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1 Introduction

In the economic theory of decision under uncertainty (risk or ambiguity) the

decision maker has to choose between alternatives while facing an irreducible

uncertainty about their final payoffs. However, in a wide range of situations

the decision maker has the possibility to reduce the uncertainty she faces by

looking for information before making a choice. Typical examples include

the following situations: a consumer can search for additional reviews before

making a purchasing decision, an agent can look for more information before

choosing between different investment opportunities, a doctor can request

new tests before making a diagnostic, an inspector can decide to investigate

a case further before making a decision. In such situations, the decision

maker is confronted with an “optimal sequential sampling” problem whereby

she needs to decide when to stop acquiring information about the different

alternatives and make a choice between them. As early as 1945, Wald devel-

oped a formal framework to find the solution to this question. For a Bayesian

decision maker (henceforth DM), the optimal solution is to gather informa-

tion until the marginal expected value of information is smaller than the cost

of sampling information.

Does this model offer a good representation of actual individual be-

haviour? The empirical evidence is scarce, which is somewhat surprising

given the general nature of this framework and the widespread situations

where it can be used. In the present study we experimentally investigate

whether this theoretical framework helps us understand how people make

decisions. We design a controlled situation where individuals have to choose

between two alternatives with uncertain payoffs. Before making a choice,

they have the opportunity to wait and collect additional (costly) pieces of

information which help them get a better idea of the likely alternatives’ pay-

offs. The design of the experiment allows us to precisely identify the optimal

sequential sampling strategy and to assess whether participants are able to

approximate it.

Our results are clear, we find that participants deviate in systematic ways

from the optimal strategy. They tend to hesitate too long and oversample
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information when it is relatively costly and on the contrary to make too

quick decisions and undersample information when it is relatively cheap. As

a consequence of this deviation, participants lose between 10% and 25% of

their potential payoff. However, participants learn to get closer to the optimal

strategy over time, as long as information is relatively costly. When the cost

of sampling information is high, participants end up approximating quite

closely the optimal sampling strategy.

The present study contributes to two strands of literature. First, it con-

tributes to the empirical study of the ability of optimal sequential sampling

models to explain human behaviour. The optimal sampling framework has

recently attracted a lot of interest to explain human decision making. In

psychology, it is now seen as giving a foundation to a wide range of cognitive

models (e.g. drift diffusion models) where it has been found to appropri-

ately describe the information accumulation process in the brain. While

such models have mainly focused on perceptual choices (Gold and Shadlen,

2002; Bogacz et al., 2006), recent studies have suggested to extend these

models to economic choices (Webb, 2013; Fehr and Rangel, 2011; Krajbich

et al., 2014; Caplin and Martin, 2015). Optimal sequential sampling models

can explain several empirical patterns. For instance, they imply that choices

should be partly random due to the random nature of new information. As a

consequence they offer a foundation to random utility models (Webb, 2013;

Woodford, 2014). Such models can also explain apparently puzzling patterns

such as the negative correlation between decision times and quality of deci-

sions (Fudenberg et al., 2015). While the interest for the optimal sequential

sampling framework is growing in economics we still know little about its

ability to explain actual behaviour. Our study adds to this emerging litera-

ture. To the best of our knowledge, it is the first experiment to directly test

whether individuals approximate the optimal sequential sampling solution

when they hesitate before making a choice.

Second, this paper contributes more broadly to the study of the empiri-

cal relevance of real option theory for individual decisions. When having to

decide between making a choice now and waiting to get more information,

the DM has to compare the cost of collecting the additional information to
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the option value of the future information. Such a situation is a type of

real option problem. In the real option literature, it has been investigated

in the specific case of a decision between making an irreversible investment

now or waiting for more information, at the risk of seeing the investment op-

portunity disappear (McDonald and Siegel, 1986). An empirical test of this

theory was proposed by Oprea et al. (2009). They analyse the behaviour of

agents who incur a fixed cost to seize an irreversible investment opportunity.

Their main result is that despite poor performance at the start of the exper-

iment, the subjects learn “intuitive heuristics” to approximate the optimal

behaviour. In follow-up experiments, Della Seta et al. (2014) find that real

option models’ predictions with respect to risk aversion are supported, while

Viefers and Strack (2014) find that subjects are not always consistent and

adopt a behaviour suggesting regret. Our paper extends this type of research

by investigating behaviour in a general case where the DM faces two possi-

ble prospects with unknown values and has to weigh the value of collecting

additional information against the cost of this information.

The rest of the paper is as follows: Section 2 presents the conceptual

framework of the optimal sequential sampling model, Section 3 describes our

experimental design, Section 4 presents our results and how participants’

choices deviate from the optimal solution to the problem, Section 5 investi-

gates possible reasons for these deviations and Section 6 concludes.

2 Conceptual framework: optimal sequential

sampling

2.1 Statement of the model

When hesitating to make a choice, the DM has the option to take an action in

a finite set or to acquire more information.1 Wald (1945) gives the example

1This is clearly the case when the DM can access new external information when
waiting to make a choice. The framework we describe can also be used in situations where
no new external information is available. In such situations, taking more time to engage
in cognitive introspection can help reduce the uncertainty about the values of the different
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of a statistician who has to discriminate between two hypotheses, and has

the opportunity to sequentially acquire more observations. Gathering more

data comes at a cost, but as the sample size grows the statistician has a

finer knowledge of the underlying data generating process. The optimal

sequential sampling (OSS) model formalises this problem to determine the

optimal stopping rule.

We model the behaviour of a Bayesian DM that sequentially investigates

the nature of a state of the world, θ = {A;B}, by accumulating some evidence

on it. Time is discrete, finite and indexed by t ∈ {0, ..., T} = T. The problem

of the DM is twofold, she has to find what state of the world she is in, and

when to make this decision. We denote by dt = {a; b} the set of actions at

any given period t, where choosing a (b) is the right action to take when the

true state of the world is A (B).

To make up her mind, the DM can gather independently and identically

distributed (i.i.d.) binary signals (Xt ∈ {−1; 1}). These signals are infor-

mative about the nature of the state of world (i.e. P(Xt = 1|θ = B) >

P(Xt = 1|θ = A)), but come at a unit cost c. Given all the gathered signals

(X t
1 = (X1, ...Xt)), we can construct the Bayesian DM’s posterior at time t,

πt, about the likelihood of state of the world B :

πt =

P(θ = B)
t∏

k=1

P(Xk|θ = B)

P(θ = B)
t∏

k=1

P(Xk|θ = B) + P(θ = A)
t∏

k=1

P(Xk|θ = A)

When the expected utility from stopping is greater than the expected

utility from sampling, the DM makes a guess about the nature of the state of

the world she is facing. We consider a “certain difference” optimal sequential

sampling problem (Fudenberg et al., 2015), whereby the DM knows for sure

the difference between the utility of making the right (U1 ∈ R) and the wrong

guess (U0 ∈ R). Let U(dt = i; πt) be the expected utility from choosing action

i, given the DM’s Bayesian beliefs.2 When stopping at time t = τ , the DM

choices by matching previous memories with perceived features of the available choices
(Ratcliff et al., 2016).

2That is U(dt = a;πt) = πtU0+(1−πt)U1 if dt = a and U(dt = b;πt) = πtU1+(1−πt)U0
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chooses the action that maximises her expected utility:

G(τ, πτ ) = max
i=a,b

U(dτ = i; πτ ) (1)

The sequential nature of the problem appears when considering the deci-

sion to stop. At a given time t, the DM compares the value of stopping now

with that of continuing. Let G̃(t, πt) be the value of the continuation option

at time t, such that G̃(t, πt) = max{E[G(t+ 1, πt+1)|πt];E[G̃(t+ 1, πt+1)|πt]}.
Following Kruse and Strack (2015), we use the concept of marginal in-

centive to sample in order to characterise the stopping time.

Definition 1 (Marginal Incentive). The marginal incentive, m : T× [0; 1]→
R, measures the expected gain from proceeding to the next stage of the sam-

pling process:

m(t, πt) = G̃(t, πt)− c−G(t, πt) (2)

The optimal sequential sampling strategy is to continue sampling as long

as there is a gain to it, that is whenever m(t, πt) > 0. It can be shown

that there are two levels of Bayesian beliefs that make the DM indifferent

between sampling or not (i.e. m(t, πt) = 0, see Tartakovsky et al. (2014)).

We respectively call At and Bt the beliefs πt solutions of equation (2). For

these beliefs, the DM is indifferent between sampling and choosing dt = a or

dt = b at time t. The left panel of Figure 1 summarises the decision rules to

be followed by the DM.

The informational content of each signal can be summarised by a log-

likelihood ratio, Zt, which in the case of binary signals can only take two

values (Zt ∈ {− log(P (Xt=1|θ=B)
P (Xt=1|θ=A)

; log(P (Xt=1|θ=B)
P (Xt=1|θ=A)

}). The rationale for using

this measure is that it gives a simple additive form to the information that has

been accumulated in the learning process: λt =
∑t

k=1 Zk. It is then possible

to define a stopping rule in the log-likelihood space, which summarises not

only what decision the DM should make, but also when it should be made

(Wald, 1945). Wald called this stopping rule a sequential probability ratio

test (SPRT).

if dt = b.
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Figure 1: Theoretical representation of the sampling problem at a
given time and in a dynamic setting.

Note: Left panel: Typical behaviour of the expected utility from stopping (G(t, πt)) and
sampling (G̃(t, πt)), at a given stopping time. The dotted area represents the expected
gains from sampling when beliefs are between At and Bt. The hatched area represents the
expected losses from sampling when beliefs are outside the range [At, Bt]. Right panel
typical behaviour of the SPRT statistics (λt). The bold parabola represents the sampling
frontier. The optimal strategy is to stop as soon as λt crosses this frontier (at t = τ∗).

Definition 2 (Minimum Optimal Stopping Time). The minimum optimal

stopping time τ ∗ is the first time λt hits a lower or an upper boundary, re-

spectively at and bt:

τ ∗ = inf{t ≥ 0 : λt 6∈ [at, bt]} (3)

Where at = log At
(1−At) and bt = log Bt

(1−Bt) are the transforms of At and Bt

in the log-odds space. The right panel of Figure 1 shows an example of path

followed by λt over time, and the optimal stopping rule.

Wald and Wolfowitz (1948) show that for a given level of acceptance of

statistical errors (type I and type II), the SPRT stopping time is optimal in

the sense that it minimises the expected sample size. In our case, it means

that the SPRT minimises the expected number of signals needed to reach a

given level of risk.
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2.2 Our experimental setting

We provide here a numerical example of the OSS model and its optimal

solution, for the setting which we will use in our experiment. Let’s consider

a situation where the two states of the world are represented by urns with

different proportions of white and black balls. A DM receives binary signals

which are informative of the real state of the world: balls drawn from the

urn. Suppose that both states of the world are a priori equally likely (P(θ =

A) = P(θ = B) = 0.5) and let’s assume that white balls are “−1” signals,

while black balls are “+1” signals. Suppose urn A contains 6 white balls

and 4 black balls (P(Xt = 1|θ = A) = 0.4)) and urn B contains 4 white

balls and 6 black balls (P(Xt = 1|θ = B) = 0.6)). The first step towards

estimating the stopping region is to construct the Bayesian belief of the DM.

Let nB ( nA) be the number of black (white) balls accumulated. Let’s define,

the signal intensity as the sum of accumulated signals, St =
∑t

i=1Xi. A

negative (positive) signal intensity indicates that state of the world A (B) is

more likely. The Bayesian belief after t signals is given by:

πt =
0.6nB−nW

0.6nB−nW + 0.4nB−nW

It is possible to construct all the possible Bayesian beliefs after t draws, by

looking at all the possible signals combinations. Let’s consider a risk neutral

DM with the following payoffs: being right yields $20 (U1 = 20), being wrong

yields $0 (U0 = 0) and sampling an additional signal costs $0.50 (c = 0.5).

For a given Bayesian belief (πt), it is possible to derive the expected payoff

from stopping (G(t, πt)) in period t. In the last period (t = T ) the only

possible choice is to stop, therefore the expected payoff from sampling at

the period before the last one is G̃(t, πT ) = E[G(T, πT |πT−1)] − c. By back-

ward induction, we can derive the expected payoff from sampling (G̃(t, πt))

at any period. From the expected payoffs of stopping and the expected pay-

offs of sampling, we can determine the boundaries At and Bt, that make

the DM indifferent between sampling and stopping, by solving the equation

m(t, πt) = 0. Figure 2 represents these boundaries in terms of beliefs (left
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panel) and in the corresponding log-likelihood space (right panel) for the

three levels of cost used in our experiment.

When t is not too large, the optimal strategy is to stop when the difference

between A and B signals crosses a threshold. For a low level of cost (c = 0.1),

the optimal strategy is to wait to have five more signals in one direction

(τ ∗ = inf{t ∈]5; 66]| |S∗t | = 5}). For c = 0.5, the DM should wait to have

two signals in the same direction, that is τ ∗ = inf{t ∈ T; |S∗t | = 2}. Finally,

c = 1 is a degenerate case and the DM should gather only one signal. That

is, τ ∗ = 1 and |S∗1 | = 1. As the experiment is done in a finite horizon, the

optimal signal-strength threshold, |S∗t |, is decreasing after a large number of

draws, when t is getting close to T . This situation represents only a negligible

part of the observed behaviour in our experimental data: respectively 0.38%,

0.37% and 1.19% of the observed stopping time for the low, medium and

high cost conditions.

8



Figure 2: Plot of the sampling problem in the Bayesian beliefs space
(left panel) and log-likelihood space (right panel) for c=0.10, c=0.50,
c=1. Participants’ endowment to buy signals is constant across the
treatments, $10. This endowment determine the maximum number of
signals T which can be bought.

Note: The grey dots represent the stopping region. The black dots represent the sampling
region. The prior is P(θ = A) = 0.50, a correct decision yields a payoff of U1 = 20 and
a wrong decision a payoff of U0 = 0. The dashed lines represent the estimated optimal
frontiers.
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2.3 Testable Hypotheses

This section summarises the features and predictions of the OSS model that

can be tested in our experiment.

We define optimality as choosing to stop after the minimum optimal stop-

ping time. As described above, we are able to characterise the optimal sam-

pling strategy with a simple decision rule: a risk neutral agent should stop

acquiring information when the log likelihood-ratio crosses one of the bound-

aries of the sampling region, at or bt.

Hypothesis 1. Optimality. An agent maximising expected payoffs follows

the optimal sequential sampling strategy.

The prediction of the OSS model regarding this change in incentives is

unambiguous and intuitive. When the cost of information increases, the

opportunity cost of going to the next round is higher. Hence, the higher the

sampling cost, the lower the optimal number of draws.

Hypothesis 2. Reaction to incentives. Individuals increase (decrease)

their information acquisition when the cost of information decreases (in-

creases).

If Hypothesis 1 is violated, we can expect participants to learn to make

better decisions during the course of the experiment. Studies have shown that

participants are able to learn to approximate optimal behaviour in demanding

problems, such as equilibrium bidding in a double auction market (Friedman

and Rust, 1993); or approximating the optimal timing of investment (Oprea

et al., 2009). The optimal policy gives a clear stopping rule based on the

difference between the number of white and black balls. Participants may be

able to learn after some practice.

Hypothesis 3. Learning. With experience individuals will learn to get

closer to the optimal sequential sampling solution.

According to the optimal sequential sampling model, framing the payoffs

as gains or losses should not matter. However, there is extensive evidence that

individual behaviour substantially changes depending on whether a prospect
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is framed as leading to possible gains or losses (Kahneman and Tversky,

1979; Wakker, 2010). A simple way to introduce the idea that “losses loom

larger than gains”, is to consider that when the DM faces a potential loss,

the payoff V is subjectively transformed in µV , with µ > 1. Mechanically,

the higher stakes push the optimal frontier outwards and make the marginal

incentive to sample greater.

Hypothesis 4. Framing Effect. Framing the sampling problem as a way

to avoid a loss increases the stopping time decision.

3 Experimental Design

3.1 Design and Treatments

We design a sampling experiment where the participant has to decide what

state of the world she is in, which determines her payoff.3 The states of the

world are represented by two urns (A and B), from which signals (balls) can

be gathered at a unit cost. One of the urns contains 4 black balls and 6 white

balls and the other one contains 6 black balls and 4 white balls. Both are

depicted in Figure 12 in Appendix B. The participant has to guess which

urn has been selected. She can pay a unit cost c to see a ball, which goes

back into the urn after being observed. The balls are drawn automatically

every 2s, and the participant decides when to stop the process. If she makes

a correct guess, she earns $20, and $0 otherwise.4 In each round, we gave

participants a $10 endowment to observe balls drawn from the urn.5

The participant takes part in 80 rounds. At the start of each round,

one of the two urns is randomly selected by the computer with a probability

π0 = 0.5. One of the rounds is selected for payment at the end of the

experiment. At all times during the experiment, all the relevant information

3This choice is identical to choosing an action dt ∈ {a, b} mirroring the state of the
world.

4All amounts are in Australian dollars.
5It is enough to reach the expected stopping time in each treatment. Time horizons

were the following: T = 100 in the $0.10 condition, T = 20 in the $0.50 condition and
T = 10 in the $1 condition.
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is displayed on a screen (possible payoffs, number of draws, share of black and

white balls in each urn, past draws). At the end of each round, participants

receive feedback as to whether they chose the right urn and what is their

payoff.

As we are able to precisely identify the optimal solution we can test

whether participants approximate it (Hypothesis 1). Each participant en-

ters one of three costs conditions (low $0.10, medium $0.50 and high $1).

Comparing decisions across these three treatments we can test whether par-

ticipants react to the level of information cost (Hypothesis 2). By repeating

the task multiple times and providing participants with feedback, we are able

to test whether participants learn to approximate the optimal solution over

time (Hypothesis 3). Finally, we frame the decision in two ways: payoffs are

either presented as gains, or as losses relative to an initial endowment. This

framing is neutral in terms of monetary incentives, the structure of payoffs

being strictly identical across the two types of framing, and each participant

enters only one of the two conditions.6 These two types of framing allow us

to test whether participants sample more to avoid losses than to secure gains

(Hypothesis 4).

In summary, we have a 2×3 between-subject design (Frame × Cost) and

the task is repeated 80 times.

3.2 Experimental Procedure

The experimental sessions were conducted between July 2015 and Novem-

ber 2016, in a large Australian university using z-Tree (Fischbacher, 2007).

The participants were students from various faculties, and were recruited

through ORSEE (Greiner, 2015). In total, 162 students took part in the

experiment (with an average of 23.7 years old, and 56% males). Each session

was approximately two hours long, including a short quiz testing participants’

understanding of the game.

6In the loss frame we inform the participants that they are all given $20 at the start
of the session, and that correctly guessing the nature of the urn will allow them to keep
this money. On the other hand, in the gain frame we tell them that if they make the right
guess, they will get $20.

12



After the 80 rounds were completed, the participants entered an incen-

tivised risk preferences elicitation task (Holt and Laury, 2002). The subjects

were then asked a few demographic questions and completed a cognitive re-

flection test (CRT, Frederick, 2005).7 When all these tasks were completed,

the participants were informed of their payoffs. The average payoff was $28.5,

including a $5 show up fee and the risk preference elicitation procedure. One

of the rounds the participants entered was randomly selected by the computer

and the subjects were given the corresponding payoff.8

4 Results

4.1 Sampling behaviour

From these optimal rules, we can determine the corresponding average stop-

ping times (τ̄ ∗). To do so, we ran 100,000 simulations of a rational DM

following the optimal decision rule for each level of information cost. From

our simulations, on average 19.1 signals are required to reach a decision

when c = 0.1, 3.84 when c = 0.5 and 1 when c = 1. The theoretical sig-

nal intensities and corresponding average stopping times are compared with

the participants’ average decisions in Table 1. The table also presents the

proportion of inconsistent decisions where participants choose an urn while

their observed signals pointed to the other urn. Such choices represent only

around 4% of all the choices and we do not take them into account in our

analysis.

Overall participants make their decisions too quickly (sample too little

information) when information is relatively cheap. Inversely, they hesitate

too long (sample too much information) when information is relatively ex-

pensive. They stop after approximately 9 draws in the $0.10 treatment, 7

draws in the $0.50 treatment and 4 draws in the $1 treatment. In the lower

cost treatment this average is below the theoretical prediction, and in the

7The results of the CRT are provided in Appendix A.2.
8This has been shown to be an efficient way to allocate payment in repeated dynamic

choice experiments, see Baltussen et al. (2012).
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Table 1: Summary statistics from observed stopping times and signal
intensity.

$0.1 $0.50 $1

N Mean sd N Mean sd N Mean sd

τ (Observed) 4560 9.42 8.82 4160 6.55 3.91 4240 4.19 2.48
τ (Theory) 19.1 13.83 3.84 2.64 1 0
|Sτ | (Observed) 4560 2.85 2.03 4160 2.27 1.65 4240 1.74 1.37
|Sτ | (Theory) 4.99 0.13 1.98 0.04 1 0
Inconsistent decisions 127 2.8% 190 4.6% 215 5.1%

Note: 100,000 simulations were used to determine the average stopping time with a DM
following the optimal stopping strategy. The last row reports the proportion of inconsistent
decisions when participants made a choice in opposition with the direction of their signals.

two other costs treatments it is above it. The average stopping time is sig-

nificantly different from the theoretical one in each treatment (p < 0.001 for

a Wilcoxon signed-rank tests, henceforth WSR, in each case). We use a be-

tween subject design and, in each treatment, individuals made 80 decisions.

Looking at each individual, we reject the null hypothesis that the average

number of draws is equal to the theoretical predictions for 142 out of 162

subjects (setting significance at p < 0.05 for a WSR test).9

When the decision to stop has been taken, the signal intensity |Sτ | reflects

the level of uncertainty that was chosen by the DM. We observe the same

deviation in this dimension, participants gathered too few signals in the $0.10

treatment, and too many in the $0.50 and $1 ones. This information is

provided in the lower part of Table 1. On average, in the $0.10 treatment

the participants had 2.85 signals in the same direction when they stopped - as

opposed to 4.99 in theory. In the $0.50 treatment, they had 2.27 signals in the

same direction, while theory predicted 1.98 signals. In the $1 treatment, the

average signal intensity at the stopping time was 1.74 instead of 1. Looking

at the individual level and comparing with the prediction from the condition

the individual is in, the average signal density is significantly different the

theoretical one for 133 of our 162 subjects (with a p < 0.05 threshold for

a WSR test). As a consequence, at the aggregate level, we strongly reject

the hypothesis that the average signal intensity in the sample is equal to the

9All the WSR tests reported are clustered at the individual level and bootstrapped
10,000 times
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theoretical predictions for each treatments (p < 0.001 for WSR tests). As

signal intensity is truncated at 0, medians may be a better measure of central

location than means. Medians analyses confirm our previous results with

median signal intensity statistically different from the theoretical predictions

according to sign tests (median = 2.88, p < 0.001 for $0.10 treatment; median

= 2.14, p = 0.0037 for $0.50 treatment; median = 1.71, p < 0.001 for $1

treatment

The results of both the average stopping time and the average signal in-

tensity suggest that participants stopped too early in the $0.10 treatments,

and too late in the $0.50 and $1 treatments. Figure 3 breaks down partici-

pants’ choices between under/oversampling and optimal behaviour, defined

as stopping at the right time. The first column of the figure shows this

breakdown for the whole sample. The under/oversampling pattern is clear

with the proportion of optimal behaviour staying low in each cost conditions.

Over the three cost conditions, only 6.8% of decisions are in line with the

optimal solution τ ∗.

15



F
ig
u
re

3
:

D
is

tr
ib

u
ti

o
n

of
sa

m
p

li
n

g
b

eh
av

io
u

r
b
y

tr
ea

tm
en

ts
,

d
efi

n
it

io
n

of
o
p

ti
m

a
li

ty
a
n

d
ri

sk
p

re
fe

re
n

ce
s.

N
o
te
:

S
tr

ic
t

op
ti

m
al

it
y

is
d

efi
n

ed
as

st
op

p
in

g
at
τ
∗

w
it

h
a

si
g
n

a
l

in
te

n
si

ty
S
∗ τ
.

U
n

d
er

a
n

d
ov

er
sa

m
p

li
n

g
a
re

re
sp

ec
ti

ve
ly

st
op

p
in

g
b

ef
o
re

an
d

af
te

r
τ
∗ .

T
h

e
lo

os
e

op
ti

m
al

it
y

is
d

efi
n

ed
as

st
o
p

p
in

g
b

et
w

ee
n
τ
∗
−

1
a
n

d
τ
∗

+
1

w
it

h
a

si
g
n

a
l

in
te

n
si

ty
S
∗ τ
.

16



One possibility could be that the optimal solution we discussed is for risk

neutral DM while our participants may have different risk preferences. To

make sure this is not what is driving the low levels of optimality, we use the

risk preferences we measured using the Holt and Laury (2002) procedure to

look at the participants who are risk neutral. The third column of Figure

3 displays the cumulative distribution of their choices. We do not observe

that risk neutral participants perform better. Only 6.1% (N = 33) of their

decisions occurred at the optimal stopping time, whereas this figure is respec-

tively 6.3% and 8.3% for risk averse and risk loving participants (N = 98

and N = 31). A further test of the impact of risk preferences on sampling

behaviour is provided in Section 5.1.1.

Looking only at the number of times participants precisely stopped at

the optimal threshold of information is quite a stringent test of optimality.

It may give the impression that participants fail to optimise even though

they may be approximating the optimal strategy quite well. To address

this concern, we defined a “loose” optimal behaviour such that being one

draw away from the right stopping time τ ∗ is defined as optimal.10 The

second and fourth columns of Figure 3 show the corresponding breakdown of

participants’ choices over the whole sample and for risk neutral participants.

The rate of loose optimality is 23.5% in the whole sample and 20% for risk

neutral agents. For all participants, this figure ranges from 13% in the $0.10

treatment, 23.5% in the $0.50 and 34.8% in the $1 treatment. The sampling

pattern persists in the “loose” definition of optimality, as we still observe 77%

of undersampling for c = 0.1, and respectively 59% and 65% of oversampling

for c = 0.5 and for c = 1.

The cost of the deviation we observe is substantial. In the $0.10 treat-

ment, the average expected payoff is $2 lower than the optimal level ($15.65

vs $13.61). In the $0.50 treatment the average payoff is $1 lower than model

prediction ($11.42 vs $10.15). In the $1 treatment, participants earn $2.5

less than expected ($10.47 vs $7.96). These deviations correspond to fore-

gone payoffs worth between 10% and 25% of potential payoffs.

10In the $0.1, $0.50, and $1 treatments, this is equivalent to increasing the size of the
sampling set by 10%, 25% and 100% respectively.
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Result 1. Individuals deviate systematically from the optimal solution.

(i) For low information costs, participants undersample relative to the

optimal solution.

(ii) For high information costs, participants oversample relative to the

optimal solution.

(iii) The same pattern is observed among the sub-sample of participants who

are risk neutral.

4.2 Reaction to incentives

A possible explanation to these results is that participants did not react to

the change in incentives. It could be that they always chose the same signal

intensity, regardless of the cost incurred to sample. Looking at the distribu-

tion of stopping times and signal intensities for the three levels of costs it

appears that, on the contrary, participants reacted to incentives. The right

panels of Figure 4 represents the cumulative distribution functions (CDF) of

stopping times and signal intensities for each level of sampling cost. In each

case, we observe a clear first stochastic dominance from the distributions with

lower costs relative to distributions with higher costs. Kolmogorov-Smirnov

tests (clustered at the individual level and bootstrapped 10,000 times) con-

firm that distribution for each level of cost significantly differs from other

ones both for stopping times and for signal intensity (p < 0.001 in each

cases except for the test of signal intensity between high and medium cost -

p = 0.003). These results show that participants have reacted to the changes

in the cost of information as predicted.

Result 2. Participants react to changes in incentives by reducing information

acquisition for higher costs.

This result supports our Hypothesis 2: more costly information leads

to earlier stopping times.
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Figure 4: Cumulative distribution of stopping times and signal in-
tensity.

Note: For clarity purpose we restrict the figures to stopping times below 26 and signal
intensity below 6. The complete figures can be found in Appendix.

4.3 Learning

One of the main findings in Oprea et al. (2009) is that after a learning

phase, participants were able to approximate the optimal behaviour in the

stopping problem. In our case, we are able to locate how far a stopping

decision is from the average minimum optimal stopping time (τ − τ̄ ∗), and

the difference between the resulting signal intensity and the average optimal

one (|Sτ | − |S̄τ∗|).
Figure 5 depicts the evolution of the participants’ average stopping times

τ and the resulting signal intensities |Sτ |, throughout the 80 rounds of the

experiment. We observe that the gap between observed behaviour and the

optimal solution decreases over time for the two treatments where informa-

tion acquisition is relatively costly (c = 0.5 and c = 1). These trends are

statistically significant for the average stopping time (p = 0.03 for c = 0.5

and p < 0.001 for c = 1, ordinary least squares, henceforth OLS 11 ) and

for the average signal intensity (respectively p = 0.1 and p < 0.01, OLS). If

we analyse the last 20 periods of both treatments, we reject the hypothesis

that the distance to the optimal stopping time, as well as the distance to the

optimal number of draws, is equal to zero (p < 0.001 for WSR tests in all

cases), meaning that oversampling persisted. The average stopping time just

11All regressions are clustered at the individual level.
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reaches the boundary of the loose optimality at the end of the experiment in

the $1 condition.

These results suggest that participants learned to make better decisions

over time in the conditions with c = $0.50 and c = $1. In the treatment

where information was the most costly, c = $1, participants were able to

approximate the optimal solution over time. In contrast, we do not find any

convergence towards the optimal solution in the $0.10 treatment.12

These results support Hypothesis 3 when sampling is relatively costly.

We purposely chose to have a large number of repetitions of the decision

situation to give enough time for learning to take place. Our findings suggest

that learning takes place, except when the sampling is relatively cheap.

Result 3. We observe learning and a convergence towards the optimal se-

quential sampling solution when sampling is relatively costly.

(i) Participants tend to learn and get closer to the optimal strategy when

information acquisition is costly.

(ii) No learning seems to take place in the treatment where information

acquisition is relatively cheap. The undersampling pattern does not

decrease.

(iii) In our treatment with the highest cost of information acquisition, par-

ticipants learn to closely approximate the optimal strategy.

12The slope of the regression line is neither statistically significant for the average stop-
ping time (p = 0.21) nor for the signal intensity (p = 0.54).
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Figure 5: Evolution of the distance to the optimal stopping time and
signal intensity.

Note: The top panel shows the average distance to the minimum optimal stopping time
(τ − τ̄∗) for each round. The dashed lines represent the “loose” optimality condition, such
that stopping one ball away from the optimal rule is regarded as optimal. The bottom
panel shows the average distance to the optimal signal intensity resulting from the stopping
time (|Sτ | − |S̄τ∗|). The black line represents the linear fit and the outer grey lines are
the 95% confidence intervals. The value displayed below each graph is the p-value used
in testing the null hypothesis that the OLS regression coefficient is 0 (clustered at the
individual level).
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4.4 Framing Effects

In the experiment we explicitly framed the decisions as either a way to make

a gain or to avoid a loss, in order to test for an effect of loss aversion. Our

hypothesis is that loss aversion raises the subjective value that is at stake,

hence increasing the sampling region. We find that it is not the case.

Table 2 compares the average stopping times and signal intensities for the

gain and loss framing for each level of cost. We do not observe significant

differences between the two types of framing. The differences in sampling

behaviour are small and not significant. Overall, there is no evidence that

participants sample more in the loss frame.

Result 4. Participants did not significantly accumulate more information in

the loss condition.

To summarise, we find that participants substantially deviate from opti-

mality in a systematic way: they oversample information when the sampling

cost is high, and undersample it when the cost is low. However, participants

respond to incentive changes and decrease the amount of information col-

lected when the cost increases. The overall performance improves as time

passes, without fully converging towards the optimal solution. In addition,

we find that framing the problem as a way to avoid a loss does not increase

sampling.

Table 2: Mean number of draws ( τ̄Gain and τ̄Loss) and signal intensity
( |S̄τ |Gain and |S̄τ |Loss), by frame.

$0.10 $0.50 $1

τ̄Gain vs τ̄Loss 9.24 vs 9.49 6.34 vs 6.78 4.56 vs 3.81
Mann-Whitney (p) 0.35 0.42 0.16

|S̄τ |Gain vs |S̄τ |Loss 2.83 vs 2.89 2.17 vs 2.36 1.83 vs 1.64
Mann-Whitney (p) 0.60 0.24 0.26

Note: Mann-Whitney tests bootstrapped with 10,000 replications and clustered at the
participant level.
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5 Potential Explanations

In this section we discuss potential explanations to the pattern of deviations

from optimality observed in our experiment: undersampling when the cost

of information is low, and oversampling when the cost of information is high.

The OSS model rests on three main assumptions. First that DMs are

risk neutral utility maximisers; second that they react to information and

update their beliefs accordingly; third that they are forward looking and

able to compute the expected value of sampling. Based on findings from

previous studies, we explore alternative assumptions that could account for

the observed behaviour in our experiment.

5.1 Wider class of utility functions

In Section 4 we ruled out that risk neutral participants behaved optimally.

As the assumption of risk neutrality is quite restrictive, we consider here

different types of utility functions that are relevant in a sequential sampling

framework.

5.1.1 Risk aversion

When considering risk aversion, an intuition could be that risk averse DMs

are unwilling to take a risky gamble and prefer to sample to reduce uncer-

tainty. However, the link between risk aversion and the optimal amount

of information to collect is, in theory, ambiguous. It is a priori not clear

whether an increase in risk aversion systematically leads to an increase in

sampling (see Radner and Stiglitz (1984); Treich (1997); Gollier (2004) for a

description of this problem). When information is costless and only a few sig-

nals can be accumulated, an increase in risk aversion can be associated with

an increase or decrease in sampling, depending on the starting level of risk

aversion. The case when information is costly, to the best of our knowledge,

is yet to be investigated.

While theory does not provide general predictions, in our setting we can

investigate the role of risk aversion by simulation. To do so, we solve the
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optimal stopping problem by backward induction with different levels of risk

aversion. We consider DMs with a CRRA utility function (Wakker, 2010),

such that the utility of making the right guess is:

U1 =

{
ln(20) if γ = 1
201−γ

1−γ if γ 6= 1

Figure 6 shows the average optimal stopping time from these simulations

for a wide range of risk aversion levels. Risk aversion does not have a mono-

tonic effect on the sampling strategy. Starting from a situation where the

DM is risk loving (γ < 0), an increase in risk aversion will first leads the DM

to sample less, then to sample more.

Could risk aversion explain our results? On one hand, it could explain

the undersampling results by participants having γ parameters between 0.3

and 0.9, which would be regarded being as between mildly and very risk

averse - not far from what is typically observed in experiments. On the other

hand, the oversampling result would require participants to be either very

risk averse, or very risk loving in the $0.50 and $1 treatments.

It is unlikely that, by chance, randomly allocated participants would have

very different risk aversion levels across our different treatments. Indeed, us-

ing the measure of risk aversion from the Holt and Laury (2002) procedure,

we find no difference in average risk aversion between participants from dif-

ferent cost conditions (p = 0.49 for a Kruskal-Wallis test).

To further assess how risk preferences affect sampling behaviour, we es-

timate for each participant the optimal stopping time given their elicited γ

parameter using the Holt and Laury (2002) procedure. The results of this

exercise are displayed in Appendix A.3. We find little evidence that risk

aversion explains our results.

To sum up, while risk aversion is an important parameter in the decision

to sample or not, there is no evidence that it would be the main driving force

behind our results.
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Figure 6: Risk aversion and average optimal stopping times

Note: This figure represents the expected stopping time for each of our treatments, as a
function of the risk aversion parameter in the CRRA utility function.

5.1.2 Loss aversion

When investigating the effect of framing on sampling decisions, we assumed

that framing would lead the participants to perceive the stakes as larger in

the loss frame. However, it could also be that they view the sampling cost as

a loss itself, thereby affecting sampling decisions. We conducted simulations

to test whether this possibility is correct and analyse more the impact of loss

aversion on payoffs.

We consider a standard loss aversion parameter (µ = 2, see Abdellaoui

et al. (2007) for a review), and study its impact on decisions in each of our

framing condition.

In the gain frame, if loss aversion affects the sampling costs, then each

draw is perceived as costing µ × c. All else being equal, higher subjective

sampling costs reduce the optimal stopping time. As a consequence, we

find that loss aversion leads theoretical predictions to be closer to observed

choices in the $0.10 treatment. But on the contrary, theoretical predictions

get even further from observed choices in the treatments $0.50 and $1 where
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participants sampled more signals than predicted by theory. Adding loss

aversion on the sampling cost makes this oversampling worse.

In the loss frame, assuming that the framing triggers loss aversion, if

sampling costs are affected by loss aversion, then both the costs of sampling

c and the payoffs U0, U1 are subjectively multiplied by µ. As the optimal

solution does not depend on the scale of payoffs, it is the same as in a

gain frame where neither payoffs nor costs are affected by loss aversion. We

observe therefore the same pattern of under and oversampling as in the gain

frame without loss aversion.

As a consequence, loss aversion on sampling costs does not provide an

explanation to the pattern of under and oversampling in the participants’

choices.13

5.1.3 Regret

In a recent study, Viefers and Strack (2014) find that regret plays a major

role in an optimal stopping experiment. Regret, as defined by Loomes and

Sugden (1986), captures the idea that agents are affected by the counter-

factuals of their action (Bleichrodt and Wakker, 2015). In a dynamic setting

a DM can not only feel regret over past decisions, but also anticipate the

possible regret over future decisions.

First, regret over past decisions implies that DMs are reluctant to stop

after having had the opportunity to stop at a point where the expected value

of success was high. The optimal strategy for a regret averse DM that has

missed the ex ante optimal strategy is to wait until the process gets back

to this level, leading to longer stopping times. Second, anticipated regret

arises because DMs are aware that they might experience regret and account

for it in their decision making. Viefers and Strack (2014) show that if the

effect of anticipated regret is as strong as regret over past decisions, stopping

times are not affected by its introduction. We therefore consider a simple

case where regret exists without anticipated regret.

13Table 6 in Appendix A.5 displays the theoretical predictions in each framing, whether
costs are considered or not as losses.
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Following Viefers and Strack (2014), we model regret over past decisions

as discounting the value of stopping by the maximum value the DM could

have received (GMAX) multiplied by a factor, κ ∈ [0; 1[, which represents the

intensity of regret. Hence the marginal incentive to sample with regret is:

mR(t, πt) = G̃(t, πt)− c− [G(t, πt)− κ×GMAX ]

As κ and GMAX are positive numbers, introducing regret mechanically

leads to a higher marginal incentive to sample. Hence it might be a potential

explanation to the oversampling pattern we observe. We model our regret

averse DM as risk neutral.14

We estimate the regret parameter κ by maximum likelihood using a ran-

dom utility approach where the probability to sample at a given period in

the experiment is:

P(Sampling) = P(mR(t, πt) > c) = Φ(mR(t, πt)− c)

Where Φ is the CDF of a standard normal distribution. We estimate this

model, at the individual level, using the following log-likelihood function:

lnLi =

Ni∑
ni=1

Yni × ln [P(Sampling)] + (1− Yni)× ln [1− P(Sampling)]

Where Yni = 1 if the decision to sample has been taken, and 0 otherwise,

and Ni is the total number of decision that was taken by individual i.

The results of this estimation are displayed in Table 3. We find an average

regret coefficient, κ, of respectively 0.01, 0.06 and 0.09 in the $0.1, $0.50 and

$1 treatments. We find that this regret coefficient is significantly different

from zero for 150 out of our 162 subjects (setting the significance threshold

at p = 0.05).

However, we strongly reject the hypothesis that these parameters are

14Jointly estimating regret and risk aversion leads to non trivial tractability issues as
one is estimated directly based on past decisions while the other one is introduced by
backward induction.
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similar across treatments (p < 0.01 for pairwise Mann-Whitney tests). If

the pattern of under and oversampling was explained by regret, one would

expect a given level of regret to explain choices across treatments. Instead,

the fact that the regret parameter varies substantially suggests that it may

act as an adjustment parameter helping the model to fit the data better in

different situations. This regret parameter varying between treatments might

be capturing unexplained variations by the model, rather than regret per se.

As a consequence, it is not clear that regret provides a unified explanation

for the observed pattern.

Table 3: Mean and standard deviation of the individual estimates we
derived for the regret coefficient (κ).

c=0.1 c=0.50 c=1

Mean 0.01 0.06 0.09
sd 0.02 0.03 0.03

5.2 Misuse of information

While Bayesian updating is a cornerstone of our model, it is well documented

that participants often violate Bayes’ rule (Kahneman and Tversky, 1979; El-

Gamal and Grether, 1995). The problem we are considering is particularly

prone to two types of biases. First it is possible that participants use a

“rule of thumb” (Kahneman, 2003), whereby they take a constant number

of signals and do not adjust their behaviour to new information. Second

participants could exhibit a confirmation bias (Rabin and Schrag, 1999),

whereby information is interpreted as confirming one’s own one belief.

5.2.1 Rule of thumbs

An explanation to our results could be that participants do not react to new

information and use “rule of thumbs” (e.g. always selecting the same number

of draws). A first glance reveals that no participant chose the same stopping

time throughout the experiment.
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To further assess this possibility we test whether the decision in trial

t−1 on the number of draws (nt−1) predicts the number of draws in the next

trial (nt). To do so, we estimate a first-order autoregressive Poisson model

(Martin et al., 2012):

nt = ρ ◦ nt−1 + εt

Where:

ρ ◦ nt−1 =

nt−1∑
s=1

es,t−1

es,t−1 =

{
1 with probability ρ

0 with probability 1− ρ

εt ∼i.i.d. P(λ)

The notation ◦ is the binomial thinning operator, which is used to ensure

that the integer nature of data is preserved.15 P (λ) stands for the standard

Poisson process with parameter λ. As ρ◦nt−1 is the sum of nt−1 i.i.d. random

variable, we get E[nt|nt−1] = ρ × nt−1 + λ. The autocorrelation parameter

ρ can be estimated by maximum likelihood at the individual level (Weiß,

2008).

The average autocorrelation parameter is ρ̄ = 0.47. It is significantly

not different from zero in 75% of cases (setting the significance threshold at

p = 0.05). Therefore, for most participants the number of draws in the past

round does not significantly predict the current round decision. It suggests

that participants did not use the same stopping rule throughout the rounds

and did adapt their sampling behaviour to the signal intensity they observed.

As a consequence, the pattern of under and oversampling does not seem to

be driven by the use of simple rule of thumbs.

5.2.2 Confirmation bias

A standard finding in Bayesian updating tasks is that participants exhibit

a confirmation bias, whereby they tend to interpret information in a man-

15It sums nt−1 Bernouilli variables (es,t−1 ∼ Bern(ρ)).
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ner biased towards confirming their existing beliefs. Experimental studies

have shown that participants seek more confirmatory evidence when evalu-

ating competing hypotheses (Jones and Sugden, 2001) or place more weight

on confirming evidence than disconfirming ones (Charness and Dave, 2017).

From a theoretical stance, this bias has been theorised by Rabin and Schrag

(1999) and potentially arises from a preference for consistency (Yariv, 2002)

or bounded memory (Wilson, 2014).

Following Rabin and Schrag (1999), one way to introduce confirmation

bias in our framework is to consider that the DM perceives signals differently

than what they actually are. Denote ñB (ñA) the perceived number of black

(white) balls that have been drawn. Let’s assume that the distortion takes a

simple form, such that the DM linearly overestimates the value of the draws

that confirm her prior. That is she thinks that each black ball is worth α > 1

white balls, if her prior is greater than 0.5. If the DM has an equal number

of black and white balls, there is no bias. It means that the belief at a given

period t is:

π̃t =



0.6nB−nW

0.6nB−nW + 0.4nB−nW
if πt−1 = 0.5

0.6αnB−nW

0.6αnB−nW + 0.4αnB−nW
if πt−1 > 0.5

0.6nB−αnW

0.6nB−αnW + 0.4nB−αnW
if πt−1 < 0.5

To test this hypothesis, we conducted simulations for various levels of α

(α ∈ [1; 3], with increment of 0.025). For each level of bias, we computed

the sampling and stopping payoffs. Then for each sequences of draws we

looked at the minimum optimal stopping time based on biased payoffs. At

an individual level, the estimated bias parameter is the one that produces the

best fit between observed and predicted stopping times. Table 4 summarises

the outcome of our simulations. In the $0.10 treatment we find average

confirmation bias α of 1.91 and a median of 1.96. This bias explains the

decisions of participants, with 17% of them making the “optimal” decision
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given these biased beliefs and 61% of participant stopping within one draw

of this best choice. In the $0.50 treatment, we find an average confirmation

bias α of 1.71, with a median of 1.4. This model with confirmation bias

explains the decisions of participants in 16% (strict definition) and 72% (loose

definition) of cases. In the $1 treatment, the mean confirmation bias α is 1.80

and the median is 1.28. Conditional on these biased beliefs, the decisions are

“optimal” respectively in 24% (strict definition) and 91% (loose definition)

of cases.

These results suggest that the confirmation bias is a possible explanation

for our results. A majority of participants make decisions within one ball of

the (subjectively) best strategy (i.e. best given the beliefs of the DM, even

if wrong). To gain intuition as to how the confirmation bias affects decision

making, we compare how a Bayesian and biased DM would update their

beliefs when receiving a sequence of signals in the same direction. Figure

7 displays beliefs, and the marginal contribution of the last draw to beliefs,

for a Bayesian DM and a DM with confirmation bias. For the first piece

of information, a biased DM and a Bayesian DM update their belief in the

same way. Then, for each new piece of confirming information the biased

DM updates her belief faster than the Bayesian DM. However, after a certain

point, as the value of information is bounded, confirming draws contribute

less in updating in the biased case than in the Bayesian case.

This simulation helps make sense of how confirmation bias can explain

part of the undersampling in the low cost treatment and oversampling in the

high costs treatments. In the $0.50 and $1 treatments, where the number of

draws is typically low, the biased DM overestimates the marginal value of a

draw compared to a Bayesian DM. On the other hand, in the $0.10 treatment,

where the number of draws is typically high, the biased DM underestimates

the value of a draw, compared to a Bayesian DM.

This intuition is confirmed by looking at the marginal incentive to sample

(m(t, πt)).
16 In the $0.10 treatment, when considering to draw the optimal

signal intensity (i.e. going from Sτ = 4 to Sτ = 5), the marginal incentive to

16All the computations that follow are conducted using the average estimated parame-
ters from Table 4
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Table 4: Summary of the estimation of individual confirmation bias
parameters.

α Optimality rate

mean median strict loose

$0.10 1.91 1.96 17% 61%
$0.50 1.71 1.40 16% 72%
$1 1.80 1.28 24% 91%

sample is slightly above zero in the Bayesian case (0.06), compared to -0.21

in the biased case. In the $0.50 treatment, the average incentive to sample

at the theoretical expected stopping time (τ̄ ∗ = 4) is -0.15 in the Bayesian

case, compared to 1.72 in the confirmation bias one. In the $1 treatment the

same observation holds, as the incentive to sample is -0.58 in the Bayesian

case, compared to 1.77 in the biased case when τ̄ ∗ = 2. As a consequence a

biased DM will stop before a Bayesian DM in the $0.10 treatment and after

a Bayesian DM in the treatments $0.50 and $1.

Moreover, and contrary to the regret model, the estimated parameters

are of similar magnitude in all treatments. If we compare the distribution

of the parameters, we cannot reject the hypothesis that they are the same

across treatments (p = 0.56 for a Kruskal-Wallis test).
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Figure 7: Belief updating for a Bayesian and biased DM

Note: The figures represent how subjective beliefs are affected by a confirmation bias
(α = 1.5 and α = 2.5). Left panel: How beliefs change as a function of signal intensity
for a Bayesian and a biased DM. Right panel: Marginal effect on subjective beliefs of an
increase in signal intensity (the curves are the derivatives of the left panel curves). In both
panels, vertical lines represent the signal intensity at the stopping time which is optimal
(conditional on the subjective beliefs of the DM).

5.3 Myopic decision making

The OSS model assumes that DMs are forward looking and able to compute

the sampling expected payoff (possibly by backward induction). In contrast

with this hypothesis, Gabaix et al. (2006) find that participants in a search

experiment are partially myopic. More specifically, at each stage of the search

problem they behave as if the next period was the last one (and reiterate

naively at each period). In our framework, it means the expected value from

sampling would only be the expected value from stopping in the next period

(G̃(t, πt) = E[G(t+ 1, πt+1)|πt]).
To test this hypothesis we computed the expected stopping time and

signal intensities for each of the treatments. The theoretical prediction of

this model is similar across treatments. Given our parameters, all agents

should only acquire one signal. This eventuality is at odds with the typical

number of signals observed by our participants. Moreover, we do observe that

participants behave markedly differently in the three treatments, in contrast

with the myopic model’s prediction. As a consequence, the myopic model

does not seem to be an explanation for the pattern of over and undersampling

we observed.
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5.4 Overview of explanations

We investigate different possible explanations for the deviations from opti-

mality we observe. The undersampling can be partially explained by risk

aversion or myopic decision making. But these explanations cannot help un-

derstand the existence of oversampling in the treatments where the informa-

tion was most expensive. Oversampling may be partly explained by regret,

but the variations of the regret parameter across the different treatments cast

doubt on regret as a unifying explanation of the observed behaviour. The

only explanation which we find to possibly reconcile both over and under-

sampling is the existence of a confirmation bias.

6 Conclusion

This study has investigated to what extent people are able to optimally hesi-

tate between two options with uncertain values. To do so we have designed an

experiment where participants have imperfect information about the payoffs

associated with two possible choices, A and B. These choices can be thought

as representing goods to purchase, investments to make or diagnostic deci-

sions to consider. Participants can choose to wait and learn more information

about the values associated with these choices, or to stop (at any moment)

and select one of them. In our experimental setting, we know exactly the

participant’s information and the alternatives’ payoffs. We are therefore able

to determine the optimal behaviour in this situation: the optimal sequential

sampling strategy. We can then measure whether (and how) participants

deviate from optimality.

Our results can be summarised as follows. First, we find that participants

deviate substantially from the optimal strategy. When sampling is relatively

expensive, participants waited too long to collect information before making

a decision; on the other hand, when it is relatively cheap, they did not wait

enough and made their decision too early. Second, we find that participants

learn over time to improve how long they wait before making a choice when

information is relatively costly. In the treatments with costly information, the
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oversampling of information decreases over the duration of the experiment.

At the end of the experiment the average behaviour of participants is close

to the optimal solution. However, when information is cheap we do not

observe improvement over time with participants consistently collecting less

information than they should under the optimal sampling strategy.

We test for a wide range of theories that could explain our results and

find that, among the possible explanations, the confirmation bias is able

to explain most of the observed under/oversampling. When introducing a

confirmation bias, approximately 75% of the decisions are (loosely) the best

decisions the DM should make given her biased beliefs.

The economic situations we investigate here are pervasive: in a wide

range of contexts, decision makers face a choice between making a decision

now or waiting to know more about the different options. Our results suggest

that the optimal sequential sampling framework can be a good benchmark

to model the behaviour of experienced decision makers. However, our results

also open new questions as to how and why people deviate in systematic

ways from the optimal solution.
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A Appendix

A.1 Figures

Figure 8: Cumulative distribution of stopping times and signal in-
tensity.

Note: This figure is similar to Figure 4 and shows cumulative distribution of stopping times
and signal intensity without restriction on stopping times and signal intensity values.
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Figure 9: Cumulative distribution of stopping times and signal in-
tensity for the first 20 and last 20 periods.

Note: This figure is similar to Figure 4 and shows cumulative distribution of stopping
times and signal intensity with restriction of stopping times below 26 and signal intensity
below 6. The top part of the figure represents the cumulative distributions for the first 20
periods of the experiment; the bottom part represents them for the last 20 periods.

Figure 10: Cumulative distribution of median stopping times and
signal intensity.

Note: This figure is similar to Figure 4 and shows cumulative distribution of median
stopping times and median signal intensity.
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A.2 CRT

This section summarises the results of the cognitive reflection test (CRT)

that was run during the experiment. It is a test of cognitive ability, in the

sense that it assesses the ability of a participant to control impulsive answers

to simple questions. The three questions that were asked are borrowed from

(Frederick, 2005) and are the following:

1 A bat and a ball cost $1.10 in total. The bat costs $1.00 more than the

ball. How much does the ball cost? cents

2 If it takes 5 machines 5 minutes to make 5 widgets, how long would it

take 100 machines to make 100 widgets? minutes

3 In a lake, there is a patch of lily pads. Every day, the patch doubles in

size. If it takes 48 days for the patch to cover the entire lake, how long

would it take for the patch to cover half of the lake? days

We define the CRT score as the number of correct answers in the CRT. Figure

11 plots the distribution of the CRT scores. The average number of correct

answers is 1.1. No subject managed to give the 3 correct answers. We cannot

reject the hypothesis that the CRT has an impact on the rate of optimality

in the task for both the strict and loose optimality conditions (p = 0.11 and

p = 0.83 for an ANOVA test).

Figure 11: Plot of the distribution of the CRT score.

42



A.3 Optimality rates with elicited risk parameters

In order to further investigate the impact of risk preferences on sampling

decisions, we computed the optimality rate for each participants, according

to their elicited risk preferences (using the Holt and Laury (2002) procedure).

The results are displayed below.17

Overall, we find that using the individual risk aversion parameter has

a very low explanatory power. In the $0.10 treatment the strict and loose

optimality rates are both below 20%. In the $0.5 treatment, both the strict

and loose optimaliaty rates are below 35%. Finally, in the $1 treatment, the

loose optimality rate is relatively high, but remains singnificantly below 50%

(p < 0.001 for a WSR test)

Table 5: Summary of the estimation of optimality rate using the
individual risk parameter.

Optimality rate

strict loose

$0.10 14% 17%
$0.50 18% 32%
$1 24% 44%

A.4 Screenshot

17Note that some observations are dropped from this estimation (around 18%) as the
choices were inconsistent. For instance, some participants chose the last option in the
procedure, where they chose $1.5 with probability 1 compared to $3 with probability 1
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Figure 12: Sample Screen of the experiment
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B Experimental Instructions

Welcome to our experiment! You will receive $5 for showing up on time.

Please read these instructions carefully and completely. Properly under-

standing the instructions will help you to make better decisions and, hence,

to earn more money. If you read these instructions carefully and perform

well in the experiment, you can earn more money (which will be paid out to

you in cash at the end of the experiment).

Please keep in mind that you are not allowed to communicate with other

participants during the experiment. If you do not obey this rule you will be

asked to leave the laboratory and will not be paid. Whenever you have a

question, please raise your hand; an experimenter will come to assist you.

This experiment consists in multiple rounds. In each round you will earn

money depending on your performance. At the end of the experiment one of

the rounds will be randomly selected by the computer, and you will earn the

payoff from this round.

Setting

In this experiment there will be two urns: Urn A and Urn B. Urn A contains

4 black balls and 6 white balls. Urn B contains 6 black balls and 4 white

balls. The following figure summarises the situation:

Urn A Urn B

At the beginning of every round one of the two urns will be randomly

selected by the computer, by picking up a card from the following deck:

46



Your Objective

Your aim is to find what urn has been selected by the computer. In order to

help you to reach your decision, balls will be automatically drawn from the

urn. You are given a $10 endowment every round, from which the cost of

every ball will be withheld. The ball that has been drawn goes back into the

urn after every draw. Each time a ball is drawn, you have to pay for it.

You can stop the process as soon as you think you know what urn has

been selected.

All the relevant information will be displayed on the screen before any

decision:
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Your Earnings

If you correctly guess what urn has been selected, you earn the payoff. If

you are wrong, the payoff is zero. The cost of drawing a ball from the urn is

withheld from your endowment of the corresponding round. Therefore, your

earning for every round is as follows:

• If you are right: You win $20 and keep whatever you have not spent

on drawing balls from your $10 endowment.

• If you are wrong: You win $0 and keep whatever you have not spent

on drawing balls from your $10 endowment.

Before the end of the experiment, you will also enter a lottery, whose outcome

will be added to your earnings. In this lottery, you can switch from A to B

only once. If you want to change your mind you have to change your switching

point.
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At the end of the experiment one of the rounds is selected, and you will earn

the payoff from this round:
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