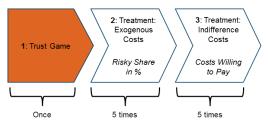
Trust and Delegated Investing: A Money Doctors Experiment

Maximilian Germann Benjamin Loos Martin Weber

22.11.2018


Money Doctors Idea

- Gennaioli, Shleifer, and Vishny (2015, JF): Trust important for delegated investing
- Despite unbiased beliefs, investors are afraid to take risk
- Trusted/trustworthy money managers reduce anxiety
- But money managers exploit trust:
 - Managers set fees to reflect how trusted they are
 - All else equal, more trustworthy managers can set higher fees

Central claim (to be tested):

Investors are better off **with** money managers because higher risk taking overcompensates for the costs of fees

What we do

- Experimental study at Mannheim MLab of Money Doctors theory (Gennaioli, Shleifer, and Vishny, 2015)
 - Participants play a trust game in the spirit of Berg, Dickhaut, and McCabe (1995).

Higher returned amounts are considered a signal of higher trustworthiness

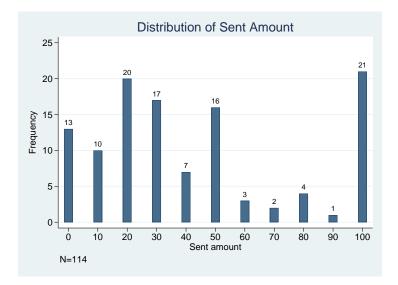
- Participants make investment decisions with advisers that differ in costs / trust
- Participants specify costs willing to bear for investing with an adviser with higher trustworthiness

Main results

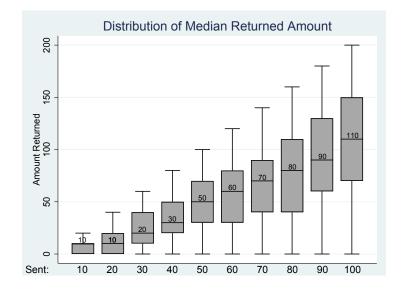
- Investors take
 - a) substantially more risk (16 pp) with more trustworthy managers
 - b) pay higher costs for more trustworthy money managers
- Willingness to take more risk and pay higher costs is increasing in trust difference between money managers
- Investors nonetheless profit from trust

Step 1: Trust Game

This game allows to measure trusting and trustworthy behavior (Camerer, 2003; Fehr, 2009; Johnson and Mislin, 2011).


Sender endowed with X = 100, can send $S \in [0, 10, 20, ..., 100]$. Receiver receives 3*S*, can return $R \in [0, 10, 20, ..., 3S]$.

R = measure of trustworthiness, i.e. higher returned amounts are considered a signal of higher trustworthiness.


Participants randomly matched. Both participants play as if they were sender & as if they were receiver ("strategy method")

Incentivation: Random draw of round and of one of two risky allocations

Results of Trust Game 1/2

Results of Trust Game 2/2

Germann, Loos, Weber

Step 2: Matching Investors with Money-Managers

Random 1-to-2 matching

Every participant is "investor" and is shown R_S " (amount returned for amount sent) of both matched participants ("managers")

Higher R_S = Higher trustworthiness

Treatment 1: "Exogenous Costs"

Investors make separate risky allocations with each manager:

- Both managers' investments offer identical expected return and volatility before costs (E(R)=6% and Vol.=20%)
- Manager with higher trustworthiness (R_S) charges higher costs $C_h = 1.5\%$ (i.e. active fund)
- Manager with lower trustworthiness (R_S) charges lower costs $C_l = 0.75\%$ (i.e. index fund)
- Repeated 5 times with new random 1-to-2

Screenshot of information overview provided to participants:

Advisor	Cost (on risky investment)	Returned amount for amount you sent (You sent: 0 ECU)	Expected Return after costs	Variance		
х	0.75%	0 ECU	(6.0 - 0.75)%	20.0%		
Y	1.5%	0 ECU	(6.0 - 1.5)%	20.0%		
Please indicate how much you would like to invest into the risky investment with advisor X: ECU						
Please indi	-	o invest into the risky investment with advisor 3	K:			
	ECU	o invest into the risky investment with advisor) o invest into the risky investment with advisor '				

Hypothesis Treatment 1

- Managers do not effectively act ("homogeneous in skill") \rightarrow Trustworthiness does *not* affect returns of the asset
- \bullet Managers cannot be monetarily rewarded for trustworthiness \rightarrow Fees/costs are not transferred to managers

Hypothesis Exogenous Costs

The larger the difference in trustworthiness, the higher the amount invested risky with the high-cost / high-trust manager relative to the low-cost / low-trust manager

Univariate: Exogenous Costs 1/2

Do investors invest more risky with the more trustworthy but more costly manager?

		Risky Share in %			
	Ν	mean	sd	5th Percentile	95th Percentile
High Trustworthiness, High Costs	410	46.15	29.20	0	100
Low Trustworthiness, Low Costs	410	29.27	27.07	0	100
		Δ <i>t</i> -stat = 6.58***			

Investors **better off** in terms of E(R) with costly, but trustworthy manager $\rightarrow 0.46 * 4.50\% = 2.07\% > 0.29 * 5.25\% = 1.52\%$ (*p*-value = 0.000***)

Univariate: Exogenous Costs 2/2

What if managers are by chance equally trustworthy and costs are randomly assigned?

All Participants					
		Risky Share in %			
	Ν	mean	sd	5th Percentile	95th Percentile
Low Costs	160	32.71	28.11	0	100
High Costs	160	25.73	27.32	0	100
		Δ <i>t</i> -stat = 1.77*			

ALL D

Multivariate: Exogenous Costs 1/2

Question: Does difference in risky share increase with difference in money manager trustworthiness?

 $\Delta Risky \ Share_{it} = \alpha + \Delta Trustworthiness_{it}\beta + RE_i + \epsilon_{it}$

 $\Delta Risky \ Share_{it} = Risky \ share \ of \ more \ trustworthy \ manager \ minus \ risky \ share \ of \ less \ trustworthy \ manager \ (if \ equal \ R_S, \ more \ costly \ minus \ less \ costly)$

Several ways to look at Δ *Trustworthiness*:

- Absolute \triangle Trustworthiness
- **Relative** $\Delta Trustworthiness \rightarrow (1 \frac{Lower Returned Amount}{Higher Returned Amount}) * 100$
- Δ Trustworthiness Relative to Amount Sent $\rightarrow (\frac{\text{Higher Returned Amount} Lower Returned Amount}{Amount Sent}) * 100$

Multivariate: Exogenous Costs 2/2

	(1)	(2)	(3)	
	Random Effects			
	$y = \Delta Risky Share_{it}$			
Δ Trustworthiness Absolute	0.330*** (0.067)			
∆ Trustworthiness Relative		0.248***		
		(0.042)		
Δ Trustworthiness Relative to Sent			0.176***	
			(0.031)	
Constant	-0.669	-3.801	-1.909	
	(3.809)	(4.295)	(3.954)	
Observations	570	570	570	
Cluster-robust S.E.	YES	YES	YES	
Round FE	YES	YES	YES	
R ² _{overall}	0.082	0.054	0.066	

Random effects control for unobserved individual heterogeneity;

Standard errors clustered at the individual level

Treatment 2: "Indifference Costs"

- Again random 1-to-2 matching
- Investors first have to make risky allocation with manager who:
 - Charges C₁=0.75%
 - Returned R_S less than or equal to the second manager
- Investors then specify indifference costs at which they would make the same risky allocation with the second manager as with the first manager:
 - Input on slider from 0% to 10%
 - Repeated 5 times with new random 1-to-2 matching from Step 2

Hypothesis Treatment 2

- Managers do not effectively act ("homogeneous in skill") \rightarrow Trustworthiness does *not* affect returns of the asset
- \bullet Managers cannot be monetarily rewarded for trustworthiness \rightarrow Fees/costs are not transferred to managers

Hypothesis Indifference Costs

The larger the difference in trustworthiness, the higher the indifference costs accepted with second money manager

Univariate: Indifference Costs

Are investors willing to pay more for investing with more trustworthy managers?

Trustworthiness Second Manager > First Manager					
	Ν	mean	sd	5th Percentile	95th Percentile
Indifference Costs	412	1.946	2.243	0	8.02
Δ <i>t</i> -stat = 6.42***					
Trustworthiness Second Manager = First Manager					
Indifference Costs	158	0.844	1.174	0	5
Δ <i>t</i> -stat = 0.56					

Alternative Explanations

Instructions make clear that:

- Trust does not affect (gross) returns
- Ø Money managers can not be rewarded monetarily

Control questions at end of experiment:

- **Biased Beliefs**: Did you expect investment decisions with advisors who returned more in the trust game to give you higher returns than investment decisions with advisors who returned less?
- **Reward Motivation**: Did you invest more risky with the advisor who returned more in the trust game because you wanted to reward him?
- Test: Regress difference in risky shares invested on:
 - "Biased Beliefs" and "Reward Motivation" dummies and "Biased Beliefs" × "Reward Motivation"
 - Constant remains positive / significant

Robustness of Results, Based on Treatment 1

Dependent variable:

Risky share with more trustworthy manager minus risky share with less trustworthy manager (cases with equal R_S excluded)

	Random Effects
Biased Beliefs	-12.98
	(11.48)
Reward Motivation	1.289
	(8.862)
Biased Beliefs×Reward Motivation	18.46
	(13.27)
Constant	17.46**
	(8.633)
Observations	322
Cluster-robust S.E.	YES
Round FE	YES
R ² _{overall}	0.057

Conclusion

- Simple experiment with the only difference being advisers' costs and trustworthiness
- Evidence in favor of Money Doctors theory, even after controlling for alternative explanations (Biased beliefs Reward Motivation)
- \bullet Investors profit from trust \to Risk taking benefits exceed increased costs