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Abstract

We study information disclosure and diversification in contests with techno-
logical uncertainty—where agents can pursue different technologies to compete in
the contest, but there is uncertainty regarding which is the right one. The prin-
cipal can credibly reveal information about the technologies to affect the agents’
choices. Information revelation may prompt agents to work on the right tech-
nology, which is valuable for the principal, but it can also reduce technological
diversification, which may be detrimental for the principal in a setting with tech-
nological uncertainty. We characterize the optimal information disclosure policy
and show that it can be maximally or partially revealing, or completely unin-
formative, depending on: (i) the value of diversification; (ii) the quality of the
principal’s information; and (iii) the extent of technological uncertainty. Our
results apply to various managerial settings such as innovation contests, tourna-
ments within organizations, and procurement.
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1 Introduction

Many contests feature technological uncertainty: there are multiple technologies, ap-
proaches, or ideas that contestants could pursue to compete in the contest, and it
is not clear which of these will ultimately be successful. This is the case in innova-
tion contests, such as prediction contests hosted on digital platforms (e.g., Kaggle or
Innocentive) or contests organized by a firm (e.g., the 2009 Netflix contest soliciting
recommendation algorithms). Another example are agricultural yield contests, such as
those sponsored by the National Corn Growers Association, where farmers compete to
produce the highest yield. Farmers can use different technologies, but their yield is sub-
ject to uncertainty (e.g., the performance of a technology may depend on the weather
or the soil). Technological uncertainty is also present in procurement contests, such
as those hosted by the U.S. Department of Defense, where contestants may not fully
know the preferences of the procurer over different possible attributes or designs that
they could develop. Similarly, technological uncertainty is also present in contest-like
settings within organizations: workers face uncertainty about the impact of different
tasks on their chances of a promotion.

Uncertainty and competition affect how the agents choose technologies in the contest.
Some agents will work on technologies that turn out to be unsuccessful, so developing
multiple approaches increases the principal’s chances to ultimately implement a success-
ful technology. In such a setting, the principal may be able to reveal some information
regarding the different technologies in order to affect the agents’ beliefs about the dif-
ferent alternatives, which in turn changes the equilibrium allocation of effort across
technologies in the contest. For instance, in prediction contests, the contest sponsor
provides data that contestants use to train and develop their algorithms; these data re-
veal information about the probability of success of different algorithms, and hence the
contestants can use it to choose which approach to develop. In yield contests, the prin-
cipal can reveal the performance of agricultural approaches used in the past, although
this is not a guarantee that they will work well the future, because weather conditions
could be different. Similarly, in procurement contests participants submit designs and
prototypes that can be evaluated by the procurer at some preliminary stage; if the
procurer reveals these evaluations to the contestants, then it will affect the contestants’
beliefs about the likelihood of success of each design, and hence also the contestants’
choices of what to develop subsequently.
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Revealing too much information, however, can be detrimental for the principal, because
it may bias the agents. In prediction contests, for example, the principal wants to avoid
“over-fitting,” i.e., algorithms that perform well in one dataset, but not in general.
Thus, the principal seeks to incentivize the contestants to develop general algorithms
which will be valuable beyond the existing data. In procurement, the procurer may
want to not reveal some of its evaluations, in order to avoid steering the contestants
into developing very similar designs. More broadly, in any contest with technological
uncertainty, revealing some information about the different possible technologies affects
the contestants’ choices and it may induce too little diversity of technologies. On the
other hand, in order to avoid competition, in some settings the agents might prefer a
more diversified portfolio of technologies, relative to the principal. Hence information
disclosure regarding the probability of success of different technologies, approaches,
or ideas, can be a valuable contest design tool for the principal in the presence of
technological uncertainty and competition.

Our model explores technological uncertainty in contests—where uncertainty creates
an option value for diversification across technologies—and we study the principal’s
optimal information disclosure policy. This optimal policy balances the trade-off be-
tween providing the agents with better information about the technologies and the
option value of diversification. In our model, agents compete in a contest and choose
one among multiple possible technologies, one of which is the correct choice—e.g., it
will be implemented ex post by the principal. Neither the agents nor the principal are
informed ex ante about which technology is the correct one.1 The principal designs
a public experiment, and commits to its result, in order to reveal information to the
agents regarding the value or likelihood-of-success of each technology.2 Information
disclosure improves the agents’ beliefs about the technologies, but it may induce an
equilibrium where too many agents choose the more promising technology and there is
too little technology diversification from the perspective of the principal.

Our results apply to a number of managerial problems in innovation, procurement,
and organizations, where technological uncertainty is important. The model sheds
light on the information design aspect of online platforms such as Kaggle, DrivenData,

1These different technologies may represent different approaches to solve a problem in the case of
innovation, different characteristics, features, or designs in the case of procurement, or different tasks
or projects in the case of a worker competing within an organization.

2This is, we study optimal information disclosure in a Bayesian persuasion framework.
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and crowdAI, among others, which offer firms the possibility to sponsor contests to
outsource their data science needs. In these contests, when contestants choose among
multiple technologies to develop their algorithms (e.g. machine learning, regression
methods, or other prediction algorithms) they do not know which method will turn out
to be the best. However, contestants can infer the performance of different alternatives
from testing them on a dataset provided by the principal, who chooses how much data
to disclose.3 The contest sponsored by Netflix to improve its recommendation system
is another example where the information disclosure affected the agents’ choices. In
designing this contest, Netflix revealed a subset of all its available data on users’ movie
ratings, to allow contestants to test their own prediction methods and evaluate the
potential of these different approaches. From Netflix’s perspective there is clearly some
option value to procuring a number of different algorithms, in addition to whichever
algorithm performs best given their current data, as some algorithms may turn out to
be more valuable in the future, when Netflix has more data on users’ preferences. Thus,
an important contest design question is how much of their available data to reveal in
the contest. Revealing more may allow contestants to make better predictions based on
Netflix’s current data, but it may also induce too little diversification across different
methods, if their current data clearly favors one method over another.4

One more instance where information disclosure affected diversification across tech-
nologies is the Hyperloop Pod Competition, sponsored by Space X. The goal of this
competition was to test vehicle-prototypes for the Hyperloop. The competition con-
sisted of several stages and the results were made publicly available at the end of each
stage. A wide variety of technologies were explored, including pod designs that use air
bearings, others that use magnetic levitation, and others that use high speed wheels.
The technology used by the winner of the first part of the competition was a pod design
that used an electrodynamic suspension system to levitate and an axial compressor to
minimize aerodynamic drag. Was it optimal for the contest designer to disclose this
information after the first round? One possible drawback is that some teams may be
tempted to abandon their approaches and switch to the most promising approach after

3In these contests, the contest designer partitions the available data into a “test dataset” and an
“evaluation dataset.” The test dataset allows participants to learn how their algorithms perform, but
the final prize allocation is based on the performance of the algorithm over the evaluation dataset.

4Indeed, during the Netflix contest one user followed an approach that performed well at a prelimi-
nary stage, and this information was revealed to all participants, which led this approach to be widely
adopted by other competitors, per https://www.thrillist.com/entertainment/nation/the-netflix-prize.
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the first stage, as a reaction to good news about one particular technology. However,
given that there is uncertainty regarding which technology will turn out to be the best
in the long run—the current best technology may not be the best ex post—the contest
designer may see value in a variety of approaches.

We characterize the optimal information structure that maximizes the principal’s ex-
pected payoff from the contest. The main trade-off is one between diversification and
focus: revealing more precise information induces agents to focus on more promising
technologies, but if the agents over-react to such information in equilibrium, then this
may lead to too little diversification from the principal’s perspective. As a result of this
trade-off we find that the optimal policy can be either maximally informative, partially
informative or completely uninformative, depending on the features of the environment.
Whether the principal wants to reveal or hide information depends critically on three
factors: (i) the value of technological diversity; (ii) the quality of the principal’s informa-
tion; and (iii) the extent of technological uncertainty. First, the value of technological
diversity reflects the fact that the principal herself does not know which approach is the
right one. Hence developing multiple different approaches has an option value: even if
one technology looks more promising than another ex ante, the latter may turn out to
be more valuable in the long run. The larger this value of diversification is, which is re-
lated to the measure of risk-aversion associated with the principal’s objective function,
the more likely it is that the principal chooses to hide information.

Second, the quality of the principal’s information matters: if she can design a very in-
formative experiment, i.e., an experiment that reveals with very high probability which
technology is the right one, then she is more likely to want to reveal such information.
In practice, however, the principal may not have access to very informative signals, in
which case she may prefer to hide information.

Third, the extent of technological uncertainty reflects how similar or asymmetric the
different approaches are a priori. If the agents’ beliefs about the technologies are ex
ante very asymmetric, the principal may want to reveal information to either reinforce
or weaken the extent of this asymmetry. The more symmetric the technologies are ex
ante, the more likely it is that the principal will choose to hide information.

Related Literature. Our paper contributes to the recent literature on diversification
in contests. Letina and Schmutzler (2017) characterize the optimal prize structure
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when the designer wants to induce a variety of approaches. Our paper offers a new
model of variety, and our results are complementary to theirs, in that we focus on the
problem of information design, which can also be used to induce variety, rather than
on the optimal prize structure. Terwiesch and Xu (2008) incorporate diversity into the
preferences of the contest designer and show that more participants may be preferred.
Boudreau et al. (2011) empirically test the effect of the number of participants on
diversity. Letina (2016) studies the effect of market competition and mergers on variety,
and finds conditions such that the research portfolio under market competition features
too much (or too little) variety. Toh and Kim (2013) study how aggregate uncertainty
affects technological diversification within a firm. They find that a firm’s technology
becomes more specialized under greater uncertainty. Related to this, Krishnan and
Bhattacharya (2002) study how a firm should design a product when there are several
uncertain alternatives for the product’s underlying technology.

Because we focus on information design, our paper also contributes to the literature
on disclosure and feedback in contests. The existing literature focuses on information
regarding the agents’ characteristics or actions, rather than information about the un-
derlying technologies, as in our paper. For instance, Aoyagi (2010) studies a dynamic
tournament and compares the effort provision by agents under full disclosure of their
performance (i.e., players observe their relative position) and no information disclosure.
Ederer (2010) adds private information to this setting, and Klein and Schmutzler (2016)
add other decisions regarding the allocation of prizes and alternative performance eval-
uations. Fu et al. (2016) and Xin and Lu (2016) study optimal information disclosure
regarding agents’ entry decisions in contests. Zhang and Zhou (2016) study information
disclosure regarding one player’s effort costs, whereas Mihm and Schlapp (2018) study
the optimal information disclosure to maximize the provision of effort when players are
uncertain about the principal’s preferences. Kovenock et al. (2015) study the effect
of players sharing information throughout the contest. Feedback in dynamic contests
has been recently studied by Bimpikis et al. (2014), and Benkert and Letina (2016).
Recent empirical work assessing the effect of performance feedback on competition out-
comes includes Gross (2015, 2017), Huang et al. (2014), Kireyev (2016), Bockstedt et al.
(2016), and Lemus and Marshall (2017).

This paper also relates to R&D models with multiple risky technologies. Dasgupta and
Maskin (1987) show that in a winner-takes-all competition, the equilibrium allocation of
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research on correlated projects is too high relative to the socially efficient allocation, so
there is less diversification in equilibrium. Bhattacharya and Mookherjee (1986) present
a similar framework, but they study the level of risk taken by the firms, finding that the
optimal research strategy may feature excessive or insufficient risk taking, depending
on the level of risk aversion and the shape of the distribution of research outcomes.
Cabral (1994) shows that when the competition is not winner-takes-all, the level of
risk taking is lower than the socially optimal level. Cabral (2003) explores the same
question in a dynamic environment, showing that a follower firm takes more risk than
the leader. Our paper contributes to the literature by studying information disclosure
by the contest designer, in the framework of Kamenica and Gentzkow (2011).

A recent literature has explored information design in games more generally. This work
includes Zhang and Zhou (2016), Mathevet et al. (2017), Laclau and Renou (2016),
Alonso and Câmara (2016), Ederer et al. (2018), among others, and also models of
contests for experimentation, such as Halac et al. (2017).

Our paper focuses on a single element of contest design, information disclosure, which
relates broadly to the literature of contests design, where the goal is to study the effect
of alternative designs on players’ incentives. This literature includes the work of Taylor
(1995) and Fullerton and McAfee (1999) on restricting the number of competitors in
winner-takes-all tournaments, Moldovanu and Sela (2001) on the optimal number of
prizes, Che and Gale (2003) on both number of prizes and the number of participants.

2 Model

A continuum of agents, indexed by i ∈ [0, 1], compete in a contest that awards a
single prize V to the agent that develops the “best” solution to a problem.5 There
are N different “technological approaches” to solve the problem, and only one of these
approaches is the correct one, i.e., is the approach that will deliver a feasible solution
that will be implemented ex post. Each agent has one indivisible unit of effort to allocate
to one of the technologies. This assumption allows us to focus on the allocation of effort

5In prediction contests (such as those hosted on Kaggle) there is a well-defined notion of the best
solution. A typical measure of performance includes the sum of square errors, but the right algorithm,
the one that minimizes this metric in the evaluation dataset, is ex ante unknown. Using the test
dataset to evaluate different algorithms provides a noisy measure of an algorithm’s final performance.
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across technologies, rather than on the intensity of effort exerted by the agents. Agents
hold a common-prior p = (pj)Nj=1, where pj ∈ [0, 1] is the belief that technology j is the

correct approach, and
N∑
j=1

pj = 1.

We model competition among agents in a reduced form. Given that a mass of xj agents
allocate their effort towards technology j, the probability that one of these agents wins
the contest is uniform. In other words, we assume that the prize allocation in the contest
is anonymous: if two agents both choose the ex post successful technology, they have
the same chances of winning the contest. Agents that choose an ex post unsuccessful
technology never win the contest. Hence, the probability of an individual winning the
contest is uniform over the agents who choose the right technology.

Assumption 1. Let j ∈ N be the correct ex post approach. If a measure of x agents
work on technology j, each of them has a probability (density) s(x) = 1

x
of winning the

contest. Agents that work on technology k 6= j never win the contest.

Agents’ Payoffs. Under Assumption 1, when j ∈ N is the correct approach ex post,
and the distribution of agents over technologies is x = (x1, ..., xN), agent i’s payoff from
choosing technology k is

ui(k) =


V
xj

, if k = j

0 otherwise
.

For any belief p = (pj)Nj=1, agent i’s expected payoff from choosing technology k, given
the distribution x = (x1, ..., xN) of all the other agents over the technologies is

E[ui(k)|p] = pkV

xk
.

Principal’s Payoff. The principal’s payoff depends on how many agents allocate
their effort to the ex post successful technology. If the distribution of agents over
technologies is x = (x1, ..., xN) and technology j turns out to be the correct approach
that is implemented ex post, the principal’s payoff ex post is v(x) = f(xj), where f(·)
is an increasing and concave function. This function represents the gains from agents’
efforts (or investments) into the chosen technology. Having more agents develop the
correct technology improves the principal’s payoff, but there are decreasing marginal
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returns to agents’ efforts.6 An ex post unsuccessful technology (i.e., not feasible or not
valuable) results in unproductive or wasteful effort, from the designer’s perspective.
Thus, for a given belief q = (q1, ..., qN) of the principal over the likelihood of success of
each technology, the principal’s expected payoff from allocation x is

E[v(x)|q] =
N∑
j=1

qjf(xj)− V.

Since V is not influenced by information design (i.e., it is separable with respect to the
beliefs), in the reminder of the analysis we suppress this term in the principal’s payoff.

For any interior beliefs q = (qj)Nj=1, the first-best allocation of agents solves the following
problem:

xFB ∈ arg max
x∈[0,1]N

N∑
j=1

qjf(xj) subject to
N∑
j=1

xj = 1. (1)

Proposition 1 (First best allocation). When f(·) is increasing, differentiable and con-
cave, for any interior beliefs q = (qj)Nj=1 about the technologies, the solution to Problem
(1) is characterized by

f ′(xFBi )
f ′(xFBj ) = qj

qi
∀i, j ∈ N.

Proposition 1 shows that the first-best solution for the principal equates the ratios
of marginal gains from each technology to the inverse ratios of their probabilities of
implementation, because the first best allocates agents so as to equalize the marginal
expected gains from the technologies. Given that f is concave (f ′ is decreasing), the
principal allocates more agents to technologies that are more promising and diversifies:
agents are allocated across multiple technologies, because it is ex ante uncertain which
technology is ex post implementable. Note that the value of diversification for the
principal is measured by the concavity of f .

Next, we consider the equilibrium of the game where agents choose which technology to
work on. Here, they take into account both competition with other agents (a crowding-
out effect) and also the likelihood that a technology is successful. More promising
technologies attract more agents, but competition pushes agents to also work on less
promising technologies.

6This can be seen as a reduced-form representation of a model where there is a finite number of
agents that draw scores out of a distribution, and the principal’s payoff is the maximum score.
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Definition 1. A distribution of agents over technologies x = (x1, ..., xn) is an equilib-
rium if

N∑
j=1

xj = 1 and no agent i who allocated effort towards technology k can improve

its payoff by allocating its effort towards technology ` 6= k.

The equilibrium allocation of agents, given any common interior beliefs Θ = (θ1, ..., θN)
about the technologies, is characterized in the next proposition.

Proposition 2 (Equilibrium characterization). With a common interior belief Θ about
the technologies, the equilibrium mass of agents working on technology j is

xj = θj.

Proof. Consider an allocation of agents where a mass xj of agents work on technology
j, with ∑N

j=1 xj = 1. For this allocation to be an equilibrium, no agent must have
incentives to deviate, so each technology must give each agent the same expected payoff
which implies

θj
xj

= θk
xk
, for all j, k ∈ {1, ..., N}.

This condition is equivalent to xj = θj

θk
xk, for all j = 1, ..., N , so adding over j and

using that ∑N
j=1 xj = ∑N

j=1 θj = 1, we obtain xk = θk, for all k.

Proposition 2 shows that in equilibrium more agents are allocated to more promis-
ing technologies, but competition among agents pushes some of them to work on less
promising technologies: the chances of winning are larger when fewer agents work on
one technology. For this reason, the equilibrium allocation is generally inefficient and
features too much or too little diversification, relative to the first-best allocation.

2.1 Equilibrium inefficiency: over- and under-reaction.

Consider the case of two technologies. Let Θ = (θ, 1− θ) be the common belief about
the two technologies, i.e., agents believe that technology 1 is the correct choice with
probability θ, and assume without loss of generality that θ ≥ 1

2 . Let xE be the equi-
librium mass of agents allocated to technology 1, and let xFB the the first-best al-
location of agents to technology 1. From Proposition 1 and Proposition 2 we have
θf ′(xFB) = (1− θ)f ′(1− xFB) and xE = θ.
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What is the relation between xE and xFB? When θ = 1
2 the equilibrium is efficient:

xE = xFB = 1
2 . But when θ 6= 1

2 , in equilibrium agents may “under-react” or “over-
react” to information about technology 1; that is, in equilibrium too few or too many
agents may work on the more promising technology, relative to the first best. Whether
agents over- or under-react will depend on the shape of the principal’s payoff at the
current belief in relation to the competitive force induced by the contest.

To characterize more generally when agents over- or under-react to information about
the ex-ante most promising technology in equilibrium, we define

H(θ) = θf ′(θ)− (1− θ)f ′(1− θ).

Note that this function is 2-fold symmetric around θ = 1
2 , and H(0) ≤ 0 and H

(
1
2

)
= 0.

Proposition 3. For θ > 1
2 (w.l.o.g.), agents over-react to information about technology

1, i.e. xE > xFB, if H(θ) < 0, and they under-react, i.e. xE < xFB, if H(θ) > 0.

Whether agents under or over react to information is related to the coefficient of relative
risk aversion associated with f :

rf (θ) ≡
−θf ′′(θ)
f ′(θ) .

Proposition 4. When the principal is not too risk averse, agents under-react to infor-
mation about the most promising technology in equilibrium. Specifically, when

(1− θ)rf (θ) + θrf (1− θ) < 1, for all θ ∈ [0, 1],

too few agents allocate to the most promising technology in equilibrium, relative to the
principal’s optimal allocation.

Consider for example f(x) = xa for some a ∈ (0, 1). In this case, rf (x) = 1− a < 1 so
the principal is not too risk averse, and Proposition 4 implies that agents under-react
to information about the most promising technology. Intuitively, the principal would
like more agents working on the most promising technology, but competition between
agents pushes them to work on a more diverse set of technologies. This is easy to see in
the limit case when a→ 1, so f(x) = x, and the principal would allocate all agents to
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the most promising technology. However, this is not an equilibrium because an agent
would rather work on any of the other technologies and face no competition. Thus,
relative to the first best allocation, in equilibrium there is too much diversification.

When the condition in Proposition 4 is violated, i.e., when the principal’s risk aversion
is relatively high, we can still determine whether agents in equilibrium react or under
react to information. To illustrate this point, consider f(x) = 1 − exp(−λx). We
have rf (x) = λx and thus (1 − θ)r(θ) + θr(1 − θ) = 2λθ(1 − θ). The parameter λ
corresponds to the (absolute) risk aversion of the principal. When λ < 2 we can apply
Proposition 4 to show that agents will under-react to the most promising technology.
However, when λ > 2, the principal is too risk averse, and agents over-react to the most
promising technology for θ ∈

[
1
2 ,

1
2 + θ∗

]
and under-react for θ > 1

2 + θ∗. Intuitively,
when the belief is θ ∈

[
1
2 ,

1
2 + θ∗

]
, the high risk aversion of the principal implies that the

principal would prefer diversification, but in equilibrium too many agents work on the
most promising technology. Therefore, agents may over or under-react to information.

Figure 1 illustrates these two cases. The left panel shows the function H(θ) when the
principal’s payoff is defined by f(x) = xa, with a = 0.5. In this case, in equilibrium, too
few agents allocate to the most promising technology: there is always under-reaction
to information about the most promising technology. The right panel shows H(θ)
when the principal’s payoff is defined by f(x) = 1 − exp(−λx), with λ = 2.5. In this
case, in equilibrium, too few agents allocate to the most promising technology when
θ ∈ [0, 0.14)∪ (0.86, 1], and too many agents allocate to the most promising technology
when θ ∈ (0.14, 0.86).

0.5 1
θ

H(θ)

(a) H(θ) when f(x) =
√
x.

0.14 0.5 0.86 1
θ

H(θ)

(b) H(θ) with f(x) = 1− exp(−2.5x).

Figure 1: Function H(θ) for different preferences represented by f(·).

Given that generically competing agents’ incentives and the principal’s preferences are
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misaligned, we explore whether the principal can design an experiment to persuade
agents to work towards different technologies. Intuitively, the principal can disclose in-
formation in such a way as to exploit the over- or under-reaction of agents in equilibrium
to achieve a better allocation of agents.

3 Information design

We now turn to the analysis of optimal information disclosure. In general, the principal
may be able to reveal information to the agents regarding the feasibility or likelihood
of success of different technologies, for example by revealing the results of preliminary
testing or evaluations of different alternatives, or some data that the agents can use
to form beliefs about the alternatives. Should the principal reveal such information?
In a situation where technology-specific prizes are not contractible, can the contest
designer use information revelation strategically to improve the equilibrium allocation of
agents across technologies? We study this question in a Bayesian persuasion framework:
we assume the principal can ex ante commit to an information disclosure policy, i.e.,
the principal designs a public experiment that will reveal public information about
the technologies to all agents. For instance, in prediction contests this experiment
corresponds to the size of the test and evaluation datasets. In innovation contests, this
experiment corresponds to revealing the result of prototype testing.

An experiment is a signal structure s = (M, G̃(·|j)), where M is a set of messages and
G̃(m|j) is the probability that message m ∈M is sent when the state of nature j, i.e.,
when technology j is the correct choice ex post. Let S be the set of all such signal
structures available to the principal. Importantly, we do not assume that the principal
has access to every signal structure. This is motivated by the observation that in many
practical applications a perfectly informative signal is impossible to generate: in many
applications it is unfeasible to design an experiment that eliminates all the uncertainty.
Additionally, the problem is trivial if a perfectly informative signal exists: the principal
would immediately reveal to the agents which technology is the correct one and all
agents would work on this technology. Instead, we solve for the optimal information
disclosure policy for any arbitrary set of available signals. The set S allows for discrete
or continuous posteriors, and it allows for both partitional or noisy signal structures.
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Each signal structure s ∈ S induces some distribution over posterior beliefs, Gs(Θ), and
we denote the set of posterior beliefs in the support of that signal as Ps, with generic
elements Θ ∈ Ps. Let PS ≡ ∪s∈SPs denote the set of all posterior beliefs that can be
induced by some signal.

Lemma 1. For any set of signal structures S, the set of posteriors that can be induced
by the principal, PS = ∪s∈SPs, is convex.

Intuitively, for any two posteriors Θ′,Θ′′ ∈ PS that can be induced with some signal
structures s′ and s′′, the principal can also induce any convex combination αΘ′ + (1−
α)Θ′′ with a signal structure that mixes s′ and s′′ in the right way. Therefore the set of
feasible posteriors is a convex subset of the N − 1 simplex. In particular, when there
are only 2 technologies, the set of feasible posteriors is an interval.

The value of information disclosure can be analyzed in terms of the posterior beliefs
that a signal structure induces for the agents and the principal. Recall that when agents
hold the belief Θ, in equilibrium we have xj = θj. Therefore, the principal’s expected
payoff from inducing a posterior Θ is

ν(Θ) ≡
∑
j

θjf(θj). (2)

As in Kamenica and Gentzkow (2011), the value of information disclosure is described
by the convexity of ν(Θ). Let ν̂(Θ,PS) be the concave closure of ν(Θ) over PS. The
principal strictly benefits from persuasion whenever ν̂(Θ0,PS) > ν(Θ0) around the prior
Θ0. We can easily characterize whether ν(·) is concave or convex.

Lemma 2. Define g(θ) = θf(θ). Then, ν(Θ) is concave at Θ = (θ1, ..., θN) if and only
if g′′(θj) < 0 for all j = 1, ..., N .

Proof. Let H(Θ) be the matrix of second derivatives of ν(Θ). Given the separability of
the function ν(·) the matrix H(Θ) is diagonal, with ∂2ν(Θ)

∂2θj
in the j-th row and column.

Concavity can be verified by checking that zTH(Θ)z < 0 for all z ∈ RN \ {0}. This
condition is equivalent to ∑N

j=1 z
2
j g
′′(θj) < 0. Thus, a necessary and sufficient condition

for this to hold is g′′(θj) < 0 for all j = 1, ..., N .

Lemma 2 implies that we need to study the concavity of θf(θ) to determine whether
or not there are gains from persuasion. This can be characterized very intuitively as
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follows:
∂2[θf(θ)]
∂θ2 < 0⇔ 2f ′(θ) + θf ′′(θ) < 0⇔ 2 < rf (θ).

Hence whether ν(Θ) is locally concave at Θ depends on the Arrow-Pratt relative risk
aversion coefficient associated to f(·), around the belief θj. This implies that when
rf (θ) is large, i.e. the principal is very risk averse, the principal does not benefit from
information disclosure. And when rf (θ) is low, i.e. the principal is not too risk averse,
the principal benefits from information disclosure.

In subsection 2.1 we showed that the relative coefficient of risk aversion also captures
the value of diversity to the principal relative to the equilibrium level of diversity.
Hence, the trade-off between diversity and information disclosure is captured by rf .
We now illustrate how the value of information disclosure relates to this coefficient for
the case of two technologies. Consider again f(x) = xa, with a ∈ (0, 1). In this case,
rf (x) = 1− a < 2 for all x ∈ [0, 1], and from Lemma 2 we get that the function ν(·) is
globally convex, so there are always gains from information disclosure, for any prior and
for any PS. Recall that for this function agents always under-react to good news, i.e.,
xE < xFB for θ > 1

2 , where x
E is the equilibrium mass of agents working in technology

1, and xFB is the efficient mass of agents working on that technology. Hence the two
observations—that agents under-react to news and that it is optimal for the principal
to reveal as much information as possible—are indeed closely connected.

On the other hand, for f(x) = 1− exp(−λx), the function ν(·) can be concave around
the middle and convex near the extremes—for λ large enough, f(·) is close to linear
around the extremes, so ν(Θ) is convex there, whereas f(·) is very concave around
the middle, so ν(Θ) is concave there. Whether the principal can benefit or not from
revealing information thus depends on the prior and on PS: information disclosure could
benefit the principal if the prior is relatively extreme and the principal can induce
very informative signals; otherwise, disclosure is not optimal in the concave region
of ν(Θ), where agents would over-react to news. Figure 2 shows the value for the
principal of inducing posterior θ for f(x) = x0.5 (shown in the left panel) and for
f(x) = 1− exp(−6x) (shown in the right panel).
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(a) ν(θ) when f(x) = x0.5.
0 1

θ
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(b) ν(θ) when f(x) = 1− exp(−6x).

Figure 2: Function ν(θ), the value for the principal of inducing posterior θ, for different
preferences for the principal, which are represented by f(·).

Intuitively, whether there are gains from information disclosure or not (i.e. whether ν(·)
is locally convex or concave) depends on the value the principal assigns to diversification
across technologies. When rf (x) is relatively large, i.e. f(·) is very concave, diversi-
fication is more valuable to the principal than to the agents, because the equilibrium
allocation, for any given belief Θ, is too responsive to differences among the technolo-
gies, relative to the principal’s first-best allocation of effort across technologies. In this
case agents “over-react” to differences among the technologies. In contrast, when rf (x)
is relatively small, i.e. f(·) is relatively less concave, then the value of diversification to
the principal is smaller, and so revealing information that induces more extreme beliefs
is more valuable, and produces an allocation closer to the first-best. In this case agents
“under-react” to differences among the technologies. Therefore the principal may prefer
to reveal information that induces more extreme beliefs, as illustrated in the example
with f(x) = x0.5 in Figure 2a.

Under mild conditions, the shape of ν(·) with N > 2 technologies is analogous to the
two cases shown in Figure 2. The next lemma characterizes the shape of ν(·).

Lemma 3. The function ν(Θ) has the following properties:

(i) all of its global maxima are at the vertices of the N − 1 simplex;

(ii) if 2f ′(θj) + θjf
′′(θj) crosses 0 at most once for all θj ∈ [0, 1

N
], then ν(Θ) has at

most one local maximum at the center of the simplex.

Proof. For part (i), note that at each vertex θi = 1 for some i ∈ N and θj = 0 ∀j 6= i.
Hence the values at the vertices are ν(0, ..., 0, 1, 0, ..., 0) = 1 · f(1). The only points
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that can obtain the global maximum of f(1) are the vertices of the simplex. To see
this, consider any point Θ′ = (θ′1, ..., θ′N) such that ν(Θ′) = ∑

j θ
′
jf(θ′j) = 1. Then

f(θ′j) ≥ f(1) for some j ∈ N . Since f is increasing, this requires θ′j = 1, hence the
point Θ′ is a vertex.

For part (ii), we will first show that ν(Θ) has a critical point at the center of the
simplex; we then discuss how whether that critical point is an interior local maximum
or minimum depends on 2f ′(θj) + θjf

′′(θj), and how this expression determines the
uniqueness of an interior maximum.

The center of the simplex is always a critical point of ν(Θ) = ∑N
j=1 θjf(θj) subject to∑N

j=1 θj = 1 because the FOC with respect to θj, f(θj) + θjf
′(θj) = λ, for j = 1, ..., N ,

and∑N
j=1 θj = 1 is clearly satisfied at θj = 1

N
for all j ∈ N . If this is the unique solution,

then that critical point is a local minimum, and ν(Θ) must be convex everywhere, since
all of its global maxima are at the vertices, by part (i). On the other hand, if the system
of equations has multiple solutions, some of them may be interior local maxima, with
∂2ν(Θ′)
∂θ2

j
= 2f ′(θj) + θjf

′′(θj) < 0, since the objective ν(Θ) is separable and its Hessian
is a diagonal matrix. Note that the objective ν(Θ) has global maxima at the vertices,
so it is locally convex near the vertex, i.e. ∂2ν(Θ′)

∂θ2
j

> 0 in a neighborhood around each
vertex. Therefore if 2f ′(θj) + θjf

′′(θj) crosses 0 at most once over θj ∈ [0, 1
N

], then all
the critical points to the left of some threshold θ̄j ∈ (0, 1

N
] with 2f ′(θ̄j) + θ̄jf

′′(θ̄j) = 0
are minima, and any critical point to the right of θ̄j is an interior maximum. Moreover,
because of single crossing in this case we must have a unique local maximum to the
right of the threshold θ̄j, if there exist any interior maxima. Thus, the critical point at
the center must be a local maximum if 2f ′(θj) + θjf

′′(θj) crosses 0.

Hence we have shown that if ∂2ν(Θ′)
∂θ2

j
= 2f ′(θj) + θjf

′′(θj) crosses 0 only once for all
θj ∈ [0, 1

N
], then it does so from above, and there is a unique interior local maximum

at the center, while any other critical points are local minima or saddle points.

Lemma 3 implies some useful properties of the principal’s objective function. Notice
that sign[2f ′(x) + xf ′′(x)] = sign[2− rf (x)], so we can interpret this condition in terms
of the relative risk coefficient: if rf (x) < 2, the function ν(·) is convex; if rf (x) crosses
2 only once, then there is at most one interior local maximum.7

7A sufficient condition for rf (·) to be monotone would be to assume that the sign of f ′′′ is constant:
when f ′′′(x) > 0 (f ′′′ < 0), rf is decreasing (increasing).
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Additionally, Lemma 3 shows that ν(·) has global maxima with value f(1) at the
extreme points of the simplex, because at those extreme points the principal and agents
know with certainty which technology is the correct choice (it will be implemented ex
post). Thus, every agent in equilibrium works on that technology, which is the optimal
allocation for the principal. This immediately implies that if the principal has access to
a perfectly informative signal, revealing that signal is optimal. However, such a signal
need not be available to the principal in general—in many settings it is unrealistic to
assume that the principal has a perfect signal, which can eliminate all uncertainty in the
environment. In the Netflix Prize example, to implement such a signal Netflix would
need to have infinite amounts of data on consumers’ preferences.

Also, Lemma 3 shows that the value function is generally convex towards the extremes,
and may have a concave region around the center of the simplex, where it may have a
local maximum.8 Whether such a concave region exists or not depends on the functional
form of the production function, f(x). Lemma 3 provides a sufficient single-crossing
condition to ensure that the objective has at most one interior local maximum: if
2f ′(x) + xf ′′(x) crosses 0 at most once in [0, 1

N
], then the objective either only has an

interior local minimum, or it has a unique interior local maximum at the center.

We assume that f satisfies the properties characterized by Lemma 3(ii) for the remain-
der of the analysis, noting that the characterization of an optimal signal structure does
not critically rely on this assumption—one can also state a general characterization
result without it, but the assumption allows us to more explicitly state the main result
and the optimal distributions over posteriors.

Optimal information design. We now characterize the optimal signal structure in
our setting. Let Θ0 be the common prior belief over the N technologies. Conditional
on that prior belief there exists a set of posteriors PS(Θ0) that the principal can induce
that are consistent with Bayes’ rule. In particular, we always have that Θ0 ∈ PS(Θ0),
because the principal can always decide not to reveal anything, so the posterior equals
the prior.

Let ṽ ≡ sup{ν(Θ) : ν ′′(Θ) ≤ 0, Θ ∈ ∆N} be the largest value of the value function
over the region where it is concave in the simplex ∑N

j=1 θj = 1.9 Let ΘC ≡ {Θ :
8In this case there would also be N local minima between the vertices and the center.
9If this region is empty, ṽ = −∞.
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ν̂(Θ,PS) = ν(Θ)} be the set of all posteriors where the value function ν agrees with
its concave closure over PS, i.e., where ν = ν̂. Denote by ∂PS the boundary of PS.
Finally, recall that PS is a convex subset of the simplex ∆N . We can now characterize
the optimal disclosure policy.

Proposition 5. The optimal disclosure policy s∗ is

1. maximally informative if ν(θ) ≥ ṽ for all θ ∈ ∂PS; then s∗ induces a distri-
bution over posterior beliefs with support consisting only of points in the boundary
of the feasible set of posteriors, with distribution Gs s.t. EGs [Θ] = Θ0.

2. partially informative if ν(θ) ≥ ṽ and PS 6⊆ ΘC; then s∗ induces a distribution
with support consisting of boundary points in ∂PS and in PS∩ΘC, with distribution
Gs s.t. EGs [Θ] = Θ0.

3. uninformative if PS ⊆ ΘC; then s∗ induces the prior, Θ = Θ0.

The optimal signal structure is characterized with 3 different cases. These cases depend
on three key features of the environment: (i) the value of diversification for the principal;
(ii) how informative are the principal’s signals for a given prior; and (iii) the extent of
technological uncertainty. We illustrate the intuition for each of these features in the
case of two technologies. First, if ν is globally convex, then the optimal signal structure
is always maximally informative and the optimal persuasion experiment reveals results
that lead to extreme posterior beliefs. On the other hand, in the case where the principal
is risk averse enough, i.e., when ν is not convex (see Figure 2), the optimal information
design problem is more subtle, so we focus on this case in the example below.

The special case with N = 2. Consider an arbitrary set of posteriors PS that the
principal can induce (note that this must be a convex set). There exists θ1 and θ1 with
0 ≤ θ1 ≤ θ1 ≤ 1, such that any posterior belief over technologies Θ = (θ1, 1− θ1) ∈ PS
is characterized by θ1 ∈ [θ1, θ1]; hence we identify PS = [θ1, θ1].

Figure 3 shows the function ν(θ) ≡ ν(θ, 1 − θ) for the case f(x) = 1 − exp(−λx), as
in Figure 2b, highlighting three features: (1) the inflexion points of ν(·), C and D, at
θ = 2

λ
and θ = 1 − 2

λ
, respectively; (2) the unique interior maximum at θ = 1

2 ; and
(3) the points B and E where the value of ν(·) equals its value at the interior local
maximum. The function ν is concave in the region

[
2
λ
, 1− 2

λ

]
and convex otherwise.
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Figure 3: The value function ν(θ1) with f(x) = 1− exp(−λx), with λ = 6.

We have that ṽ = sup{ν(θ) : ν ′′(θ) < 0} = f
(

1
2

)
= 1 − exp(−λ/2). We can restate

Proposition 5 for this special case:

Corollary 1. Suppose, without loss of generality, that the prior is Θ0 = (θ0, 1 − θ0)
with θ0 ≥ 0.5. Also for the sake of exposition, suppose that θ1 = 1 − θ1, so the set of
posterior beliefs the principal can induce is symmetric with respect to 0.5.

The optimal disclosure policy s∗ is

1. maximally informative if ν(θ1) ≥ ṽ (see Figure 4 left panel); s∗ induces a
binary posterior distribution (θ1, q; θ1, 1− q) with qθ1 + (1− q)θ1 = θ0.

2. partially informative if ν(θ1) < ṽ and θ0 ∈ ( 2
λ
, θ1) (see Figure 4 middle panel);

s∗ induces a binary posterior distribution (θ̂1, q; θ1, 1−q) with qθ̂1 +(1−q)θ1 = θ0,
where θ̂1 = sup{θ : ν̂(θ, [θ1, θ1]) = ν(θ)}.

3. uninformative if ν(θ1) < ṽ and θ1 ≤ 2
λ
(see Figure 4 right panel); s∗ induces a

degenerate posterior distribution, (θ0, 1).

Figure 4 illustrates the 3 cases of Corollary 1, plotting the principal’s value function
and the posteriors induced by the optimal information design in each case.
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Figure 4: The value function ν(θ1) (in red), with f(x) = −(1− xa)
1
a , with a = 0.35.

Case 1: Feasible posteriors PS = [θ1, θ1] with θ1 = 0.02 and θ1 = 0.98. Prior θ0 = 0.5 (left)
Case 2: Feasible posteriors PS = [θ1, θ1] with θ1 = 0.08 and θ1 = 0.92. Prior θ0 = 0.8 (middle)
Case 3: Feasible posteriors PS = [θ1, θ1] with θ1 = 0.3 and θ1 = 0.7. Prior θ0 = 0.5 (right)

The principal’s optimal signal structure depends on the a priori asymmetry of the
technologies (i.e. on the prior Θ0), the quality or informativeness of the feasible signals
the principal can use for a given prior (i.e., PS(Θ0)), and on the value of diversification
to the principal (i.e. on ṽ).

First, if S includes signals that are highly informative, so that the principal can induce
posterior beliefs in PS including posterior beliefs close enough to 0 and 1, then maximal
disclosure is optimal, and we have ν(θ1) > ṽ and ν(θ1) > ṽ. Graphically, θ1 lies
somewhere between points A and B, and θ1 lies somewhere between points E and F
in the figure. In this case, the concave closure of ν(·) is the line that connects ν(θ1)
and ν(θ1). Then, the optimal signal is one that reveals θ1 with some probability q and
θ1 with the remaining probability 1− q, where q is such that the expected posterior is
equal to the prior, θ0. This is illustrated in the left panel of Corollary 1.

Similarly, when the value of diversification to the principal is relatively low, then ṽ is
low and we also have max{ν(θ1), ν(θ1)} > ṽ, in which case the optimal signal is also
maximally informative, as in the first case of Corollary 1. The reason is that when the
value of diversification to the principal is low (i.e. the rf (x) coefficient is low enough),
revealing information to the agents increases the principal’s expected value because in
equilibrium agents “under-react” to asymmetries in the technologies, when beliefs are
extreme. Thus, the principal benefits from inducing extreme posteriors. This leads to
an optimal disclosure rule that mixes between the 2 most extreme posteriors possible
within PS. Graphically, when f(·) is relatively less concave and the coefficient rf (·) is
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lower, then the value of ṽ decreases, which pushes points B and E closer towards the
middle.

Second, suppose the available signals are not as informative, and the set of feasible
posteriors PS is narrow enough so that ν(θ1) < ṽ and ν(θ1) < ṽ. Moreover, suppose
that the technologies are ex-ante asymmetric, with technology 1 being more likely ex
ante, with θ0 to the right of point D. Graphically, in the middle panel of Corollary 1,
θ1 lies somewhere between points B and C, and θ1 lies somewhere between points D
and E in the figure. This requires that the value of diversification be large enough, so
that ṽ is large. In this case the optimal signal is partially informative: it reveals the
posterior θ̂1 with some probability q, and θ1 with the remaining probability 1−q, where
q is such that the expected posterior is equal to the prior. This is the second case in
Corollary 1.

Third, suppose the set S only contains less informative signals, so that the principal can
induce beliefs in PS only around 0.5 in the region where ν(·) is concave. Graphically,
in the right panel of Corollary 1, θ1 and θ1 lie somewhere between points C and D. In
this case the concave closure of ν(θ1) over PS is equal to ν(θ1)—there is no value from
information disclosure, and the optimal signal is perfectly uninformative, inducing a
posterior equal to the prior. The principal is constrained by the set of signals it can
use to persuade the agents, which are relatively uninformative signals. The value of
diversification is large enough, and the technologies are symmetric enough, so revealing
information would lead to more extreme posteriors, which in equilibrium agents would
over-react to, compared to the first-best.

4 Conclusion

When there are different approaches to tackle a problem, and agents compete in a
contest to find the correct solution, we ask whether it is beneficial for the contest
sponsor (the principal) to disclose information regarding the different approaches. We
find that it is not always beneficial to reveal that one technology is more promising
than the rest when the principal cares about diversification: revealing information can
induce too many agents to work on the most promising technology, which reduces
diversification.
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We present a tractable framework to study contests with technological uncertainty
and to analyze the trade off between information revelation and diversification. In
our setting, each agent chooses one out of N available technologies to compete in the
contest, and only one of these technologies is ex post the correct one. The principal
can commit to reveal to the agents the results of an experiment that signals the success
of each technology. We fully characterize the optimal signal structure that maximizes
the principal’s expected payoff from the contest, as a function of the set of all signals
available to the designer. We show that the informativeness of the optimal signal
structure crucially depends on three main features of the environment: (i) the value
of technological diversity; (ii) the quality of the principal’s information; and (iii) the
extent of technological uncertainty. Each of these factors affects the principal’s choice of
information structure, as it affects the key trade-off between diversification and focus.

Revealing more precise information about the technologies induces more extreme poste-
riors, which incentivizes agents to focus on more promising technologies in equilibrium.
However, the equilibrium allocation of agents’ efforts may over-react to such asymme-
tries in their beliefs regarding the different technologies, compared to the principal’s
first-best allocation. Because the technologies are uncertain, the principal’s payoff in-
cludes the option value of developing less promising technologies, so diversification is
also valuable, and conflicts with the incentive to focus on more promising technolo-
gies. The optimal signal structure balances these considerations, and can be maximally
informative, partially informative, or completely uninformative in different cases.

These results apply to any contest setting where agents can pursue different approaches,
such as in procurement, contests for innovation, promotions within organizations, and
others. All of these settings have in common the feature that the agents and the
principal may be unsure about which technology, idea, or project will be most valuable
or feasible ex post.
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A Appendix: Proofs

Proof of Proposition 3

Proof. Suppose that technology 1 is the ex-ante most promising technology, so the prior
is θ > 1

2 . When θf ′(θ) > (1 − θ)f ′(1 − θ) we have that xE = θ < xFB, because f ′ is
decreasing (by the concavity of f). Thus, in this case, agents in equilibrium under-react
to information about the ex-ante most promising technology: too few agents are working
on technology 1 relative to the optimal allocation for the principal. Analogously, when
θf ′(θ) < (1 − θ)f ′(1 − θ), we have that xFB < xE = θ, so agents in equilibrium
over-react to information about the ex-ante most promising technology, i.e., too many
agents work on technology 1 relative to the optimal allocation for the principal. Over-
or under-reaction would be determined analogously in the case when θ < 1

2 , where
θf ′(θ) > (1− θ)f ′(1− θ) implies over-reaction, while θf ′(θ) < (1− θ)f ′(1− θ) implies
under-reaction.

Proof of Proposition 4

Proof. It is immediate to see that H
(

1
2

)
= 0. When f(0) = 0 and f ′ > 0, by concavity

we have
f(0) ≤ f(θ) + f ′(θ)(0− θ)⇒ θf ′(θ) ≤ f(θ)

This implies that limθ→0 θf
′(θ) ≤ limθ→0 f(θ) = 0 < f ′(1), so H(0) ≤ 0.

Consider the following auxiliary result:

Lemma 4. Suppose that H is differentiable. Then for any θ s.t. H(θ) = 0,

sign H ′(θ) = sign [1− (1− θ)rf (θ)− θrf (1− θ)].

Proof. Taking derivative we have:

H ′(θ) = f ′(θ) + θf ′′(θ) + f ′(1− θ) + (1− θ)f ′′(1− θ)

= f ′(θ)
[
1 + θf ′′(θ)

f ′(θ)

]
+ f ′(1− θ)

[
1 + (1− θ)f ′′(1− θ)

f ′(1− θ)

]
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Consider a point θ ∈ (0, 1) such that H(θ) = 0. Then, f ′(θ) = (1−θ)
θ
f ′(1− θ) so

H ′(θ) = f ′(1− θ)
θ

{
(1− θ)

[
1 + θf ′′(θ)

f ′(θ)

]
+ θ

[
1 + (1− θ)f ′′(1− θ)

f ′(1− θ)

]}
.

= f ′(1− θ)
θ

[1− (1− θ)r(θ)− θr(1− θ)] .

Given that f is strictly increasing (f ′ > 0) and that θ > 0 we have the result.

Therefore, because H(0) ≤ 0 and H(1
2) = 0, we can analyze the sign of H under some

regularity conditions.

Corollary 2. Suppose that (1 − θ)rf (θ) + θrf (1 − θ) < 1 for all θ ∈ [0, 1]. Then,
H(·) is strictly increasing, implying that in equilibrium equilibrium agents under-react
to information about technology 1, i.e., xE < xFB for θ > 1

2 .

Proof. If 1 > (1− θ)r(θ) + θr(1− θ) for all θ, the function H cannot cross zero before
θ = 1/2, because if it crosses zero, it must cross from below. Since H(0) < 0, this
is impossible. In this case, H only crosses zero at θ = 1/2 and from below. Thus,
H(θ) < 0 for θ < 1/2 and H(θ) > 0 for θ > 1/2, which means that agents under-react
to good news.

Proof of Lemma 1

Proof. Consider any two posteriors Θ′,Θ′′ ∈ PS induced by some messages m′ and m′′,
from (possibly different) signal structures s′ and s′′, respectively. For any α ∈ (0, 1), the
posterior αΘ′+(1−α)Θ′′ can be induced with a signal structure s∗ that sends a message
m∗ with probability α whenever s′ would send m′, and sends m∗ with probability 1−α
whenever s′′ would send m′′, and sends any other arbitrary messages otherwise.

Conditional on observing a message m∗, each agent believes that with probability α

the conditional probability of state j is Θ′, and with probability 1− α the conditional
probability of state j is Θ′′. Hence the agent’s posterior is αΘ′ + (1− α)Θ′′, so the set
PS is convex.
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Proof of Proposition 5

Proof. The proofs follows from the concavification argument.

1. A maximally informative signal obtains when the set of posteriors is rich enough, so
the then the global maxima of ν(Θ) over PS is below the concave closure of ν(Θ) over
the region PS, because δPS includes points towards the vertices of the simplex, so the
concave closure of ν(Θ) over PS corresponds to the plane that connects the boundary
of PS.

Then the optimal signal s∗ only induces posteriors in ∂PS, so for any arbitrary prior p ∈
PS, Bayesian consistency of the posteriors determines the distribution over posteriors
on ∂PS.

2. A partially informative signal obtains when the set of posteriors is limited, so the
concave closure of ν(Θ) over PS coincides with ν(Θ) for some values (near the center
of the simplex ∆N).

3. An uninformative signal obtains when the set of posteriors is concentrated towards
the center of the simplex ∆N , where ν is concave, so the concavification of ν(·) over PS
and ν(·) itself coincide.
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