009; van der Ploeg, Austin, Steyerberg, 2014). 
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Of course, this “no result” must be based on a thorough analyses of random forest classification. 

Ergo, this appendix. 

The Random Forest Model 

Decision Tree Learning 

Our goal is to select for each firm-year the forecasting model (i.e., the k-NN model, the random 

walk or the HVZ model) that is the most accurate for that firm-year. This is a classification problem 

in which class 𝐴𝐴𝐹𝐹𝑀𝑀 is the set of firm-years for which forecasting model 𝐹𝐹𝑀𝑀 is the most accurate. 

We refer to members of that class as “model 𝐹𝐹𝑀𝑀 firm years;” so, for example, when we use the 

expression “k-NN firm-year” we are referring to a firm-year for which the k-NN model generates 

the most accurate forecast. 

A straightforward way of dealing with this classification problem is to use decision tree 

learning, which is a recursive trial and error process. In the first step of the process the entire set 

of training data is split into two subsets. This is done by separately evaluating each of the 

observable features and identifying the feature and splitting rule that maximizes the purity of the 

resulting subsets. Perfect purity is achieved if each resulting subset consists of firm-years that are 

all from the same class (e.g., k-NN firm-year forecasts with k-NN firm-year forecasts, random 

walk firm-year forecasts with random walk firm-year forecasts and HVZ firm-year forecasts with 

HVZ firm-year forecasts, etc.). On the other hand, perfect impurity is achieved if each resulting 

subset consists of an equal number of observations from each of the different classes (e.g., if there 

are 𝑁𝑁 observations in the dataset, the subsets will each consist of 𝑘𝑘
3
 k-NN firm-year forecasts, 𝑘𝑘

3
 

random walk firm-year forecasts and 𝑘𝑘
3
 HVZ firm-year forecasts). 

After completing step one, we repeat the splitting process described above for each of the 

resulting subsets, and then for the resulting subsets of the subsets, etc. until either: (1) perfect purity 
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is achieved, which is rare, or (2) there are no further improvements in purity. Upon completion of 

the process, we are left with a “tree” that starts with the entire dataset, and then branches out to 

subsets, which branch out to further subsets, etc. until the purest subsets, which are referred to as 

“leafs,” are reached. The fraction of observations within a particular leaf that belong to class 𝐹𝐹𝑀𝑀 

is an estimate of the probability that the observations in that leaf are a member of class 𝐹𝐹𝑀𝑀. For 

example, if a leaf contains 900 k-NN firm-year forecasts, 75 random walk firm-year forecasts and 

25 HVZ firm-year forecasts, the probabilities that a firm-year forecast in the leaf is a k-NN 

forecast, a random walk forecast and an HVZ forecast are 0.90, 0.075 and 0.025, respectively. 

Finally, we use the tree to assign out-of-sample probabilities to each subject firm-year. 

Specifically, we use the observable features of each subject firm-year to determine the leaf that it 

belongs to. Then, for this subject firm-year, we assign the probabilities per the leaf to the 

forecasting models. For instance, if the subject firm-year belongs to the leaf described at the end 

of the previous paragraph, we assign probabilities of 0.90, 0.075 and 0.025 to the k-NN model, 

random walk model and the HVZ model, respectively 

The above approach to classification is quite popular and useful. For example, on page 352 of 

the second edition of The Elements of Statistical Learning, Hastie, Tibshirani and Friedman (2009) 

provide the following summary of decision trees: 

Of all the well-known learning methods, decision trees come closest to meeting 
the requirements for serving as an off-the-shelf procedure for data mining. They are 
relatively fast to construct and they produce interpretable models (if the trees are 
small). … [T]hey naturally incorporate mixtures of numeric and categorical 
predictor variables and missing values. They are invariant under (strictly monotone) 
transformations of the individual predictors. As a result, scaling and/or more 
general transformations are not an issue, and they are immune to the effects of 
predictor outliers. They perform internal feature selection as an integral part of the 
procedure. They are thereby resistant, if not completely immune, to the inclusion 
of many irrelevant predictor variables. These properties of decision trees are largely 
the reason that they have emerged as the most popular learning method for data 
mining. 
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However, as Hastie, Tibshirani and Friedman (2009) hasten to point out, there is a crucial caveat 

to the above: Decision trees tend to be inaccurate. As discussed in Gareth, Witten, Hastie and 

Tibshirani (2015), small changes in the training data can lead to large changes in the structure of 

the tree and the predictions generated by it. And, as discussed in Bramer (2007), decision trees 

tend to overfit the data. Consequently, although probabilities obtained from decision trees have 

low bias, they also have high variance. Consequently, they are inaccurate. 

Combining Decision Trees into a Random Forest 

We use a common approach for dealing with the problem described above: Random forests 

(e.g., Hastie, Tibshirani and Friedman, 2009). Specifically, we form a collection of 𝐸𝐸 separate 

decision trees. We then use each tree to assign probabilities to the observations in a randomly 

selected (with replacement) sub-sample of the training data. (This is referred to as bootstrap 

aggregation or “bagging.”) Moreover, when splitting the sub-sample and each subsequent subset 

of it, we consider a different set of randomly selected features. (This is referred to as “feature 

bagging.”) Hence, we form a random forest of 𝐸𝐸 de-correlated trees. 

As discussed at the end of the previous sub-section, each of the trees in our random forest 

generates noisy estimates of the probabilities. However, because the trees are de-correlated (or 

random), this noise is idiosyncratic. This implies that the average of the probabilities obtained 

from the 𝐸𝐸 trees are less noisy and more accurate (often much more accurate) than the probabilities 

implied by any single tree. Consequently, for each subject firm-year, we follow a three-step 

classification process. In the first step, we determine the probability of each class that is implied 

by each of the 𝐸𝐸 trees in our random forest. Second, for each class, we calculate the average of the 

𝐸𝐸 probabilities, and then we assign this average probability to the subject firm-year. Finally, we 
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assign the subject firm-year to the class with the highest average probability. In the tables we refer 

to the random forest as model RF.  

Accuracy of the Random Forest Algorithm 

To train the random forest classifier we evaluated a large selection of potential features. There 

are multiple ways of generating features from the same data and it is beneficial for the performance 

of a random forest model to not unduly increase the feature space with too many highly correlated 

features. For example, including a loss indicator or an interaction term is unnecessary because non-

linearities are embedded into each tree as that tree is “grown.” From an initial, large pool of 

potential variables, we end up using 21 features that fall into two groups. The first group contains 

14 variables that reflect firm-level fundamentals such as reported accounting numbers (e.g., total 

assets, 𝐿𝐿𝐿𝐿𝐷𝐷𝐹𝐹𝑖𝑖,𝑡𝑡), financial performance (e.g., 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡) or capital structure (e.g., leverage, 𝐿𝐿𝐸𝐸𝐷𝐷𝑖𝑖,𝑡𝑡). 

The second group consists of seven variables that reflect properties of the forecasts generated by 

the three models. For example, 𝐹𝐹𝐸𝐸𝐷𝐷𝐷𝐷𝑖𝑖 ,𝑡𝑡 is the standard deviation of the forecasts of 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 ,𝑡𝑡+1 

generated by the three different models. We refer to the variables in the first group as “fundamental 

features” and the variables in the second group as “forecast features.” The definitions of all 21 

features are provided in Table C.1. We elaborate on the features, their importance and relations 

with the outcome variables in the next sub-section. 

In Panel A of Table C.2, we show a confusion matrix and related statistics. The rows of the 

matrix correspond to out-of-sample classifications per the random forest and the columns 

correspond to the actual (or “true”) classifications. For example, the random walk generates the 

best forecast for 41,081 of the firm-years in the sample. However, the random forest classifies only 

39,677 of the firm-years as random walk “RW” firms. It also selects the HVZ model too 

infrequently: HVZ is the best model for 32,199 of the firm-years but it is selected by the random 
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forest for only 21,208 of the firm-years. Taken together, these results imply that the random forest 

selects the k-NN model too often, which is the case: k-NN is selected for 59,599 of the firm-years 

but it is the correct model for only 47,204 of the firm-years. 

The results regarding recall, precision and accuracy provide further evidence on the usefulness 

of the random forest. “Recall” reflects the fraction of observations that belong to a class and are 

correctly classified. (It is also referred to as the true positive rate.) The random forest has good 

recall with regards to the k-NN model (67.8 percent), moderate recall with regards to the random 

walk (49.1 percent) but low recall with regards to the HVZ model (29.5 percent). Regarding 

precision, which reflects the fraction of classifications that are correct, the random forest continues 

to do well with regards to k-NN (53.7 percent) and RW (50.8 percent) but it is less precise when 

it selects the HVZ model (44.8 percent). Finally, the overall accuracy of the random forest is 51.2 

percent – i.e., it correctly classifies half of the firm-years in the sample, which is good given that 

the no-information rate is 39.2 percent. 

The results shown above imply that the random forest is not a straw man. Consequently, the 

obvious question is: When compared to the random forest, how does the k-NN model fare? With 

this question in mind, in Panel B of Table C.2, we compare the k-NN model to the random forest; 

and, we find that although the random forest selects the correct model for 51.2 percent of the 

subject firm-years, it is significantly worse in terms of MAFE, MDAFE and MSE than the k-NN 

model. For example, the MAFE for the RF model is slightly, although significantly higher than 

the MAFE for the k-NN model (0.12 percent) while the MAFE for the RW and HVZ models are 

much greater than that for the k-NN model (0.754 and 2.566 percent, respectively). 

One concern about the random forest is that it might be unnecessarily complex. It uses bagging 

and feature bagging to build a set of de-correlated trees, it then obtains the probabilities implied 
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by the trees and uses the average of these probabilities to select a forecasting model for each firm-

year. This seems complicated and computationally expensive and begs the question – might there 

be a simpler way of combining forecasts? For instance, rather than using averages of probabilities, 

why not simply use the average of the forecasts? This approach is much simpler; and, as shown in 

Makridakis and Hibon (1979), the average forecast is often more accurate than forecasts generated 

by complicated models. 

We consider two new models, which we refer to as the AVG model and the MED model, which 

equal the average and the median of the three forecasts, respectively. We compare these two 

forecasts to the forecasts generated by the k-NN model, the random forest and a fifth model, which 

we refer to as the weighted random forest or model WRF. To compute the forecast for model WRF, 

we first obtain the probabilities assigned by the random forest to each of the forecasts generated 

by the three models. We then use these probabilities as weights and we calculate the weighted 

average of the forecasts implied by the three models. We compare the forecasts from these five 

models in Table C.3. 

The results in Table C.3 lead to two conclusions: (1) the random forest is superior to the average, 

median or weighted random forest and (2) more importantly, the k-NN model is superior to all of 

the models. This second point is important because it implies that the k-NN model is quite robust. 

It is better than the random walk; regression-based models; the matching model proposed by BCG; 

sophisticated machine-learning algorithms such as the random forest; and, “averaging” approaches 

that use the average, median or weighted average of the forecasts. 
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Feature Importance 

In this section we address the question: when determining class membership, which features 

matter most? We consider 21 features that fall into two groups: (1) fundamental features and (2) 

forecast features. We provide definitions for all the features in Table C.1. 

To evaluate the relative importance of the features, we follow a six-step process. First, for each 

individual tree 𝑖𝑖 in the random forest of 𝐸𝐸 trees we identify the set of firm-years that are not in the 

subset of training data that we use to grow tree 𝑖𝑖. We refer to this subset as the out-of-bag sample 

for 𝑖𝑖 (i.e., 𝐿𝐿𝐿𝐿𝐸𝐸4𝑖𝑖) and it contains 𝑁𝑁𝑂𝑂𝑂𝑂𝑂𝑂4𝑏𝑏 firm-years. Second, for each firm-year in 𝐿𝐿𝐿𝐿𝐸𝐸4𝑖𝑖, we 

use tree 𝑖𝑖 to determine the predicted probability for each class. These are referred to as the out-of-

bag probabilities. Third, we determine the out-of-bag errors by subtracting each out-of-bag 

probability from either: (1) one if the corresponding class is the true class or (2) zero if the 

corresponding class is not the true class. Hence, for each tree, we have 𝑁𝑁𝑂𝑂𝑂𝑂𝑂𝑂4𝑏𝑏 out-of-bag errors 

for each class, which, given there are three classes, implies that we have a total of 

3 × (∑ 𝑁𝑁𝑂𝑂𝑂𝑂𝑂𝑂4𝑏𝑏𝑏𝑏∈𝑂𝑂 ) out-of-bag errors. Fourth, we calculate the mean of the squared out-of-bag 

errors, which is the Brier (1950) score. We refer to this as the “true” Brier score. Fifth, for each of 

the 21 features, we repeat steps one through four. However, when computing the predicted 

probabilities, we randomly permute (or shuffle) the values of the feature so that, for each firm-year 

in 𝐿𝐿𝐿𝐿𝐸𝐸4𝑖𝑖, the feature is assigned a value from another randomly selected firm-year in 𝐿𝐿𝐿𝐿𝐸𝐸4𝑖𝑖. 

Consequently, the resulting “permuted” Brier score equals the decrease in accuracy attributable to 

replacing the feature with a random noise variable that is drawn from the same distribution as the 

feature itself. Finally, in step six, we calculate the permutation importance of each feature, which 

equals the difference between the permuted Brier score and the true Brier score. 
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We document the permutation importance of the 21 features in Figure C.1. A key result stands 

out: Forecast features are much more important than fundamental features. Specifically, the five 

most important features are all forecast features. This is striking given that there are only seven 

forecast features and that the fundamental features outnumber the forecast features by a ratio of 

two to one. Consequently, when selecting from a set of models, the relative values of the forecasts 

generated by the models play a much more important role in determining the selected model than 

either: (1) the model inputs (i.e., the regression predictors and the features used for matching) or 

(2) firm-level characteristics such as size, capital structure, etc. 
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Figures and Tables 

Figure C.1: Variable Importance 

Figure C.1 shows the average permutation importance, in percent, averaged over the ten rolling estimation samples in each 
subperiod. The permutation importance of each feature, which equals the difference between the permuted Brier score and the 
true Brier score (Brier, 1950. See Section) It is computed as following a six-step process. First, for each individual tree (b) in 
the random forest of B trees we identify the set of firm-years that are not in the subset of training data that we use to “grow” tree 
b. We refer to this subset as the out-of-bag sample for b (i.e., (OOB4b)) and it contains N OOB4b firm-years. Second, for each 
firm-year in OOB4b, we use tree b to determine the predicted probability for each class. These are referred to as the out-of-bag 
probabilities. Third, we determine the out-of-bag errors by subtracting each out-of-bag probability from either: (1) one if the 
corresponding class is the true class or (2) zero if the corresponding class is not the true class. Hence, for each tree we have 
N_OOB4b out-of-bag errors for each class. Fourth, we calculate the mean of the squared out-of-bag errors, which is the Brier 
(1950) score. We refer to this as the ``true'' Brier score. Fifth, for each of the 19 features, we repeat steps one through four. 
However, when computing the predicted probabilities, we randomly permute (or shuffle) the values of the feature so that, for 
each firm-year in OOB4b, the feature is assigned a value from another randomly selected firm-year in OOB4b. Consequently, 
the resulting ``permuted'' Brier score equals the decrease in accuracy attributable to replacing the feature with a random noise 
variable that is drawn from the same distribution as the feature itself. Finally, in step six, we calculate the permutation importance 
of each feature, which equals the difference between the permuted Brier score and the true Brier score. 

 
  



66 
 

Table C.1: Variable Definitions 

Variable Definition Construction 

Panel A: Financial variables and fundamental features 
AbsChEARNi,t Absolute change in current earnings  abs(SEBSIi,t – SEBSIi,t-1) 
ACCi,t Accruals for firm i at time t scaled by MVEi,t (Δ(acti,t - chei,t) - Δ(lcti,t - dlci,t - txpi,t) 

- dpi,t) / MVEi,t 
ChLgTAi,t Change in LgTA log(ati,t) - log(ati,t-1) 
DIVi,t Dividends for firm i at time t scaled by MVEi,t dvci,t / MVEi,t 
EARN_VOLAi,t Standard deviation of SEBSI over past three years sd(SEBSIi,t, SEBSIi,t-1, SEBSIi,t-2) 
EBSIi,t Earnings before special items for firm i at time t ibi,t – spii,t 
FSEBSIi,t+h Forecast of EBSIi,t+h scaled by MVEi,t  
GDPGri,t Growth in current gross domestic product (Federal 

Reserve Bank data) 
GDPi,t / GDPi,t-1  - 1 

MVEi,t Equity market value for firm i at the end of fiscal year t prcc_fi,t * cshoi,t 
NrLOSSi,t Count of the number of loss-making fiscal periods 

within the last three years 
 

LEVi,t Total assets for firm i at time t scaled by MVEi,t ati,t / MVEi,t 
LgTAi,t Logarithm of total assets log(ati,t) 
SEBSIi,t EBSIi,t scaled by MVEi,t (ibi,t - spii,t) / MVEi,t 
SIZE,t Logarithm of MVEi,t log(MVEi,t) 
Treas10Reti,t Current period return on a 10-year treasury bond 

(Federal Reserve Bank data) 
 

Panel B: Forecast features 
FSTDi,t Standard deviation of forecasts of the three models, k-

NN, HVZ, and RW 
sd(FSEBSIKNN

i,t+1, FSEBSIHVZ
i,t+1, 

FEARNRW
I,t+1) 

HVZ_DISTi,t Euclidean distance between the values of the HVZ 
variables for i in t and the average values of the HVZ 
variables in the estimation window. Variables are 
standardized before computing the distance 

 

HVZ_MAXi,t Indicator variable equal to 1 if the k-NN forecast is 
higher than the HVZ and RW forecast and 0 otherwise 

ⅼ(FSEBSIHVZ
i,t+1 >= FSEBSIk-NN

i,t+1 
& FSEBSIHVZ

i,t+1 >= FSEBSIRW
I,t+1)  

HVZ_MINi,t Indicator variable equal to 1 if the k-NN forecast is 
higher than the HVZ and RW forecast and 0 otherwise 

ⅼ(FSEBSIHVZ
i,t+1 <= FSEBSIk-NN

i,t+1 
& FSEBSIHVZ

i,t+1 <= FSEBSIRW
I,t+1)  

k-NN_MAXi,t Indicator variable equal to 1 if the k-NN forecast is 
higher than the HVZ and RW forecast and 0 otherwise 

ⅼ(FSEBSIk-NN
i,t+1 >= FSEBSIHVZ

i,t+1 
& FSEBSIk-NN

i,t+1 >= FSEBSIRW
I,t+1)  

k-NN_MINi,t Indicator variable equal to 1 if the k-NN forecast is 
higher than the HVZ and RW forecast and 0 otherwise 

ⅼ(FSEBSIk-NN
i,t+1 <= FSEBSIHVZ

i,t+1 
& FSEBSIk-NN

i,t+1 <= FSEBSIRW
I,t+1)  

k-NN_SPREADi,t Standard deviation of next year’s earnings (EBSIi,h+1) of 
the K=80 peers used to compute the k-NN forecast 

sd(SEBSIi,h+1 * MVEi,t) / MVEi,t 

Lowercase variables in the construction column refer to Compustat identifiers. 
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Table C.2: Predicting the best model to use by observation 

Panel A: Confusion matrix 
Predicted k-NN HVZ RW Total 

Predicted 
Precision Recall 

k-NN 32,018 13,069 14,512 59,599 0.537 0.678 
HVZ 5,305 9,501 6,402 21,208 0.448 0.295 
RW 9,881 9,629 20,167 39,677 0.508 0.491 
Total Reference 47,204 32,199 41,081 120,484     
Accuracy 0.512           
No-information rate 0.392           
Accuracy P-value 0.000           
       

Panel B: Overall forecast error comparison 
Model N MAFE MDAFE MSE TMSE 
k-NN 120,484 6.923 2.545 6.666 1.805 
RW 120,484 0.754*** 0.085*** 4.688 0.444*** 
HVZ 120,484 2.566*** 1.461*** 3.786*** 1.185*** 
RF 120,484 0.122** 0.041** 0.458* 0.012 
Table C.2 shows predicted outcomes as per the random forest and realized outcomes for each classified model. The rows of the 
matrix correspond to out-of-sample classifications as per the random forest. The columns correspond to the realized ("true") 
outcomes (classifications). Recall reflects the fraction of observations that belong to a class and are correctly classified. Precision 
reflects the fraction of predicted classifications that are correct. 

 

Table C.3: Predicting the best model to use by observation 

Model N MAFE MDAFE MSE TMSE 
k-NN 120,484 6.923 2.545 6.666 1.805 
RF 120,484 0.122** 0.041** 0.458* 0.012 
WRF 120,484 0.155*** 0.097*** 0.239 -0.006 
AVG 120,484 0.549*** 0.312*** 0.956  0.183*** 
MED 120,484 0.284*** 0.031 1.094**  0.133*** 
Table C.3 compares the mean (MEAN) and median (MED) forecast of our three forecast models to the random forest (RF) and a 
weighted random forest (WRF). WRF is weighting each model (k-NN, HVZ, and RW) by the random forest predicted probability 
of that model being the lowest forecast error model. PCT_BEST is the percentage of times that forecast is the most accurate forecast. 
MAFE is the mean absolute forecast error (% of MVE). MDAFE is the median absolute forecast error (% of MVE). MSE is the 
mean of squared forecast error. TMSE is the mean of squared forecast error after truncating the top and bottom 0.1% signed forecast 
errors 

 


